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Uncertainty quantification in
generic Monte Carlo Simulation: a
mathematical framework

Abstract:

Uncertainty Quantification (UQ) is the capability of predicting the uncertainty of
experimental observables produced by Monte Carlo particle transport, deriving
from uncertainties in the physics modeling components (such as cross sections,

atomic and nuclear parameters, geometrical description of the experimental
apparatus and so on) used in the simulation.

We establish a general mathematical framework for UQ: in the case of a single
input uncertainty the problem is analytically soluble, while the case of many
uncertainties requires the additional hypothesis of statistical independence and
involves some predictable approximations.
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How much can we trust the observables produced by MC?



A simulation engine is needed when a given physical model
is too much complicated to be analytically solved
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... but in a non idealized situation there are many sources of uncertainties

Model User’s data
uncertainties uncertainties

Solver
(statistical)
uncertainties

Result of the simulation are affected by a complex mix of various sources of
uncertainties




Tentative classification of uncertainties (possibly non exhaustive)

- PARAMETER UNCERTAINTY, when some of the computer code inputs are
unknown, or known with errors

- MODEL INADEQUACY, which may derive from STRUCTURAL UNCERTAINTY (for
example approximations in the physical model) or ALGORITHMIC UNCERTAINTY
(deriving from the numerical methods employed to solve the model)

- RESIDUAL VARIABILITY, when the process itself is inherently unpredictable or
stochastic

- PARAMETRIC VARIABILITY, when some of the inputs are INTENTIONALLY
uncontrolled or left unspecified (backward problems, robust design, ...)

Parameter uncertainty plays a major role in MC simulations of particle transport
because in practice all the physical input to the simulation is affected by
experimental or theoretical uncertainties.

Algorithmic uncertainty, in this acceptation, is (mainly) of statistical origin for Monte
Carlo simulations.




... but in a non idealized situation there are many sources of uncertainties

User’s data
uncertainties
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1tstep to UQ

Neglect model
uncertainties: transport
equation is the “true
world” and there are no
other approximations
(like condensed path
approximation) in its
solution other than those
induced by MC sampling

Solver
(statistical)
uncertainties

uncertainties

Result of the simulation are affected by a complex mix of various sources of




... but in a non idealized situation there are many sources of uncertainties

2"dstep to UQ

T2

(statistical)

User’s data
uncertainties

Validation of physical
data needed for
simulation: MC users
should have accurate
infos about confidence
intervals (better PDFs) for
each of the physical
parameters used by the
code (cross sections,
models employed, ...)
AND the possibility to
make variations

Because depending on the experimental configuration small variations in some
parameter may result in large variations of the output or large variations in some other
parameter may have no practical effect at all




... but in a non idealized situation there are

3ndstep to UQ

User’s data
uncertainties

many sources of uncertainties

Accurate study of the
experimental
configuration: MC users

should select a proper
—_— restricted set of
parameters (physical and/
or user controlled) on
which perform an UQ
attempt

Solver
(statistical)
uncertainties

Because as we shall see it is out of human possibilities (and possibly meaningless) to
perform UQ over possibly hundreds of different parameters




We expect that result of the simulation depends both on the value of the input

unknown(s), on the position of the detector and on the sample dimension

“TOY MC”. a (very) simplified “transport code”, a
random path generator ruled by two constant
parameters describing the relative probability of
absorption (Z,) and scattering processes (),
sampling an observable — track-length in this

case.
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Fig. 4. Results for 1000 of Monte Carlo simulations for the observable ().,
each encompassing 10" events, for an observable scored close to the primary
particle source (see text), produced with different values of the . input phys-
ical parameter: 5 = 1 (white histogram), ¥ = 1.1 (grey histogram) and
-

s = 1.2 (black histogram).
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Fig. 5. Results for 1000 of Monte Carlo simulations for the observable (),,,
each encompassing 107 events, for an observable scored far away from the pri-
mary particle source (see text), produced with different values of the > 5 input
physical parameter: £ = 1 (white histogram), ¥« = 1.1 (grey histogram)
and ¥ 5 = 1.2 (black histogram).



Sensitivity analysis

Computational cost

(brute force implies that
thousands of MC runs are
needed)

Input physical data
(with uncertainties)
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Statistical analysis

Observable * error

To reduce computational costs, one can transform a full sensitivity analysis into the
search for the most probable output
=» this means giving up a full statistical characterization of the output

e Mathematical methods

* Software toolkits (pakoTa, PSUADE..)




Then (4 step to UQ) we assume to have N independent source of uncertainty x,,
...,.Xy With their associate known PDFs (may be flat, normal or ...) and we want to
derive the PDF for an observable Y in the range (y,y+dy) from a MC simulation
encompassing N events:

[ A not trivial assumption, by the way ]

. =3 | [N,
Gue(y) = J dEfi(x)-fy(x)exp| - 7 IN, |\270”

from the Central Limit Theorem.
This result trivially derives from probability composition

In the limit N.—eo:

G(y) = [[d fi(x)- fy (6 )O(y = ¥ ()
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COMMENTS:

This expression is exact and it has no (more) reference to MC: it relies only on
the assumption of independence of the (input) uncertainties (in principle not
necessary) and on probability composition rules. We could establish this relation
without any reference to simulation

There are however 2 seemingly obvious, but absolutely non trivial assumptions:
(a) the existence of an (underlying) deterministic physical model (in this case

some form of the transport equation) and (b) the ability to assign probabilities to
the input unknowns
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squares), BEB model with Lotz binding energies (asterisks) and experimental
data from [103] (black circles), [104] (red squares) and [105] (blue triangles).



How it works (1 — dimension)

G(y)= [ dx F)5(y =3, =22 £(x(y)

dy, Yo=Y
We must know (and invert) the “susceptivity” y,(x)!!!
We can use MC to study this (see later).
Lower computational cost

EXAMPLE: a (very) simplified “transport code”, a random path generator ruled by two
constant parameters describing the relative probability of absorption (£,) and
scattering processes (2¢), sampling an observable — track-length in this case.

(by the way, this simulates the propagation of neutral particles in an uniform medium with
constant scattering and absorption cross-sections and isotropic scattering)

If Z; is affected by some uncertainty, say 2 ..< Zs < 25 ., We run many simulations
varying its value with some known probability (for instance flat)



Disentangling uncertainties

Algorithmic (statistical) and parameter uncertainties
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As statistical errors decrease, the distribution of the observable is
dominated by parameter uncertainties only
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How all it works (lll) : verification

If susceptivity y,(x) is linear and input PDF is flat the expression for G,,.(x;N) is
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Fig.8. FormofG.,,, () for different values of o= /N: 10~* dotted line, 10 —*
dashed line and 10" solid line.



A clirect sampling of Gye(Y)
recuires thousanels of MC
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Knowledge of G(x) (not of G, ) is \\ /
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The task of UQ

The feasibility of UQ requires:

1) To know input uncertainties and their probability distributions - Validation of
MC modeling ingredients needed

2) To be able to solve explicitly for G(x):
An exact mathematical context needed

3) To use MC simulations to determine parameters in G(x):
(in the previous example, to find A from simulation and to determine the
proper behavior A7)
Possible with few simulations with predetermined accuracy

max/min

2) is independent from the features of the specific problem and
can be solved under wide assumptions
this is an exact mathematical framework for UQ




Many parameters problem

In the generic case we have many input parameter unknowns:

G(y) = [ dx f()8(y -y, (%))

We make two “reasonable” a_sogumptions:

- The x, are independent:  f(xy,...,xy)=f;(X,)...f(Xy)

- Y, (56) is linear (if necessary subdivide the domain of variability of the unknowns in
such a way to fulfill the condition)

Under these hypothesis the evaluation of G(x) reduces to a well known problem in

probability theory: the determination of the weighted sum of a certain number of
independent stochastic variables.

G()’)=f_ _dxkﬁc(xk)é y_yo_Eak(xk_)_Ck)

—00 -k-

Not soluble in general, but can we approximately solve it, with a prefixed accuracy?




Some remarks

2
Under these assumptions o = 2(%) o, with 6,2 the variances of the individual
input unknowns. c \0%

Is this quantity a good measure of the uncertainty for y? In general the answer is
negative

For M input unknowns we need a priori M+1 simulations to

0
determine the values ﬁ, a task that can be pursued reasonably if the number
0x
k

of input unknowns is not so large.

So detailed physical knowledge of the problem at hand is required to select a
proper set of physical parameters on which is meaningful to attempt a full
Uncertainty Quantification.

We then emphasize that a full UQ is PROBLEM SPECIFIC




BUT we are not sure that 6,2 is a proper measure of the output uncertainty, since
we do not know the exact form of G(x).

In some useful selected cases the form of G(x) is known:

- all the input unknowns are normally distributed: in such case G(x) is normal with
the quoted variance

- all the input unknown are uniformly distributed: in such case a generalization of
the Irwine-Hall distribution holds

- all the input unknowns have a-stable distributions with the same a value: in such
case G(x) is again a stable distribution with the same a value (e.g. the Lorentz
distribution)

We recently proved that a general (polynomial) form exists for the weighted sum of
generic polynomial distributions over different intervals: this result can be used
directly to find an approximate form of G(x) with arbitrary predetermined accuracy
in the general case (currently working on some technicalities: which is the best way
to obtain a polynomial approximation to a given PDF, from a computational point of
view).

It is a proper generalization of the Irwine-Hall distribution.



Histogram and plot for PDF n. 1
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Histogram and plot for PDF n. 2
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Histogram and plot for PDF n. 3

Fi(x) =(x-1)%-1, 0<x<2, weightl
F,(x) = 1+(x-2)3, 1<x<3, weight -2
F3(x) = 2-x, 0<x<2, weight1

Histogram for weighted sum

Nodes are {-6, -4, -2, 0, 2}

Form of PDF is

(6+x)* (8800 + 1488 x - 656 x* - 40 x* - 10 x? + x*|

-6 < x < -4 -
286 720

. 5 ~147712 - 321536 x - 191744 x* - 56448 x* - 7840 x* - 448 x* + 8x7 + x*
“4 < X < -

286720
, 0 9984 - 20480 x + 14336 x* - 2688 x* - 7840 x* - 2240 x* - 112 x° + 8x” + x*
~4d < X <

286 720

(-2+%)% (312 + 140 x + 18 x* + 3|

0 <x <2 -

286 720

In red the theoretical result, the histograms are
random samples



Current scope of applicability

Single parameter uncertainty (see [1]):

- complete analysis of uncertainty propagation available

- simulation is used solely to determine the values of the parameters defining the output

probability density function

- confidence intervals for the output are known with a statistical error that can be
predetermined

Many parameter uncertainty (see also [2]):

- acomplete UQ s possible only for independent input uncertainties.

- calculability issues may exist, in practice, if the number of parameters considered is
high and/or if linearity of x,(%,) is questionable

- confidence interval for the output are affected by the statistical errors in the
determination of the required parameters AND by errors in the polynomial
approximations required

- in principle a predefined accuracy can be obtained

- calculation issues must be studied

[1] - P. Saracco, M. Batic, G. Hoff, M.G. Pia — “Theoretical ground for the propagation ofuncertainties in Monte Carlo particle transport”,
submitted to IEEE Trans. Nucl. Phys., 2013.

[2] — P. Saracco, M.G. Pia — “Uncertainty Quantification and the problem of determining the distribution of the sum of N independent
stochastic variables: an exact solution for arbitrary polynomial distributions on different intervals”, submitted to Journ. Math. Phys.,
2013.



A (hidden) hypothesis

Input unknowns should not be modified by simulation ...

(a) Energy deposited in the system by transported particles may modify locally the
temperature and, then, the cross sections averaged over the motion the atoms
of the materials. General purpose MC does not handle this.

(b) Activation processes

In these cases one should couple the MC simulation with an appropriate solver to
keep track of the evolution of the (whole) system: thermo-hydraulics, Bateman
equations, ...

The only true hypotheses on which the approach is grounded are:

(a) independence of the input unknowns
(b) Abibility to assign PDF



Conclusion and outlook

We have established: i>

* A novel conceptual approach to determine the intrinsic
A mathematical framework uncertainty

. ) of the results of Monte Carlo
e Calculation methods for single and

; taint simulation
many parameter uncertainties (beyond statistical uncertainty)

These developments are applicable to Monte Carlo simulation in general
Particle transport

Event generators

= Verification in a realistic experimental scenarios
Outlook = Application software system

=  Enlargement of dynamical models and solution methods
(other than MC()




