

Leptonic, semileptonic and Missing Energy AWG

Guglielmo De Nardo Università di Napoli Federico II e INFN

Belle II – Physics WG

Belle II physics activities recently distributed over 7 WG

https://belle2.cc.kek.jp/~twiki/bin/view/Physics/PhysicsGroups

Physics scope of Leptonic, SL and Missing E.WG Inclusive and Exclusive Semileptonic $b \rightarrow c$, $b \rightarrow u$ transitions:Vub,Vcb, New physics. Semileptonic $b \rightarrow c$ and $b \rightarrow u$ transitions with τ leptons Charged leptonic decays, $B \rightarrow e/\mu/\tau \nu$ Neutral leptonic decays, $B^0 \rightarrow \tau \tau \ B_{(s)} 0 \rightarrow \tau \tau$ EWP with neutrinos, $B \rightarrow K^{(*)} \nu \nu$, $B \rightarrow \nu \nu$ Lepton flavour and number violating decays, $B \rightarrow |\tau$

> Conveners: Anze Zupan Guglielmo De Nardo

Belle II Physics WGs

- 1. Semileptonic and Missing Energy Decay
- 2. Electroweak Penguin
- 3. Time Dependent CP Violation
- 4. Hadronic B Decay (time integrated methods)
- 5. Y(nS)
- 6. Charm and Charmonium
- 7. τ and Two-Photon

Identify signal of New Physics

From Phys. Coordinator at 2014 BPAC

- Very clean theoretically, hard experimentally (weak signature)
- SM contribution suppressed by helicity
- Sensitive to NP contribution (charged Higgs)

$B \rightarrow \tau v$ measurements landscape

Sensitivity outlook

- > Expected uncertainty for B \rightarrow $\tau\nu$ 3% systematic dominated
 - How much of the syst. uncertainty is actually irreducible ?

Vub measurement

• To observe NP, we must precisely know SM contribution.

- For b \rightarrow u transition accurate measurement of |Vub| is needed
- inclusive and exclusive measurements in "tension"
 - Theoretical or experimental problem? Or just statistics?
- Belle II will settle the argument

7

	Statistical	Systematic	Total Exp	Theory	Total
	(re	educible, irreducib	le)		
$ V_{ub} $ exclusive (had. tag	ged)				
$711 { m ~fb^{-1}}$	5.8	(2.3, 1.0)	6.3	8.7 (2.0)	10.8 (6.6)
$5 ext{ ab}^{-1}$	2.2	(0.9, 1.0)	2.6	4.0 (2.0)	4.7(3.3)
$50 \mathrm{ab}^{-1}$	0.7	(0.3, 1.0)	1.3	2.0	2.4
$ V_{ub} $ exclusive (untagged	l)				
$605 { m ~fb^{-1}}$	2.7	(2.1,0.8)	3.5	8.7 (2.0)	9.4(4.0)
5 ab^{-1}	1.0	(0.8, 0.8)	1.5	4.0 (2.0)	4.2(2.5)
$50 \mathrm{ab}^{-1}$	0.3	(0.3,0.8)	0.9	2.0	2.2
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5	6.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5	3.4
$50~{ m ab}^{-1}$	0.4	(0.4, 1.6)	1.7	2.5	3.0

Belle II_extrapolations

Semi-tauonic decays

 $B \rightarrow D^* \tau \nu / B \rightarrow D^* I \nu > 3 \sigma$ above the SM prediction

FCNC transition with neutrinos $B \rightarrow h \nu \nu$

- SM level out of reach for Belle and BaBar. Expected to be at the limit of sensitivity for Belle II.
- Scaling Belle results (just with had.Tagging) 100 signal events and 20% accuracy on BR.

Working group activities

(in preparation for data taking)

Sensitivity/feasability studies

- Update the existing extrapolations to Belle II with current Belle II simulation
- Identify the systematic effects that may become dominant and develop strategies for improvement
- Check and extend MC generators when new measurement or new physics model become available

Common tools development and physics validation

- Feedback to sub-system reconstruction experts studying performances on physics modes
- Contribute to the development of physics analysis tools
 - Ex: Tag B reconstruction & missing energy tools
 - Definition of Particle ID and tracking criteria
 - Identify data driven methods to calibrate reconstruction tools relevant to the WG physics
 - Identify physics motivated content of mdst.
 - Definition of physics skims (they will be run centrally)

Available tools

Physics Analysis Software is starting to take shape

• We just have defined the first version of the mdst.

MDST object	Physics object	Comment
Tracks	e, μ, π, K, p	\checkmark
PIDLikelihood	e, μ, π, K, p IDs	\checkmark
ECLCluster	γ, π^0	\checkmark
VO	$K^0_S, \Lambda, \gamma o e^+ e^-$	Ø
KLMCluster	K ⁰ L	(only endcap KLM)

	Module	Physics action		
	ParticleLoader	creates Particle(s) from MDST objects		
and of basic analysis	ParticleSelector	applies cuts on existing Particle(s) (over 50 functions/variables already supported)		
, ,	ParticleCombiner	performs combinations		
tools	ParticleVertexFitter	kinematic fitter		
	MCMatching	MC truth matching		
	NtupleMaker	creation/filling of flat ntuples		
	RestOfEventBuilder	determines remaining tracks/ECL/KLMClusters		

B tag reconstruction

- Essential tool for this
 WG
 - Core code for hadronic tagging developed by KIT group
- Have to produce calibration and validation samples
- Study of the related systematics uncertainties
- Semileptonic tagging missing

Perform multivariate classification at each stage (and per decay mode).

Recoil Physics

Basic functionalities available (extra energy, missing mass..)

• A lot of room for improvement and new features...

Conclusions

- Belle II Physics working group recently established
 - Real work (meeting, tasks) not yet started, though.
- Leptonic, Semileptonic and Missing Energy WG physics scope include many key measurements in Belle II program
- Belle II software reached a status that allows realistic physics studies (no more extrapolations of BaBar/Belle)
 - Utmost importance that further developments in be driven by physics
 - Feedback to detector experts based on impact on physics
 - Requirements on computing/software based on physics needs
 - Data taking is not that far. It's time now to start building up the Belle II physics program
- Many opportunities to contribute from tools development to feasibility studies/physics analysis