Some examples on probability and distributions

1) Histogram some uniform random numbers
2) A hitchhiker stands by the road where cars pass randomly (according to a Poisson distribution) at a rate of 1 per minute.

What is the probability they are still waiting (1) after 60 cars have passed (2) after 1 hour.
3) Why does the sum of 12 uniform $[0,1]$ random numbers, minus 6 , give (to an approximation) a random number distributed according to the unitGaussian.

Try it and see.
4) In a search experiment you see 0 events. (Often happens!)

For what Poisson mean μ is $P(0 ; \mu)=5 \%$?
What can you say, using frequentist probability, with 95% confidence?
5) For the situation in Question 4, what can you say using Bayesian probability, if you assume a prior which is uniform in μ

What can you say if you assume a prior uniform in $\ln \mu$?
6) Use the inversion method to generate a probability distribution that generates numbers between 0 and 10 , with a density that increases linearly from 0 at zero.

Do the same thing using the von Neumann technique.
7) You have several estimates x_{i} of the same quantity X, each with (in principle) different errors σ_{i}.

If these are Gaussian measurements, show that the Maximum Likelihood estimator \hat{X} is $\left(\sum x_{i} w_{i}\right) / \sum w_{i}$ with $w_{i}=\frac{1}{\sigma_{i}^{2}}$

You repeat a counting experiment 3 times, and get results 4,5 , and 6 counts. What is the ML estimated mean?

