# Timing studies for the TOP calibration system in Torino

Umberto Tamponi Roberto Mussa Oscar Brunasso

*Belle II italian collaboration meeting Roma, June 9th-10th, 2014* 

# **TOP** laser calibration

The TOP readout ASIC (IRS3X) needs to be constantly calibrated along time in order to assure the <100 ps resolution on single photons



### Calibration fiber

# Light distribution



### **Tasks in Torino**

- $\rightarrow$  Time resolution of the calibration system
- $\rightarrow$  SM  $\rightarrow$  SM bundle
- $\rightarrow$  MC simulation

### **Tasks in Padova**

- $\rightarrow$  SM  $\rightarrow$  MM bundle
- $\rightarrow$  Terminal optics
- $\rightarrow$  Light injection mechanics
- $\rightarrow$  Radiation tests

# **Equipment in Torino**

Picolaser

Hamamatsu 16 ch MCP-PMT (same model used for the TOP) Readout board with prototype of the custom amplifier (G. Visser, Indiana Univ.) Black box (45 x 45 x 45 cm) Black box with optical bench (90 x 70 x 50 cm)



**Amplified channels** 

### **MCP-PMT** in a nutshell



### Experimental setup in Torino



### Experimental setup in Torino



### **Cross talk suppression**



# Signal amplitude



Amplitude of the highest peak in the trigger

Thresholds are applied in the signal processing in order to reject the pedestal

V\_trh(amplified) ~ 50 mV V\_trh(not amplified) ]~ 2 mV

Gaussian fit of the pedestal provides an estimation of the number of photoelectrons

# Signal processing – I

DC offset is subtracted fitting the first points of the waveform



### Signal processing - II



### Signal processing - III



### Results

Time resolution study repeated for different laser tunings and different HV values

From <n\_pe> the contamination from > 1 photoelectron events can be calculated



### Results

Time resolution study repeated for different laser tunings and different HV values



# Bundle prototype

With a < 30 ps time resolution over a wide range of conditions, we are getting ready for Testing an SM bundle prototype produced in INFN-TO workshop by Oscar Brunasso

 $\begin{array}{rl} \lambda = 405 \text{ nm} \ \longrightarrow \ Cladding = 125 \text{ um} \\ & \text{Core} = 4 \text{ um} \end{array}$ 

# Prototype: 32 fibers x 1.5 m



### Bundle's head hosting 32 fiber cores

# Bundle prototype

With a < 30 ps time resolution over a wide range of conditions, we are getting ready for Testing an SM bundle prototype produced in INFN-TO workshop by Oscar Brunasso

 $\lambda = 405 \text{ nm} \rightarrow \text{Cladding} = 125 \,\mu\text{m}$ Core = 4  $\mu\text{m}$ 



# Bundle prototype

With a < 30 ps time resolution over a wide range of conditions, we are getting ready for Testing an SM bundle prototype produced in INFN-TO workshop by Oscar Brunasso

 $\begin{array}{rcl} \lambda = 405 \text{ nm} & \longrightarrow & \text{Cladding} = 125 \ \mu\text{m} \\ & \text{Core} = 4 \ \mu\text{m} \end{array}$ 



### Next steps:

- $\rightarrow$  Determine piping efficiency
- → Check time resolution VS radial position in the bundle

# Conclusions

### Time resolution < 30 ps with offline CDF

- $\rightarrow$  Goal resolution for the validation and test of the calibration system
- $\rightarrow$  Torino can effectively contribute to different PMT and readout studies
- $\rightarrow$  Working on cross check with independent electronics (TOF-PET ASIC)
- $\rightarrow$  Active discussion with G.Varner and G. Visser

### SM bundle prototype is ready

- $\rightarrow$  The final bundle can be built in Torino without buying it from external firms
- $\rightarrow$  Piping efficiency and time resolution studies are ongoing

# Backup

### Time resolution VS sampling rate



### PMT screen and cross talk

Same geometry Same laser settings

