Supersymmetry breaking in the light of LHC

Andrea Romanino SISSA

Habemus Higgs

"h" is SU(3)_c × U(1)_{em} neutral
"h" has S = 0 and P = 1
"h" couplings prop. to masses

"h" singlet under custodial symmetry

The unbearable lightness of the Higgs

$$\delta m_h^2 \sim 12 \,\lambda_t^2 \int \frac{k^3 dk}{8\pi^2} \frac{1}{k^2} \xrightarrow{\text{cut-off}} 12 \frac{\lambda_t^2}{(4\pi)^2} Q_{\max}^2$$

- Quadratic divergences "per se" do not mean much (e.g. disappear in dimensional regularization)
- If the SM is the ultimate (renormalizable) theory of everything:
 $Q_{max} \rightarrow \infty$ mathematical problem (renormalization theory)
- If the SM is the low energy limit of a more fundamental theory: $Q_{max} → m_{NP} \quad \text{physical (calculability) problem IF } m_{NP} \gg m_{H}$

• μ^2 parametro del potenziale di Higgs (tree level)

M² massa O(10¹⁶ GeV) particella con accoppiamento g all'Higgs

$$m_H^2 \sim -2\mu^2 + \frac{g^2}{(4\pi)^2}M^2$$

The SM can be extrapolated up to MPI

Buttazzo et al

Is SM the ultimate renormalizable theory of everything?

Section Experimental "problems"

Gravity

Ø Dark matter

Baryon asymmetry

Neutrino masses

Is SM the ultimate renormalizable theory of everything?

Experimental "hints" of physics beyond the SM

Neutrino masses

Quantum number unification

Unification

Is SM the ultimate renormalizable theory of everything?

Theoretical puzzles of the SM

@ <H> << Mpl

Family replication

Small Yukawa couplings, masses and mixings

Is SM the ultimate renormalizable theory of everything?

Theoretical problems of the SM

Landau poles

Strong CP problem

Naturalness problem

 $\theta G_{\mu\nu}\tilde{G}^{\mu\nu} \quad D = 4$

 $\alpha Q_{\max}^2 H^{\dagger} H \quad D = 2$

Cosmological constant problem

 $\beta Q_{\max}^4 \sqrt{g} \quad D = 0$

Naturalness problem

Due comments

1. m_{NP} is not precisely determined: any value of m_{NP} is viable as long as a cancellation of one part out of

 $\Delta \gtrsim \left(\frac{m_{\rm NP}}{0.5\,{\rm TeV}}\right)^2$

is accepted.

E.g. $m_{NP} > 1.5 \text{ TeV} \leftrightarrow \Delta > 10$ $m_{NP} > 5 \text{ TeV} \leftrightarrow \Delta > 100$

Due comments

2. The bound $\Delta \gtrsim \left(\frac{m_{
m NP}}{0.5\,{
m TeV}}
ight)^2$ is model dependent

For example:

• Supersoft theories $\delta m_h^2 pprox m_h^2 \left(rac{m_{
m NP}}{0.5\,{
m TeV}}
ight)^2$

Soft theories

$$\delta m_h^2 \approx m_h^2 \left(\frac{m_{\rm NP}}{0.5\,{\rm TeV}}\right)^2 \times \log\left(\frac{M^2}{m_{\rm ND}^2}\right)$$

(e.g. supersymmetry with mediation scale M)

Due comments

3. Though general, the above argument rests on assumptions

existence of superheavy physics

the cancellation in the Higgs mass is accidental

(dynamical mechanisms? environmental selection?)

Supersymmetry

SUSY: fermion ↔ scalars; SUSY partners much heavier

Ĩ, (t) (γ) (\tilde{u}) (\tilde{c}) u С b g \tilde{d} \tilde{s} \tilde{b} ĝ S d Ť (W) [ē] μ Т μ e Ĩ, \tilde{v}_1 Ñ2 Ñ3 V2 V_3 H₂ H H_1 H_2

- Theoretical motivations
 - Unification of fermions and bosons (we do have a boson after all)
 - Local supersymmetry = supergravity + crucial in string theory
 - Completes the list of possible symmetries of S (under hypotheses)
 - Ø Powerful technical tool

O Phenomenological motivations

Solves (the bulk of) the hierarchy problem

$$\Delta(m_{h^0}^2) = \stackrel{h^0}{-} - \stackrel{t}{-} \stackrel{h^0}{-} - \stackrel{t}{-} \stackrel{h^0}{-} \stackrel{t}{-} \stackrel{t$$

$$\lambda_t^2 = \tilde{\lambda}_t$$

Calculability

$$\frac{3}{4\pi^2}\lambda_t^2 Q^2 \to \frac{3}{4\pi^2}\lambda_t^2 \tilde{m}^2 \log \frac{Q^2}{\tilde{m}^2} \qquad \tilde{m} \lesssim \text{few TeV?}$$

The cancellation of quadratic divergences holds at all orders in perturbation theory

Can be extrapolated up to the Planck scale

Unification

Y

+ M_{GUT} prediction: $\Lambda_B < M_{GUT} < M_{Pl}$

inflation scale?

However

Not chiral (explicit, supersymmetric mass term for the Higgsinos)
 Giudice-Masiero, NMSSM

Correct symmetry breaking not guaranteed (CCLB minima)
 radiative EWSB

L, B not accidental symmetries anymore

- ➡ R-parity
 - \rightarrow Lightest Supersymmetric Particle (LSP) is stable (DM, missing E_T)
 - ► SUSY corrections to SM processes only via loops

Trouble with supersymmetry breaking

Supersymmetry breaking

 \odot Supersymmetry predicts m = \widetilde{m}

Needs to be broken, hopefully spontaneously

• Effective description in terms of O(100) parameters

$$-\mathcal{L}_{\text{soft}} = A_{ij}^{U} \tilde{u}_{i}^{c} \tilde{q}_{j} h_{u} + A_{ij}^{D} \tilde{d}_{i}^{c} \tilde{q}_{j} h_{d} + A_{ij}^{E} \tilde{e}_{i}^{c} \tilde{l}_{j} h_{d} + m_{ud}^{2} h_{u} h_{d} + \text{h.c.} + (\tilde{m}_{q}^{2})_{ij} \tilde{q}_{i}^{\dagger} \tilde{q}_{j} + (\tilde{m}_{u^{c}}^{2})_{ij} (\tilde{u}_{i}^{c})^{\dagger} \tilde{u}_{j}^{c} + (\tilde{m}_{d^{c}}^{2})_{ij} (\tilde{d}_{i}^{c})^{\dagger} \tilde{d}_{j}^{c} + (\tilde{m}_{l}^{2})_{ij} \tilde{l}_{i}^{\dagger} \tilde{l}_{j} + (\tilde{m}_{e^{c}}^{2})_{ij} (\tilde{e}_{i}^{c})^{\dagger} \tilde{e}_{j}^{c} + m_{h_{u}}^{2} h_{u}^{\dagger} h_{u} + m_{h_{d}}^{2} h_{d}^{\dagger} h_{d} + \frac{M_{3}}{2} \tilde{g}_{A} \tilde{g}_{A} + \frac{M_{2}}{2} \tilde{W}_{a} \tilde{W}_{a} + \frac{M_{1}}{2} \tilde{B} \tilde{B} + \text{h.c.}$$

(Vanilla) direct experimental constraints

- ${\scriptstyle \oslash}$ Based on missing E_{T}
- First family squarks
- One slice of the par space

How bad is it?

Supersymmetry is a soft theory

$$\delta m_h^2 \approx m_h^2 \left(\frac{m_{\rm NP}}{0.5\,{\rm TeV}}\right)^2 \times \log\left(\frac{M^2}{m_{\rm NP}^2}\right)$$
 $\approx m_h^2 \left(\frac{m_{\rm NP}}{0.5\,{\rm TeV}/\sqrt{\log}}\right)^2$

M = mediation scale

E.g. in supergravity $M = M_{Pl}$

A tale of naturalness

- Supergravity (unavoidable mediation mechanism): $\Lambda_{NP} = M = M_{Planck}$
- on log = O(70) ⇒ natural expectation: m_{NP} around $M_Z!$

Lower M: how low?

Where does FT come from?

$$\begin{split} m_Z^2 &\approx -2m_{H_u}^2 - 2|\boldsymbol{\mu}|^2 & + \text{ experimental const} \\ \downarrow & + \text{ indirect bounds from } \\ \delta m_{H_u}^2 &\sim -12 \frac{\lambda_t^2}{(4\pi)^2} \tilde{m}_t^2 \log \frac{M}{\tilde{m}_t} \\ \downarrow & + \delta \tilde{m}_t^2 = \frac{32}{3} \frac{g_3^2}{(4\pi)^2} M_3^2 \log \frac{M}{M_3} \end{split}$$

Ways out

- Ø Dirac gluinos
- Weakly constrained regions

raints

m m_H

Give up E_T−miss signature

Give up naturalness

How light can the stop be?

How light can the stop be?

"Light" stops and $m_H = 126 \text{ GeV}$

In the MSSM (only SM superpartners)

$$m_h^2 \le M_Z^2 \cos^2 2\beta \quad \text{(tree level)} \\ m_h^2 = M_Z^2 \cos^2 2\beta + 12 \frac{h_t^2 m_t^2}{(4\pi)^2} \left[\log \frac{\tilde{m}_t^2}{m_t^2} + \dots \right] \quad \text{(one loop)}$$

Hall Pinner Rudeman 1112.2703

"Light" stops and $m_H = 126$ GeV: NMSSM

• Minimal extension: λSH_uH_d (symmetries forbid μH_uH_d)

ø harmless (unification OK)

 \odot welcome ($\mu = \lambda < S > \approx$ susy scale)

• $m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \text{loops}$

"Natural" values of sparticle masses

M > 10 TeV + tuning < 10%: (less un)"natural SUSY"</p>

 \tilde{L}_i, \tilde{e}_i $\tilde{Q}_{1,2}, \tilde{u}_{1,2}, \tilde{d}_{1,2}$ $\mu \lesssim 200 \ \text{GeV}$ \odot m_{stop} \lesssim 500 GeV ${ ilde g}$ $\frac{\tilde{t}_L}{\tilde{b}_L} \frac{\tilde{t}_R}{\tilde{b}_L}$ \oslash M₃ \lesssim 1.4 TeV \hat{H} natural SUSY decoupled SUSY

[Papucci Ruderman Weiler]

 \tilde{b}_{R}

sleptons, EWinos possibly lighter

ø Need

 $(m_3)^2 \ll (m_{1,2})^2$ (by a factor about 5-10) Ø MSSM → NMSSM

A motivated framework

MMSSM

With supersymmetry mediated at a low scale M

• And lighter $(m_3)^2 \ll (m_{1,2})^2$ (by a factor about 5-10)

Realizing natural susy?

Tree-level extra U(1) gauge mediation for families 1,2

[Nardecchia R Ziegler]

[Anomalous case: e.g. Barbieri Ferrara Nanopoulos Dvali Pomarol]

massive vector of a spontaneously broken non-anomalous U(1) G ⊃ G_{SM} × U(1) Q_{1,2} charged under U(1) Q₃ H NOT charged

 $\tilde{m}_{1,2}^2 = q_{1,2} \, \tilde{m}^2$

third family, Higgs are loop suppressed

 $M \approx M_V$ scale of U(1) breaking

Supergravity: non-renormalizable Kähler: Str ≠ 0 FCNC ?

Str + 0
Str + 0
FCNC OK

Anomalous U(1)'s: Tr(T_a) \neq 0: Str \neq 0
FCNC OK

Tree-level gauge mediation: Str = 0

FCNC OK

Need of extra heavy (through U(1) breaking) fields

Masses² (before EWSB)

	MSSM	extra = $\Phi + \overline{\Phi}$
fermions	0	M ²
scalars	0 + m ²	M ² – m ²

STr = 0

Play the role of gauge mediation messengers

Stop, gluino, and Higgs mass get a (suppressed) mass

So Light Yukawas break U(1): understanding of SM flavour

A simple and viable complete model

Natural susy helps... to some extent

Where does FT come from?

$$\begin{split} n_Z^2 &\approx -2m_{H_u}^2 - 2|\boldsymbol{\mu}|^2 & + \text{ experimental constraints} \\ \downarrow & + \text{ indirect bounds from } \mathbf{m}_{\mathrm{H}} \\ \delta m_{H_u}^2 &\sim -12 \frac{\lambda_t^2}{(4\pi)^2} \tilde{m}_t^2 \log \frac{M}{\tilde{m}_t} \\ \downarrow & + \\ \delta \tilde{m}_t^2 = \frac{32}{3} \frac{g_3^2}{(4\pi)^2} M_3^2 \log \frac{M}{M_3} \end{split}$$

Ways out

S Lower M

O Decouple stop from sup, scharm

 η

NMSSM

- Ø Dirac gluinos
- Weakly constrained regions
- \odot Give up E_T-miss signature

Dirac gauginos

- Sfermion masses super-soft (larger natural M₃)
- Suppress flavour violation
- R-symmetry conserved (useful for theory of susy breaking)
- From N=2 in gauge sector

Dirac gauginos

$$\int d^2\theta \sqrt{2} \frac{W'_{\alpha} W^{\alpha}_j A_j}{M} \quad m_D \sim \frac{\alpha}{4\pi} \frac{D}{M}$$

$$\int d^2\theta \frac{W'_{\alpha}W'^{\alpha}}{M^2}A_j^2$$

$$\delta \tilde{m}_A^2 \sim \pm \frac{\alpha}{4\pi} \left(\frac{D}{M}\right)$$

- Sfermion masses super-soft (larger natural M₃)
- Suppress flavour violation, prod.
- R-symmetry conserved (useful for theory of susy breaking)
- From N=2 in gauge sector

- μ/Bμ-like issue reintroduces a log(loop) enhancement
- Tachyons?
- Output Unification prediction spoiled
- Higgs quartic forbidden (extra model-building needed)

Weakly constrained regions of parameter space

Compressed spectra

reduced activity (small phase space)

- Sector LSP back to back
- theory?

Giving up the E_T -miss signature: RPV

- Baryonic RPV + Leptonic RPV = proton decay
- Leptonic RPV well constrained

Giving up the E_T -miss signature: RPV

- Solution Use baryonic RPV Forbid leptonic RPV
- ø Need also
 - \odot m_{3/2} > 1 GeV (p-decay) and m_{3/2} < 10 GeV (flavour)
 - \odot $\lambda'' < 10^{-5}$ ($\Delta B = 2$) and $\lambda'' > 10^{-7}$ (prompt decay)

$$\label{eq:Weff} \reff = W_{\rm MSSM} + \lambda_{ijk}^{\prime\prime} u_i^c d_j^c d_k^c,$$

$$\Lambda_{ijk} \,\overline{5}_i \overline{5}_j 10_k$$

$$\bullet \quad \text{Unification?} \quad 10_i \overline{5}_j \overline{5}_k = u_i^c d_j^c d_k^{c6} + Q_i d_j^c L_k + Q_i L_j d_k^c + E_i^c L_j L_k$$

lated, since they depend on the embedding of the Higgs publets developing the EW-symmetry-breaking VEV. ere latter into a 10, solution info(10) he stall for $160 \oplus 10 \oplus 10$ ences for the 2–3 splitting (see e.g. [49, 50]), while the akawa superpotential reads 10_v

$$W_Y = y_{ij} 16_i 16 \qquad W_1 = \lambda 16 16 10 + \alpha_a \overline{16} 45_H 16_a \\ + \beta_a 16_H 16_a 10 + M_{16} \overline{16} 16_4$$

be discussed in detail in Sect. IV A.

It is important to stress that the model specified in (29)-(30), although entirely realistic, is only "techcally 5 natural, as every GUP. Indeed, i in order to hieve the splittings within the GUT multiplets, without

[Di Luzio Nardecchia R]

Giving up the E_T -miss signature: stealth susy

R_P is conserved

Lightest Visible Supersymmetric Particle decays into a "hidden sector" singlet with small splitting $\tilde{S} \rightarrow S + LSP$ (gravitino)

 \odot Small E_T-miss because of small Δ m

How does SUSY compares with competitors?

Generic composite Higgs is supersoft

$$m_h^2 = \delta m_h^2 \approx m_h^2 \left(rac{m_{
m NP}}{0.5\,{
m TeV}}
ight)^2$$

if m_{NP} = mass of first resonances \approx compositeness scale, as expected

- Compositeness scale > 5 TeV
 - → 1% fine-tuning (comparable with natural susy)

- But $m_h^2 = \delta m_h^2$ needs (m_{NP})² « (5TeV)²
 - ➡ soft, with M = compositeness scale (better)
 - \rightarrow tension moves to smallness of $(m_{NP})^2$

Is the naturalness criterium really relevant?

Though general, the naturalness argument rests on assumptions

- The cancellation in the Higgs mass is accidental
 - ø environmental selection
 - only understanding available for cosmological constant
- existence of superheavy physics
 - maybe there are no dofs much heavier than TeV
 - then quadratic corrections do not matter

No superheavy physics?

Neutrino mass models add extra particles with mass M

1	$\int 0.7 \ 10^7 \text{GeV} \times \sqrt[3]{\Delta}$	type I see-saw model,
$M \lesssim \langle$	200 GeV $ imes \sqrt{\Delta}$ 940 GeV $ imes \sqrt{\Delta}$	type II see-saw model,
	$($ 940 GeV $ imes \sqrt{\Delta}$	type III see-saw model.

Leptogenesis is compatible with FN only in type I.

Axion and LHC usually are like fish and bicycle because $f_a \gtrsim 10^9 \text{ GeV}$. Axion models can satisfy FN, e.g. KSVZ models employ heavy quarks with mass M

$$M \lesssim \sqrt{\Delta} \times \begin{cases} 0.74 \text{ TeV} & \text{if } \Psi = Q \oplus \bar{Q} \\ 4.5 \text{ TeV} & \text{if } \Psi = U \oplus \bar{U} \\ 9.1 \text{ TeV} & \text{if } \Psi = D \oplus \bar{D} \end{cases}$$

Inflation does not need big scales and anyhow flatness implies small couplings. Absolute gravitational limit on H_I and on any mass [Arvinataki, Dimopoulos..]

$$\delta m^2 \sim \frac{y_t^2 M^6}{M_{\rm Pl}^4 (4\pi)^6}$$
 so $M \lesssim \Delta^{1/6} \times 10^{14} \,{\rm GeV}$

Dark Matter: extra scalars/fermions with/without weak gauge interactions.

- \oslash What about gravity? \rightarrow Adimensional gravity
 - renormalizable gravity + no mass scale inducing physical quadratic corrections
 - ø (but a ghost) ø r ≈ 1.3

Strumia

Giving up naturalness: Split Supersymmetry

[Arkani-Hamed Dimopoulos Giudice R Arkani-Hamed Dimopoulos Giudice R]

SM

E

MPI

SUSY

 \odot m²_h \ll δ m²_h accidentally or because of unspeakable reasons

Dark matter and unification keep part of spectrum near TeV

- <H> = 174 GeV

SUST + R/

An (almost) troubleless MSSM

Issues

- Potentially > 100 parameters (CMSSM)
- FCNCs and CP-violation in particular EDMs (SUSY breaking mechanism, symmetries)
- Proton decay from dimension 5 operators (non minimal models)
- Gravitino and moduli problem (low reheating T)
- Fine-tuning (NMSSM)
- Successes of the MSSM
 - Gauge coupling unification
 - Natural dark matter candidate (with R-parity)

scalars

fermions

Back to the MSSM

Sfermion (stop) masses from $m_H = 126 \text{ GeV}$

Arvanitaki Craig Dimopoulos Villadoro

Tree-level extra U(1) gauge mediation for ALL families

[Nardecchia R Ziegler]

[Anomalous case: e.g. Barbieri Ferrara Nanopoulos Dvali Pomarol]

 $\tilde{m}_f^2 = q_f \, \tilde{m}^2$

massive vector of a spontaneously broken non-anomalous U(1) G ⊃ G_{SM} × U(1) $M_g \sim \frac{\alpha}{4\pi} \frac{k}{h} \frac{F}{M}$

 $M \approx M_V$ scale of U(1) breaking

Expectations and constraints

In conclusion

Maybe Nature is telling us something about NP and SUSY in particular...

At least, NP is not vanilla supersymmetry

Ø Perhaps NP is not natural

Hopefully, unlike the Higgs, is unexpected