
Exercises- Goodness of Fit and the CLs method

Jan Conrad, Knut Dundas Mor̊a

knut.Mora@fysik.SU.se

INFN School of Statistics, 2015

1 Coverage of a Limit

In this exercise, we will compute the coverage of a CLs upper limit- the
probability (given an hypothesis) that the limit exceeds the true value.
Ideally, we want exact coverage- a 95% limit should include the true value
95% of the time.

1.1 The model

We will consider setting limits on the mean of a gaussian random variablex,
with a known variance � = 1. Our null hypothesis is that µ = 0, i.e.
x ⇠ N(0, 1). The coverage for a hypothesis µ = µ1 is the fraction of upper
limits greater than µ1.

1.2 The CL limit

Given a measurement X from a Gaussian distribution with unknown mean,
we can construct an upper limit as the mean at which a fluctuation down
to x or farther has a probability ↵:

ps+b = p(x  X|µ) =
Z X

1
N(x|µ, 1)

µlimit = µ so that ps+b = ↵

1.3 The CLs Limit

The CLs method is a common procedure for computing limits in particle
physics. Higgs limits were one prominent example. The aim is to avoid
excluding hypotheses that one does not have sensitivity to. To do this, the
CLs is penalized using pb = p(x  X|0):

CLs =
ps+b

1� pb

The upper limit is found by finding the largest µlimit so that CLs = ↵.

1

1.4 The exercise

You can use the ROOT function ROOT::Math::normal_quantile(double z,double sigma)

to invert the normal CDF given the significance level (z) and the standard
deviation.

• When you have functions to compute the CL and CLs limits, try out
what happens with the upper limit if you happen to observe some
likely values (say, -1,0,1 and 3).

• If you have time, you can generate 10000 or so random numbers and
compute the CL and CLs limits and put them in two histograms.

• Finally, to compute the coverage, you need to generate (10000 should
do fine) random numbers with the mean you wish to test µtest, and
record the fraction of the limits above µtest for the CLs and CL limits.

• Compute the coverage for at least a couple of values between 0 and 5,
or, if you have time, make a graph of the coverage. What happens to
the CLs coverage when the mean approaches zero?

A proposed solution can be found in CLs.cpp

2 Goodness of Fit

In this exercise, we will compare two methods for computing the goodness
of fit for unbinned data. Both methods compare the Empirical Distribution
Function , defined for sorted observations Xi:

EDF(x) =

8
><

>:

0 ifx < X1

1 ifXN < x

i/N forXi  x < Xi+1

with the CDF.

Kolmogorov test

The Kolmogorov-Smirnov test of GOF is a simple and widely used test. It
considers the maximal di↵erence between the EDF and the CDF for all x:
DKS =

p
(N) ·sup|EDF(x)�CDF(x)|for all x. The p-value of this test may

be computed in e.g. ROOT: p =TMath::KolmogorovProb(D_{KS}) 1

1
Note that some packages, e.g. scipy.stats.kstest may include corrections to the

asymptotic formula at low N

2

Anderson-Darling

The Anderson-Darling distribution is a more involved test, using the
integrated quadratic distance between the EDF and CDF (weighted higher
at the tails at the distribution).

2.1 Model

We will use the Gaussian distribution for our model again (although the
example script extends this so that you can change the shape of the
distribution, i.e: p(x|µ,�,↵) ⇠ exp(�0.5|(x� µ)/�|↵) .

2.2 Exercise

In ROOT, you can use the GoFTest program to compute GOF, using either the
Kolmogorov or Anderson-Darling tests. Your ROOT folder contain a tutorial
macro tutorials/math/goftest.C that showcases the di↵erent uses, both
GOF tests, and tests between two samples. In the tutorial script, you also
get an example of how you can initialise the GoFTest class with a PDF of
your choosing:

int nvalues;

double * values = new double[nvalues];

ROOT::Math:: Functor1D f(& TMath::Gaus);

double min = 3* TMath:: MinElement(nvalues , values)

;

double max = 3* TMath:: MaxElement(nvalues , values)

;

ROOT::Math:: GoFTest* goftest = new ROOT::Math::

GoFTest(nvalues , values , f, ROOT::Math::

GoFTest ::kPDF , min ,max);

where double * values, int nvalues represent the measured values
and the size of the array, respectively.

The class PDFunctionin gof_root.cpp shows how you can write your
own function in ROOT, which can then be passed to the GoodnessOfFit
object:.

• To compute the power of a test for a certain alternative hypothesis H1
and significance ↵ = 0.05, you need to compute how many times you
can exclude H0 if H1 is true. This is conveniently done with Monte
Carlo:

3

• Generate a large numbers of observations (e.g. 10000 sets of 50
numbers) and compute the p-value using the KS or AD test.

• The power of the test is the fraction of p-values less than ↵- i.e. what
fraction of times H0 is rejected

• Compute the power for 10 H1s where µ is between �1 and 1 for KS
and AD and make a graph of the power versus µ. Is one test much
better than the other?

• Repeat the above exercise, but change � from 0.5 to 2 instead of µ.
How does the tests compare?

A proposed solution can be found in gof_root.cpp The function
void exampleGOFPlot will plot the power of the KS and AD tests for either
µ,� or ↵.

4

