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ae= 11596521807.3 (2.8) x 10-13
 

0.24 parts per billion !! (Hanneke et al., PRL100 (2008) 120801)  

aμ = 116592089 (63) x 10-11
 

0.5 parts per million !! (E821 – Final Report: PRD73 (2006) 072003) 

aτ = -0.018 (17) 

Well, not much yet.... (PDG 2013)

Preamble: today’s values

2
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Outline

 1. Lepton magnetic moments: the basics 

 2. μ: The muon g-2: a quick update 

 3. e: Testing new physics with the electron g-2 

 4. τ: The tau g-2: opportunities & challenges (fantasies?)
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1.  Lepton magnetic moments: the basics



M. Passera   INFN Genova   May 8 2014

(i@µ � eAµ) �µ = m 

The beginning: g = 2

 Uhlenbeck and Goudsmit in 1925 proposed:

  Dirac 1928:

  A Pauli term in Dirac’s eq would give a deviation… 
!
!
!
...but there was no need for it! g=2 stood for ~20 yrs.

5

a
e

2m
�µ⌫Fµ⌫ ! g = 2(1 + a)

~µ = g
e

2mc
~s

g = 2 (not 1!)
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µth
e =

e~
2mc

⇣
1 +

↵

2⇡

⌘
=

e~
2mc

⇥ 1.00116

µexp

e =
e~

2mc
(1.00119± 0.00005)

Theory of  the g-2: Quantum Field Theory

Schwinger 1948 (triumph of  QED!):

Kusch and Foley 1948: 

Keep studying the lepton–γ vertex:

F1(0) = 1 F2(0) = ald

6

A pure “quantum !
correction” effect!
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2.  The muon g-2: theory update
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E821 @ BNL

The old experiment E821

8
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The old experiment E821 (2)

9

The magnet reached Fermilab 
from BNL (July 2013)
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The muon g-2: the experimental result

Today:  aμEXP = (116592089 ± 54stat ± 33sys)x10-11 [0.5ppm]. 

Future: new muon g-2 experiments proposed at: 

Fermilab E989, aiming at  ± 16x10-11, ie 0.14ppm 
J-PARC aiming at 0.1 ppm 

          See B. Lee Roberts & T. Mibe @ Tau2012, September 2012 

Are theorists ready for this (amazing) precision? No(t yet)

Jan 04

July 02 ?

10

Sep 2012:  
CD0 approval! 

Data in  
2016-17?
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aμQED  =  (1/2)(α/π)       Schwinger 1948 

        +  0.765857426 (16) (α/π)2 

Sommerfield; Petermann; Suura&Wichmann ’57; Elend ’66; MP ’04!

        +  24.05050988 (28) (α/π)3 

Remiddi, Laporta, Barbieri … ; Czarnecki, Skrzypek; MP ’04; !
Friot, Greynat & de Rafael ’05, Mohr, Taylor & Newell 2012!

        +  130.8796 (63) (α/π)4 
Kinoshita & Lindquist ’81, … , Kinoshita & Nio ’04, ’05; !
Aoyama, Hayakawa, Kinoshita & Nio, 2007, Kinoshita et al. 2012, 
Steinhauser et al. 2013 (analytic, in progress). !

        +  753.29 (1.04) (α/π)5  COMPLETED!        
Kinoshita et al. ‘90, Yelkhovsky, Milstein, Starshenko, Laporta,!
Karshenboim,…, Kataev, Kinoshita & Nio ’06, Kinoshita et al. 2012

The muon g-2: the QED contribution

…

Adding up, we get:

aμQED  = 116584718.951 (22)(77) x 10-11 
          from coeffs, mainly from 4-loop unc                          from δα(Rb)!
with α=1/137.035999049(90) [0.66 ppb]

11
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The muon g-2: the electroweak contribution

 One-loop term:

1972: Jackiv, Weinberg; Bars, Yoshimura; Altarelli, Cabibbo, Maiani; Bardeen, Gastmans, Lautrup; Fujikawa, Lee, Sanda; !
                                                                                                                                                               Studenikin et al. ’80s

 One-loop plus higher-order terms:

aμEW = 153.6 (1) x 10-11  

Hadronic loop uncertainties!
and 3-loop nonleading logs.

Kukhto et al. ’92; Czarnecki, Krause, Marciano ’95;  Knecht, Peris, 
Perrottet, de Rafael ’02; Czarnecki, Marciano and Vainshtein ’02; 
Degrassi and Giudice ’98;  Heinemeyer, Stockinger, Weiglein ’04; 
Gribouk and Czarnecki ’05; Vainshtein ’03; Gnendiger, Stockinger, 
Stockinger-Kim 2013.

12

with MHiggs = 125.6 (1.5) GeV
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The muon g-2: the hadronic LO contribution (HLO)

F. Jegerlehner and A. Nyffeler, Phys. Rept. 477 (2009) 1 !

Central values Errors2

13

 F. Jegerlehner, A. Nyffeler, Phys. Rept. 477 (2009) 1 !

Davier et al, EPJ C71 (2011) 1515 (incl. BaBar & KLOE10 2π)!

 Hagiwara et al, JPG 38 (2011) 085003  !

aμHLO = 6903 (53)tot  x 10-11 

          = 6923 (42)tot  x 10-11 

          = 6949 (37)exp (21)rad x 10-11        

Radiative Corrections are crucial!   S.Actis et al, Eur. Phys. J. C66 (2010) 585
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The muon g-2: the hadronic NLO contributions (HNLO) - VP

14

HNLO: Vacuum Polarization 

O(α3) contributions of  diagrams containing hadronic vacuum 
polarization insertions:

Krause ’96, Alemany et al. ’98, Hagiwara et al. 2011

 aμHNLO(vp) = -98 (1) x 10-11 

Already included in aμHLO
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The muon g-2: the hadronic NLO contributions (HNLO) - LBL

15

HNLO: Light-by-light contribution

 aμHNLO(lbl)  =   + 80 (40) x 10-11    Knecht & Nyffeler ’02 

 aμHNLO(lbl)  =  +136 (25) x 10-11    Melnikov & Vainshtein ’03 

 aμHNLO(lbl)  =  +105 (26) x 10-11    Prades, de Rafael, Vainshtein ’09 

 aμHHO(lbl)  =  + 116 (39) x 10-11    Jegerlehner & Nyffeler  ’09 

Results based also on  Hayakawa, Kinoshita ’98 & ’02; Bijnens, Pallante, Prades ’96 & ’02 !
 

 Unlike the HLO term, the hadronic l-b-l term    
relies at present on theoretical approaches. 

 This term had a troubled life! Latest values:

 “Bound” aμHNLO(lbl) < ~ 160 x 10-11 Erler, Sanchez ’06, Pivovarov ’02; also Boughezal, Melnikov ’11 
 Lattice? Very hard... but in progress.   M. Golterman @ PhiPsi 2013; T. Blum @ Lattice 2012  
 Pion exch. in holographic QCD agrees. D.K.Hong, D.Kim ’09;  Cappiello, Catà, D’Ambrosio ’11 !

 “By far not complete” calculation: 188 x 10-11     Fischer et al, PRD87(2013)034013 
 Dispersive approach recently proposed Colangelo, Hoferichter, Procura, Stoffer 1402.7081 

http://arxiv.org/find/hep-ph/1/au:+Fischer_C/0/1/0/all/0/1
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The muon g-2: the hadronic NNLO contributions (HNNLO)

16

HNNLO: Vacuum Polarization 

O(α4) contributions of  diagrams containing hadronic vacuum 
polarization insertions:

Kurz, Liu, Marquard, Steinhauser 2014

 aμHNNLO(vp) = 12.4 (1) x 10-11 

HNNLO: Light-by-light 

Colangelo, Hoferichter, Nyffeler, MP, Stoffer 2014

 aμHNNLO(lbl) = 3 (2) x 10-11 
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The muon g-2: SM vs. Experiment

17

[1]  Jegerlehner & Nyffeler, Phys. Rept. 477 (2009) 1 
[2]  Davier et al, EPJ C71 (2011) 1515 (includes BaBar & KLOE10 2π) 
[3]  Hagiwara et al, JPG38 (2011) 085003 (includes BaBar & KLOE10 2π)

 with the “conservative” aμHNLO(lbl)  = 116 (39) x 10-11 and the LO hadronic from:

 aμEXP = 116592089 (63) x 10-11   

Adding up all contributions, we get the following SM 
predictions and comparisons with the measured value:                 

Note that the th. error is now about the same as the exp. one                 

E821 – Final Report: PRD73 
(2006) 072 with latest value 
of  λ=μμ/μp  from CODATA’06

aSM
µ ⇥ 1011 �aµ = aEXP

µ � aSM
µ �

116 591 809 (66) 280 (91) ⇥ 10�11 3.1 [1]

116 591 829 (57) 260 (85) ⇥ 10�11 3.1 [2]

116 591 855 (58) 234 (86) ⇥ 10�11 2.7 [3]
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�⇥(s) = �⇥(s)

The muon g-2: connection with the SM Higgs mass

 Δaµ can be explained in many ways: errors in LBL, QED, EW, 
HHO-VP, g-2 EXP, HLO; or, we hope, New Physics! 

Can Δaμ be due to hypothetical mistakes in the hadronic σ(s)? 

An upward shift of  σ(s) also induces an increase of  Δαhad
(5)(MZ). 

Consider: 

!
!
!
!
and the increase 
!
!
(ε>0), in the range:

p
s 2 [

p
s0 � �/2,

p
s0 + �/2]

18

Δαhad
(5) →

aµHLO    →
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The muon g-2: connection with the SM Higgs mass (2)

How much does the MH upper bound from the EW fit change when 
we shift σ(s) by Δσ(s) [and thus Δαhad

(5)(MZ)] to accommodate Δaμ ?

19

τ data

W.J. Marciano, A. Sirlin, MP, 2008 & 2010

125 GeV
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The muon g-2: connection with the SM Higgs mass (3) 

  Given the quoted exp. uncertainty of  σ(s), the possibility  
     to explain the muon g-2 with these very large shifts Δσ(s)    
     appears to be very unlikely.  
!

  Also, given a 125 GeV SM Higgs, these hypothetical shifts  
     Δσ(s) could only occur at very low energy (below ~ 1 GeV). 
!

  Vice versa, assuming we now have a SM Higgs with  
     MHiggs = 125 GeV, if  we bridge the MHiggs discrepancy in  
     the EW fit via changes in the low-energy hadronic  
     cross section, the muon g-2 discrepancy increases.

20

W.J. Marciano, A. Sirlin, MP, 2008 & 2010 (and work in progress)
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3.  Testing new physics with the electron g-2

G.F. Giudice,  P. Paradisi  &  MP,  arXiv:1208.6583
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ae
QED   =  +  (1/2)(α/π)   -  0.328 478 444 002 55(33) (α/π)2  

                               Schwinger 1948     Sommerfield; Petermann; Suura&Wichmann ’57; Elend ’66; CODATA Mar ’12 !!
 A1

(4) = -0.328 478 965 579 193 78...                              
 A2

(4) (me/mμ) = 5.197 386 68 (26) x 10-7 

 A2
(4) (me/mτ) = 1.837 98 (33) x 10-9                                    

!!
               +  1.181 234 016 816 (11) (α/π)3 

                               Kinoshita; Barbieri; Laporta, Remiddi; … , Li, Samuel; MP '06; Giudice, Paradisi, MP 2012!!
 A1

(6) = 1.181 241 456 587...                              
 A2

(6) (me/mμ) = -7.373 941 62 (27) x 10-6 

 A2
(6) (me/mτ) = -6.5830 (11) x 10-8                                    

 A3
(6) (me/mμ, me/mτ) = 1.909 82 (34) x 10-13                                    

!
               -   1.9097 (20) (α/π)4 
                               Kinoshita & Lindquist ’81, … , Kinoshita & Nio ’05; Aoyama, Hayakawa, Kinoshita & Nio 2012!!
               +  9.16 (58) (α/π)5       COMPLETED! (12672 mass independent diagrams!) 

                                  Aoyama, Hayakawa, Kinoshita, Nio, PRL 109 (2012) 111807. 

The QED prediction of  the electron g-2

22
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Is there a positronium contribution to the electron g-2?

23

The leading contribution of  positronium to ae comes from:  
 Mishima 1311.7109; Fael & MP 1402.1575; Melnikov et al. 1402.5690, Eides 1402.5860, Hayakawa 1403.0416   

  The electron-positron bound state appears as poles in Π(q2) below 
the q2  = (2m)2  branch-point. Their contribution is:

aPe =
↵5

4⇡
⇣(3)

✓
8 ln 2� 11

2

◆
= 8.94⇥ 10�14 = 1.32

⇣↵
⇡

⌘5

  This result is of  the same magnitude of  the experimental 
uncertainty of  ae and of  the same order of  α as the 5-loop one… 

e− e−

γ

Positronium
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Is there a positronium contribution to the electron g-2? (II)

24

  …but it should not be added to the perturbative 5-loop result! 
!

  Indeed, a recently determined nonperturbative contribution of          
the continuum right above threshold cancels one-half  of  it,  
!
!
!
!
!
!
  And it is argued that the remaining half  is already included in 

the 5-loop perturbative QED result: 

a(10)e (vp) =
aPe
2

+ · · ·

ae(vp)
cont,np = � |↵|5

8⇡
⇣(3)

✓
8 ln 2� 11

2

◆
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The SM prediction of  the electron g-2

25

  The SM prediction is:   

                  
ae

SM (α) =    ae
QED (α)   +   ae

EW    +   ae
HAD 

!
  The EW  (1&2 loop) term is:  Czarnecki, Krause, Marciano ’96 [Codata 2012]           

!
ae

EW           =    0.2973 (52) x 10-13 
!

  The Hadronic contribution is: Nomura & Teubner ’12, Jegerlehner & Nyffeler ’09; Krause’97              
!

ae
HAD         =    16.82 (16) x 10-13 

!
  Which value of  α should we use to compute ae

SM and compare 
      it with ae

EXP ?? Not the PDG/Codata one (obtained equating 
      ae

SM(α) = ae
EXP)! Use atomic-physics measurements of  alpha.
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The electron g-2 gives the best determination of  alpha

α−1 = 137.036 000 0 (11)        [7.7 ppb]   PRA73 (2006) 032504 (Cs) 

α−1 = 137.035 999 049  (90)   [0.66 ppb] PRL106  (2011) 080801 (Rb)

Compare it with other determinations (independent of  ae):

Excellent agreement → beautiful test of  QED at 4-loop level! 

The 2008 measurement of  the electron g-2 is: 

        ae
EXP = 11596521807.3 (2.8) x 10-13   Hanneke et al, PRL100 (2008) 120801 

     vs. old (factor of  15 improvement, 1.8σ difference): 

        ae
EXP = 11596521883 (42)  x 10-13    Van Dyck et al, PRL59 (1987) 26 

Equate  ae
SM(α) = ae

EXP  → best determination of  alpha (2014):

α−1 = 137.035 999 184 (35)      [0.25 ppb]

26
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Gabrielse, Hanneke, Kinoshita, Nio & Odom, PRL99 (2007) 039902!
Hanneke, Fogwell & Gabrielse, PRL100 (2008) 120801!

Bouchendira et al, PRL106 (2011) 080801

Old and new determinations of  alpha

27

h/m(Rb) 2011h/m(Rb) 2011 ➡
⬅ New from electron g-2 (2012)
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The electron g-2: SM vs. Experiment

28

Using α = 1/137.035 999 049  (90)  [87Rb, 2011], the SM 
prediction for the electron g-2 is

ae
SM = 115 965 218 17.8 (0.6) (0.4) (0.2) (7.6) x 10-13  

  from δα  δae
hadδC4

qed δC5
qed

The EXP-SM difference is: 

!
!
!
      The SM is in very good agreement with experiment (1.3σ).  

      NB: The 4-loop contrib. to ae
QED is -5.56 x 10-11 ~ 70 δΔae!     

      (the 5-loop one is 6.2 x 10-13)

Δae = ae
EXP  -  ae

SM = -10.5 (8.1) x 10-13  
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The electron g-2 sensitivity and NP tests

29

The present sensitivity is δΔae = 8.1 x 10-13, ie (10-13 units):

(0.6)QED4, (0.4)QED5, (0.2)HAD

| {z }
(0.7)TH

, (7.6)�↵, (2.8)�aEXP
e

⬅ may drop to 0.2 or 0.3

The (g-2)e exp. error may soon drop below 10-13 and work is 
in progress for a significant reduction of  that induced by δα. 

 → sensitivity of  10-13 may be reached with ongoing exp. work 
  work.                       F. Terranova & G.M. Tino, arXiv:1312.2346 

In a broad class of  BSM theories, contributions to al scale as  

�a`i
�a`j

=

✓
m`i

m`j

◆2

This Naive Scaling leads to:

�ae =

✓
�aµ

3⇥ 10�9

◆
0.7⇥ 10�13; �a⌧ =

✓
�aµ

3⇥ 10�9

◆
0.8⇥ 10�6
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The electron g-2 sensitivity and NP tests (II)

30

The experimental sensitivity in Δae is not far from what is 
needed to test if  the discrepancy in (g-2)μ also manifests 
itself  in (g-2)e under the naive scaling hypothesis. 

BSM scenarios exist which violate Naive Scaling. They can 
lead to larger effects in Δae (& Δaτ) and contributions to 
EDMs, LFV or lepton universality breaking observables. 

Example: In the MSSM with non-degenerate but aligned 
sleptons (vanishing flavor mixing angles), Δae  can reach 
10-12 (at the limit of  the present exp sensitivity). For these 
values one typically has breaking effects of  lepton 
universality at the few per mil level (within future exp reach).
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4.  The tau g-2: opportunities & challenges

Work in progress in collaboration with  
S. Eidelman, D. Epifanov, M. Fael, L. Mercolli 

!
arXiv:1301.5302 
arXiv:1310.1081
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 The SM prediction of  the tau g-2

32

  The Standard Model prediction of  the tau g-2 is: 

aτSM = 117721 (5) x 10-8

  (mτ/mμ)2 ~ 280: great opportunity to look for New Physics, 
      and a “clean” NP test too… 

Eidelman & MP!
 2007

 aτSM    =    117324     (2)          x  10-8    QED 
            +            47.4 (0.5)       x  10-8    EW 
            +          337.5 (3.7)       x  10-8    HLO 
            +               7.6 (0.2)       x  10-8    HHO (vac) 
            +               5     (3)          x  10-8    HHO (lbl)

Muon Tau

aEW 1/45 1/7

aEW 3 10

... if  only we could measure it!! 
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 The tau g-2: experimental bounds

33

DELPHI’s result, from e+e- → e+e-τ+τ- total 
cross-section measurements at LEP 2 (the 
PDG value):

With an effective Lagrangian approach, using data on tau lepton 
production at LEP1, SLC, and LEP2:

aτ = -0.018 (17) PDG 2012

Bernabéu et al, propose the measurement of   F2(q2=Mϒ2) from           
e+e- → τ+τ- production at B factories. NPB 790 (2008) 160

The very short lifetime of  the tau makes it very difficult to 
determine aτ measuring its spin precession in a magnetic field.

-0.004 <  aτ
NP < 0.006   (95% CL) 

-0.007 <  aτ
NP < 0.005   (95% CL) 

Escribano & Massó 1997

Gonzáles-Sprinberg et al 2000
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d

3
�

dx dy d cos ✓

=

↵ M

5
⌧ G

2
F y

p
x

2 � 4r

2

2⇡(4⇡)

6
G0(x, y, cos ✓, r)

 The tau g-2 via its radiative leptonic decays: a proposal

Tau radiative leptonic decays at LO:

Add the contribution  of  the effective 
coupling and the QED corrections: 

Measure d3Γ precisely and get  ãτ !                       

[see also Laursen, Samuel, Sen, PRD29 (1984) 2652]  

G0 ! G0 + ã⌧Ga +
↵

⇡
GRC

x =
2El

M⌧
, y =

2E�

M⌧
, r =

ml

M⌧

34

CLEO 2000

Kinoshita & Sirlin PRL2(1959)177; Kuno & Okada, RMP73(2001)151

�(⌧� ! e� ⌫̄e ⌫⌧ �)

�
total

����
E�>10MeV

= 1.836% vs 1.75(18)%

�(⌧� ! µ� ⌫̄µ ⌫⌧ �)

�
total

����
E�>10MeV

= 0.367% vs 0.361(38)%
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d

3
�

dx dy d cos ✓
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↵ M

5
⌧ G

2
F y

p
x

2 � 4r

2

2⇡(4⇡)

6
G0(x, y, cos ✓, r)

 The tau g-2 via its radiative leptonic decays: a proposal

Tau radiative leptonic decays at LO:

Add the contribution  of  the effective 
coupling and the QED corrections: 

Measure d3Γ precisely and get  ãτ !                       

[see also Laursen, Samuel, Sen, PRD29 (1984) 2652]  

G0 ! G0 + ã⌧Ga +
↵

⇡
GRC

x =
2El

M⌧
, y =

2E�

M⌧
, r =

ml

M⌧
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CLEO 2000

Kinoshita & Sirlin PRL2(1959)177; Kuno & Okada, RMP73(2001)151

�(⌧� ! e� ⌫̄e ⌫⌧ �)

�
total

����
E�>10MeV

= 1.836% vs 1.75(18)%

�(⌧� ! µ� ⌫̄µ ⌫⌧ �)

�
total

����
E�>10MeV

= 0.367% vs 0.361(38)%Work  in 
progress
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Conclusions

The lepton g-2 provide beautiful examples of  interplay between 
theory and experiment. 

The discrepancy is Δaμ ~ 3÷3.5 σ. Is it NP? New g-2 experiment, 
ring now in Fermilab! QED & EW terms ready for the challenge; 
How about the hadronic one? Future of  LBL?? 

Could Δaμ be due to mistakes in the hadronic σ(s)? Very unlikely.    
Also, given a 125 GeV SM Higgs, these hypothetical shifts Δσ(s) 
could only occur at very low energies (below ~ 1GeV).  

The sensitivity of  the electron g-2 has improved. The positronium 
contribution should not be added. It may soon be possible to test 
if  Δaμ manifests itself  also in the electron g-2! A robust and 
ambitious exp program is needed to improve α & ae.  

The tau g-2 is essentially unknown: we propose to measure it at 
Belle II via its radiative leptonic decays.

36
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The End

37


