Silver Linings from the Flavor Sector: The $B \rightarrow K^* \mu \mu$ Anomaly

Javier Virto

Universität Siegen

Based on different collaborations with S. Descotes-Genon, J. Matias,

F. Mescia, T. Hurth, L. Hofer, S. Neshatpour and F. Mahmoudi

Università di Genova February 27th, 2014

Theor. Physik 1

Outline

- 1. Effective operators for Flavor Physics
- 2. Radiative and dileptonic operators And how to measure them
- **3.** The Newcomer: $B \rightarrow K^* \mu^+ \mu^-$
 - **3.1** Structure of the decay amplitude
 - 3.2 Kinematics and angular distribution
 - 3.3 Optimized observables
 - **3.4** Theory vs. Experiment \longrightarrow The Highlight of 2013
- 4. Fitting the data: Patterns and Results
- 5. New Physics? Tests and Challenges
- 6. Summary and Remarks

EFTs, Accidental Symmetries and New Physics

Proton Decay — Baryon Number

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{c}{\Lambda_{\rm GUT}^2} [Q^T C Q] [Q^T C L] + \cdots \Rightarrow \Lambda_{\rm GUT} \gtrsim 10^{15} {\rm GeV}$$

Neutrino Masses — Lepton Number

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \frac{c}{\Lambda_{\mathrm{M}}} [L^T C L] [H^{\dagger} H] + \cdots \Rightarrow \Lambda_{\mathrm{M}} \sim 10^{13-15} \mathrm{GeV}$$

Baryon Asymmetry / EDMs — CP \Rightarrow Flavor?

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm QCD+QED} + \frac{c \, M_{\Psi}}{\Lambda_{\rm CP}^2} [\bar{\Psi} \sigma^{\mu\nu} \gamma_5 \Psi F_{\mu\nu}] + \cdots \Rightarrow \Lambda_{\rm CP}^{\rm NP} \sim {\rm TeV} ??$$

Effective Operators for Flavor Physics

- Quark Flavor Physics = Precision physics of weak hadron decays
- Weak hadron decays → "Low energy" physics

$$E \sim \Lambda_{QCD}, m_Q \ll M_W$$

Effective lagrangian at the hadronic scale

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{QCD}} + \mathcal{L}_{\mathrm{QED}} + \sum_{i} \Big(\frac{c_{i}^{\mathrm{SM}}}{M_{W}^{2}} + \frac{c_{i}^{\mathrm{NP}}}{\Lambda_{1}^{2}} + \cdots \Big) \mathcal{O}_{i}^{(6)} + \cdots$$

- Precision = Sensitivity to RG effects and to high values of $\Lambda_{\rm \scriptscriptstyle NP}$

• Present frontier: $\Lambda_{NP}^{\kappa-\bar{\kappa}} > 10^{4-5} \text{ TeV}$ (Tree level, flavor-generic NP) [Or for example: $M_{\tilde{b}_{l}} \gtrsim 3$ TeV in Natural SUSY, F. Mescia, JV – 1208.0534]

Radiative and Dileptonic $b \rightarrow s$ **Operators**

Significant progress made recently regarding radiative and dileptonic $b \rightarrow s$ operators – Driven by new data on exclusive *B* decay modes.

Radiative and Dileptonic $b \rightarrow s$ Operators

Effective (sl) Hamiltonian

$$\mathcal{H}_{\rm eff}^{\rm sl} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\mathcal{C}_7 \mathcal{O}_7 + \mathcal{C}_{7'} \mathcal{O}_{7'} + \mathcal{C}_9 \mathcal{O}_9 + \mathcal{C}_{9'} \mathcal{O}_{9'} + \mathcal{C}_{10} \mathcal{O}_{10} + \mathcal{C}_{10'} \mathcal{O}_{10'} \Big]$$

Note: We write $C_i = C_i^{\text{SM}} + C_i^{\text{NP}}$:

$$\mathcal{C}_{7_{\rm eff}}^{\rm \scriptscriptstyle SM} = -0.29, \; \mathcal{C}_9^{\rm \scriptscriptstyle SM} = 4.07, \; \mathcal{C}_{10}^{\rm \scriptscriptstyle SM} = -4.31, \; \mathcal{C}_{i'}^{\rm \scriptscriptstyle SM} \simeq 0$$

Radiative and Dileptonic $b \rightarrow s$ **Operators**

How to Measure Radiative and Dileptonic Operators?

1. Identify decay modes and observables most sensitive to such ops

Decay modes for $b \rightarrow s\gamma$ and $b \rightarrow s\ell\ell$

$B \to X_s \gamma$	$B \to X_s \ell \ell$	$B_s \to \ell^+ \ell^-$
$B ightarrow K^* \gamma$	$B ightarrow K^* \ell \ell$	$B ightarrow K \ell \ell$

- 2. Compute the observables in the effective theory
- 3. Buy a full set of non-perturbative parameters from the Black Market
- **4.** Fit the data, extract CL intervals for the $C_i(m_b)$.
- 5. Interpret the results:
 - **5.1** Compute $C_i^{\text{SM}}(m_b)$ to high orders in RG-improved PT.
 - **5.2** Obtain CL intervals for $C_i^{\text{NP}}(m_b) \longrightarrow \text{test NP}$

Note: We will fit directly to $C_i^{\text{NP}}(m_b)$

Diversion: Computing amplitudes with Mesons

Example: $B \to K^* \gamma^{(*)}$ $(B \sim \bar{b}s, K^* \sim \bar{s}d)$

 $\mathcal{L} = \mathcal{L}_{QED} + \mathcal{L}_{QCD} + \mathcal{C}_{7} \left[\bar{s} \sigma^{\mu\nu} P_{R} b \right] F_{\mu\nu} + \mathcal{C}_{2} \left[\bar{s} \gamma^{\nu} P_{L} c \right] \left[\bar{c} \gamma^{\mu} P_{L} b \right] + \cdots$

 C_7 contribution: $A_7 = C_7 \langle K_\lambda^* | \bar{s} \sigma_{\mu\nu} P_R b | B \rangle q^\mu \epsilon_\lambda^\nu = C_7 T_\lambda(q^2)$

 C_2 contribution: $A_2 = C_2 \cdot \epsilon_{\lambda}^{*\mu} \int dx^4 e^{iq \cdot x} \langle K_{\lambda}^* | T\{j_{\mu}^{c\bar{c}}(x)\mathcal{O}_2(0)\} | B \rangle$

Note: There are similar contributions from \mathcal{O}_8 and other 4-quark ops. These operators are contained in what we call \mathcal{H}_{eff}^{had} .

Javier Virto (U. Siegen)

The $B \rightarrow K^* \mu \mu$ Anomaly

Structure of the Decay Amplitude

"Semileptonic" contribution

 \longrightarrow New Physics

 $\langle \mathcal{K}^{*}\ell\ell | \mathcal{O}_{9^{(\prime)},10^{(\prime)}} | B \rangle = \langle \ell^{+}\ell^{-} | \bar{\ell}\gamma_{\mu}(\gamma_{5})\ell | 0 \rangle \langle \mathcal{K}^{*} | \bar{s}\gamma^{\mu}P_{L,R}b | B \rangle \sim F_{i,\lambda}^{B \to K*}(q^{2})$ $\langle \mathcal{K}^{*}\ell\ell | T \{ j_{em}^{\ell}\mathcal{O}_{7^{(\prime)}} \} | B \rangle = \langle \ell^{+}\ell^{-} | \bar{\ell}\gamma_{\mu}\ell | 0 \rangle \frac{q_{\nu}}{q^{2}} \langle \mathcal{K}^{*} | \bar{s}\sigma^{\mu\nu}P_{R,L}b | B \rangle \sim T_{i,\lambda}^{B \to K*}(q^{2})$ $\mathcal{A}^{\text{sl}} = \sum_{i} f_{i}(\mathcal{C}_{7^{(\prime)}}, \mathcal{C}_{9^{(\prime)}}, \mathcal{C}_{10^{(\prime)}}) \times (\text{Form Factor})_{i}$

"Hadronic" contribution \longrightarrow QCD $[\mathcal{C}_{1,2}, \mathcal{C}_8, \mathcal{C}_{3,4,5,6}]$

$$\mathcal{A}^{ ext{had}} = i rac{e^2}{q^2} \langle \ell^+ \ell^- | ar{\ell} \gamma_\mu \ell | 0
angle \int d^4 x e^{iq \cdot x} \langle \mathcal{K}^* | \mathcal{T} \{ j^\mu_{em}(x) \mathcal{H}^{ ext{had}}_{ ext{eff}}(0) \} | B
angle$$

2 main problems:

- 1. Precise determination of Form Factors (LCSRs, LQCD, ...)
- 2. Computation of the hadronic contribution (SCET/QCDF, OPE, \dots)

Kinematics and angular distribution

$$\frac{d^{4}\Gamma}{dq^{2} d\cos\theta_{K} d\cos\theta_{I} d\phi} = \frac{9}{32\pi} \times \begin{bmatrix} \mathbf{J}_{1s} \sin^{2}\theta_{K} + \mathbf{J}_{1c} \cos^{2}\theta_{K} + \mathbf{J}_{2s} \sin^{2}\theta_{K} \cos 2\theta_{I} \\ + \mathbf{J}_{2c} \cos^{2}\theta_{K} \cos 2\theta_{I} + \mathbf{J}_{3} \sin^{2}\theta_{K} \sin^{2}\theta_{I} \cos 2\phi \\ + \mathbf{J}_{4} \sin 2\theta_{K} \sin 2\theta_{I} \cos\phi + \mathbf{J}_{5} \sin 2\theta_{K} \sin\theta_{I} \cos\phi \\ + \mathbf{J}_{6s} \sin^{2}\theta_{K} \cos\phi_{I} + \mathbf{J}_{6c} \cos^{2}\theta_{K} \cos\theta_{I} \\ + \mathbf{J}_{7} \sin 2\theta_{K} \sin\theta_{I} \sin\phi + \mathbf{J}_{8} \sin 2\theta_{K} \sin 2\theta_{I} \sin\phi \\ + \mathbf{J}_{9} \sin^{2}\theta_{K} \sin^{2}\theta_{I} \sin 2\phi \end{bmatrix}$$

$$\begin{array}{c|c} q^2 = 0 & E_{K^{\star}} \gg \Lambda \\ \hline q^2 = m_{J/\Psi,\Psi',..}^2 & E_{K^{\star}} \sim \Lambda & q^2 = (m_B - m_{K^{\star}})^2 \\ \hline max. \ recoil & large \ recoil & \bar{c}c - resonances & low \ recoil & zero \ recoil \\ \end{array}$$

Optimized Observables

Several Form Factor ratios can be predicted:

- At large recoil \longrightarrow SCET
- At low recoil \longrightarrow HQET

Example

Charles et.al. hep-ph/9812358, Beneke, Feldmann, hep-ph/0008255

Grinstein, Pirjol, hep-ph/0404250

SCET relation at large recoil

$$rac{\epsilon_{-}^{*\mu}q^{
u}\langle K_{-}^{*}|ar{s}\sigma_{\mu
u}P_{R}b|B
angle}{im_{B}\langle K_{-}^{*}|ar{s}\epsilon_{-}^{*}P_{L}b|B
angle}=1+\mathcal{O}(lpha_{s},\Lambda/m_{b})$$

This allows to build observables with reduced dependence on FFs.

Optimized observables at large recoil

Matias, Mescia, Ramon, JV – 1202.4266 Descotes-Genon, Matias, Ramon, JV – 1207.2753

$$P_{1} = \frac{J_{3}}{2J_{2}} \qquad P_{2} = \frac{J_{6s}}{8J_{2s}} \qquad P_{4}' = \frac{J_{4}}{\sqrt{-J_{2s}J_{2c}}}$$
$$P_{5}' = \frac{J_{5}}{2\sqrt{-J_{2s}J_{2c}}} \qquad P_{6}' = \frac{-J_{7}}{2\sqrt{-J_{2s}J_{2c}}} \qquad P_{8}' = \frac{-J_{8}}{\sqrt{-J_{2s}J_{2c}}}$$

Javier Virto (U. Siegen)

The $B \rightarrow K^* \mu \mu$ Anomaly

Theory vs. Experiment

(LHCb: April'13 + July'13)

Fitting the data: Set of data and pulls

Observable	Experiment	SM prediction	Pull
$\langle P_1 \rangle_{[0,1,2]}$	$-0.19^{+0.40}_{-0.25}$	$0.007^{+0.043}_{-0.044}$	-0.5
$\langle P_1 \rangle_{[2,4,3]}$	$-0.29^{+0.65}_{-0.46}$	$-0.051^{+0.044}_{-0.046}$	-0.4
$\langle P_1 \rangle_{[4.3,8.68]}$	$0.36^{+0.30}_{-0.31}$	$-0.117^{+0.056}_{-0.052}$	+1.5
$\langle P_1 \rangle_{[1,6]}$	$0.15\substack{+0.39\\-0.41}$	$-0.055\substack{+0.041\\-0.043}$	+0.5
$(P_2)_{[0.1,2]}$	$0.03^{+0.14}_{-0.15}$	$0.172^{+0.020}_{-0.021}$	-1.0
$(P_2)_{[2,4.3]}$	$0.50\substack{+0.00\\-0.07}$	$0.234\substack{+0.060\\-0.086}$	+2.9
$\langle P_2 \rangle_{[4.3, 8.68]}$	$-0.25^{+0.07}_{-0.08}$	$-0.407^{+0.049}_{-0.037}$	+1.7
$\langle P_2 \rangle_{[1,6]}$	$0.33\substack{+0.11\\-0.12}$	$0.084\substack{+0.060\\-0.078}$	+1.8
$\langle P_4' \rangle_{[0.1,2]}$	$0.00^{+0.52}_{-0.52}$	$-0.342^{+0.031}_{-0.026}$	+0.7
$\langle P_4' \rangle_{[2,4.3]}$	$0.74_{-0.60}^{+0.54}$	$0.569^{+0.073}_{-0.063}$	+0.3
$\langle P'_4 \rangle_{[4.3,8.68]}$	$1.18^{+0.26}_{-0.32}$	$1.003\substack{+0.028\\-0.032}$	+0.6
$\langle P_4' \rangle_{[1,6]}$	$0.58\substack{+0.32\\-0.36}$	$0.555\substack{+0.067\\-0.058}$	+0.1
$\overline{\langle P_5' \rangle_{[0.1,2]}}$	$0.45^{+0.21}_{-0.24}$	$0.533\substack{+0.033\\-0.041}$	-0.4
$\langle P_5' \rangle_{[2,4.3]}$	$0.29^{+0.40}_{-0.39}$	$-0.334^{+0.097}_{-0.113}$	+1.6
$\langle P'_5 \rangle_{[4.3, 8.68]}$	$-0.19^{+0.16}_{-0.16}$	$-0.872^{+0.053}_{-0.041}$	+4.0
$\langle P_5' \rangle_{[1,6]}$	$0.21\substack{+0.20\\-0.21}$	$-0.349\substack{+0.088\\-0.100}$	+2.5
$\langle P_6' \rangle_{[0.1,2]}$	$0.24^{+0.23}_{-0.20}$	$-0.084^{+0.034}_{-0.044}$	+1.6
$\langle P'_{6} \rangle_{[2,4.3]}$	$-0.15\substack{+0.38\\-0.36}$	$-0.098\substack{+0.043\\-0.056}$	-0.1
$\langle P'_6 \rangle_{[4.3, 8.68]}$	$0.04^{+0.16}_{-0.16}$	$-0.027^{+0.060}_{-0.063}$	+0.4
$\langle P_6' \rangle_{[1,6]}$	$0.18\substack{+0.21\\-0.21}$	$-0.089^{+0.042}_{-0.052}$	+1.3
$\langle P_8' \rangle_{[0.1,2]}$	$-0.12^{+0.56}_{-0.56}$	$0.037^{+0.037}_{-0.030}$	-0.3
$\langle P_8' \rangle_{[2,4.3]}$	$-0.30^{+0.60}_{-0.58}$	$0.070^{+0.045}_{-0.034}$	-0.6
$\langle P'_8 \rangle_{[4.3,8.68]}$	$0.58\substack{+0.34\\-0.38}$	$0.020^{+0.054}_{-0.055}$	+1.5
$\langle P_8' \rangle_{[1,6]}$	$0.46\substack{+0.36\\-0.38}$	$0.063\substack{+0.042\\-0.033}$	+1.0
$\langle A_{\rm FB} \rangle_{[0.1,2]}$	$-0.02\substack{+0.13\\-0.13}$	$-0.136^{+0.051}_{-0.048}$	+0.8
$\langle A_{\rm FB} \rangle_{[2,4.3]}$	$-0.20\substack{+0.08\\-0.08}$	$-0.081^{+0.055}_{-0.069}$	-1.1
$\langle A_{\mathrm{FB}} \rangle_{[4.3,8.68]}$	$0.16\substack{+0.06\\-0.05}$	$0.220^{+0.138}_{-0.113}$	-0.5
$\langle A_{ m FB} angle_{[1,6]}$	$-0.17\substack{+0.06\\-0.06}$	$-0.035\substack{+0.037\\-0.034}$	-2.0

Observable	Experiment	SM prediction	Pull
$\langle P_1 \rangle_{[14.18,16]}$	$0.07^{+0.26}_{-0.28}$	$-0.352^{+0.697}_{-0.468}$	+0.6
$\langle P_1 \rangle_{[16,19]}$	$-0.71\substack{+0.36\\-0.26}$	$-0.603\substack{+0.589\\-0.315}$	-0.2
$\langle P_2 \rangle_{[14.18,16]}$	$-0.50^{+0.03}_{-0.00}$	$-0.449^{+0.136}_{-0.041}$	-1.1
$\langle P_2 \rangle_{[16,19]}$	$-0.32\substack{+0.08\\-0.08}$	$-0.374\substack{+0.151\\-0.126}$	+0.3
$\langle P'_4 \rangle_{[14.18,16]}$	$-0.18\substack{+0.54\\-0.70}$	$1.161\substack{+0.190\\-0.332}$	-2.1
$\langle P'_{4} \rangle_{[16,19]}$	$0.70\substack{+0.44\\-0.52}$	$1.263\substack{+0.119\\-0.248}$	-1.1
$\langle P'_5 \rangle_{[14.18,16]}$	$-0.79^{+0.27}_{-0.22}$	$-0.779^{+0.328}_{-0.363}$	+0.0
$\langle P'_{5} \rangle_{[16,19]}$	$-0.60^{+0.21}_{-0.18}$	$-0.601\substack{+0.282\\-0.367}$	+0.0
$\langle P'_6 \rangle_{[14.18,16]}$	$0.18^{+0.24}_{-0.25}$	$0.000^{+0.000}_{-0.000}$	+0.7
$\langle P_6' \rangle_{[16,19]}$	$-0.31\substack{+0.38\\-0.39}$	$0.000\substack{+0.000\\-0.000}$	-0.8
$\langle P_8' \rangle_{[14.18,16]}$	$-0.40^{+0.60}_{-0.50}$	$-0.015^{+0.009}_{-0.013}$	-0.6
$\langle P_8' \rangle_{[16,19]}$	$0.12\substack{+0.52\\-0.54}$	$-0.008\substack{+0.005\\-0.007}$	+0.2
$\langle A_{\rm FB} \rangle_{[14.18,16]}$	$0.51^{+0.07}_{-0.05}$	$0.404^{+0.199}_{-0.191}$	+0.5
$\langle A_{ m FB} angle_{[16,19]}$	$0.30\substack{+0.08\\-0.08}$	$0.360\substack{+0.205\\-0.172}$	-0.3
$10^4 \mathcal{B}_{B \to X_s \gamma}$	3.43 ± 0.22	3.15 ± 0.23	+0.9
$10^6 \mathcal{B}_{B \rightarrow X_s \mu^+ \mu^-}$	1.60 ± 0.50	1.59 ± 0.11	+0.0
$10^9 \mathcal{B}_{B_s \rightarrow \mu^+ \mu^-}$	2.9 ± 0.8	3.56 ± 0.18	-0.8
$A_I(B o K^* \gamma)$	0.052 ± 0.026	0.041 ± 0.025	+0.3
$S_{K^*\gamma}$	-0.16 ± 0.22	-0.03 ± 0.01	-0.6

S. Descotes-Genon, J. Matias, JV - 1307.5683

Simplified Linearized expressions:

$\delta \langle P_2 \rangle_{[0.1,2]}$	\simeq	$+0.37 \frac{C_7^{NP}}{C_7}$		$-0.03\mathcal{C}_{10}^{\scriptscriptstyle\rm NP}$	θ
$\delta \langle P_2 \rangle_{[2,4.3]}$	\simeq	$-2.48 \frac{C_{7}^{NP}}{C_{7}}$	$-0.17 \frac{C_{9}^{NP}}{C_{9}}$	$+0.03{\cal C}_{10}^{_{\rm NP}}$	⊕
$\delta \langle P_2 \rangle_{[4.3,8.68]}$	\simeq	$-0.71 \frac{\mathcal{C}_7^{\text{NP}}}{\mathcal{C}_7}$	$-0.09 \frac{C_{9}^{\text{NP}}}{C_{9}}$	$-0.04 \frac{C_{10}^{_{\rm NP}}}{C_{10}^{_{\rm NP}}}$	\oplus
$\delta \langle P_4' \rangle_{[0.1,2]}$	\simeq	$+0.59\mathcal{C}_7^{\rm\scriptscriptstyle NP}$	$-0.08 \frac{C_{9}^{NP}}{C_{9}}$	$-0.13 \frac{C_{10}^{_{\rm NP}}}{C_{10}^{_{\rm NP}}}$	\oplus
$\delta \langle P_4' \rangle_{[2,4.3]}$	\simeq	$+2.45\mathcal{C}_7^{\rm\scriptscriptstyle NP}$	$+0.06\mathcal{C}_9^{\rm \scriptscriptstyle NP}$	$-0.14 \frac{C_{10}^{_{\rm NP}}}{C_{10}^{_{\rm NP}}}$	\oplus
$\delta \langle P_4' \rangle_{[4.3,8.68]}$	\simeq	$+0.33\mathcal{C}_7^{\rm\scriptscriptstyle NP}$	$+0.01\mathcal{C}_9^{\rm \scriptscriptstyle NP}$		\oplus
$\delta \langle P_5' \rangle_{[0.1,2]}$	\simeq	$-0.91\mathcal{C}_7^{\rm \scriptscriptstyle NP}$	$-0.12\mathcal{C}_9^{\rm \tiny NP}$	$-0.03\mathcal{C}_{10}^{_{\rm NP}}$	θ
$\delta \langle P_5' \rangle_{[2,4.3]}$	\simeq	$-3.04 \frac{C_{7}^{NP}}{C_{7}}$	$-0.29 \frac{C_{9}^{NP}}{C_{9}}$	$-0.03 \frac{C_{10}^{NP}}{C_{10}}$	⊕
$\delta \langle P_5' \rangle_{[4.3,8.68]}$	\simeq	$-0.52 \frac{\mathcal{C}_{7}^{\text{NP}}}{2}$	$-0.08 \frac{C_{9}^{NP}}{2}$	$-0.03 \frac{C_{10}^{_{\rm NP}}}{C_{10}^{_{\rm NP}}}$	⊕

Strategy:

We fit to **47** observables by means of a frequentist χ^2 approach.

Observables included in the analysis

$$\begin{split} & BR(B \to X_s \gamma), \quad BR(B \to X_s \mu^+ \mu^-)_{Low \ q^2} \\ & BR(B_s \to \mu^+ \mu^-), \quad A_I(B \to K^* \gamma), \quad S(B \to K^* \gamma) \\ & B \to K^* \mu^+ \mu^- : \ \langle P_1 \rangle, \langle P_2 \rangle, \langle P'_4 \rangle, \langle P'_5 \rangle, \langle P'_6 \rangle, \langle P'_8 \rangle, \langle A_{FB} \rangle \\ & \text{ in several different bins (see later)} \end{split}$$

Observables *not* included in the analysis

$$B \to K \mu^+ \mu^-$$
, $B_s \to \phi \mu^+ \mu^-$, $B \to X_s \mu^+ \mu^-$ @ Large q^2 , ...

not considered for different reasons (see also 'future directions')

Strategy:

We fit to **47** observables by means of a frequentist χ^2 approach.

- General analysis of constraints: All C_i are treated as independent free parameters.
- **2.** Statistical scrutiny of all posible scenarios (several C_i to zero).
- **3.** A favourable scenario: $(\mathcal{C}_7^{\text{NP}} \mathcal{C}_9^{\text{NP}})$
- **4.** We consider 3 different sets of $B \rightarrow K^* \mu \mu$ observables:
 - ▶ 3 large-recoil + 2 low recoil bins.
 - ▶ 3 large-recoil bins only.
 - ▶ A wide large-recoil bin: [1-6] GeV.

General Fit

Coefficient	1σ	2σ	3σ
$\mathcal{C}^{ ext{NP}}_{ extsf{7}}$	[-0.05, -0.01]	[-0.06, 0.01]	[-0.08, 0.03]
$\mathcal{C}_{q}^{\mathrm{NP}}$	[-1.6, -0.9]	[-1.8, -0.6]	[-2.1, -0.2]
$\mathcal{C}_{10}^{\text{NP}}$	[-0.4, 1.0]	[-1.2, 2.0]	[-2.0, 3.0]
$\mathcal{C}^{\mathrm{NP}}_{7'}$	[-0.04, 0.02]	[-0.09, 0.06]	[-0.14, 0.10]
$\mathcal{C}^{ ext{NP}}_{ extsf{q}'}$	[-0.2, 0.8]	[-0.8, 1.4]	[-1.2, 1.8]
$\mathcal{C}_{10'}^{\mathrm{NP}}$	[-0.4, 0.4]	[-1.0, 0.8]	[-1.4, 1.2]

- Negative values for (C_7^{NP}, C_9^{NP}) favoured at $> (1\sigma, 3\sigma)$.
- Large-recoil only \longrightarrow effect enhanced ($C_9^{\rm NP} \sim -1.6$).
- Only [1-6] bin: Same pattern, less significance.

Fitting the data: Results

Fitting the data: Results

 C_7^{NP} - C_9^{NP} Scenario: Best-Fit point vs SM

Javier Virto (U. Siegen)

The $B \rightarrow K^* \mu \mu$ **Anomaly**

Summary / Remarks

• A global fit to $b \rightarrow s\gamma$, $b \rightarrow s\mu\mu$ observables including the latest data on $B \rightarrow K^*\mu\mu$ angular observables show a significant tension w.r.t the SM, pointing (mostly) to a large NP contribution to C_9 .

S. Descotes-Genon, J. Matias, JV - 1307.5683

• This has been later confirmed by other groups

(Altmannshofer, Straub / Bobeth, Beaujean, van Dyk / Horgan, Liu, Meinel, Wingate)

Horgan et al. 1310.3887

Completely independent analysis

Recent calculation of FFs in unquenched lattice QCD and fit to **branching ratios** & A.Obs. of $B \rightarrow K^* \mu \mu$ and $B_s \rightarrow \phi \mu \mu$

at low recoil.

Summary / Remarks

• A global fit to $b \rightarrow s\gamma$, $b \rightarrow s\mu\mu$ observables including the latest data on $B \rightarrow K^*\mu\mu$ angular observables show a significant tension w.r.t the SM, pointing (mostly) to a large NP contribution to C_9 .

S. Descotes-Genon, J. Matias, JV - 1307.5683

- This has been later confirmed by other groups (Altmannshofer,Straub / Bobeth,Beaujean,van Dyk / Horgan,Liu,Meinel,Wingate)
- New experimental analyses with the full 3 ${\rm fb}^{-1}$ of data will clarify a bit more the situation. Also new experimental initiatives:
 - Fit for the q^2 -dependent amplitudes within some ansatz.
 - Fit directly for the WCs.
 - Improve on the binning.
- Still a lot to do from the theory side:
 - ▶ FFs, hadronic contributions, PCs, resonance tails, etc.
 - New modes & observables.
 - Implications on NP models...

- **1.** Theory correlations \longrightarrow Form Factors and its ratios, etc.
- 2. Increase the set of observables used $(B_s \to \phi \ell \ell, \Lambda_b \to \Lambda_s \ell \ell, \text{ more on } B \to X_s \ell \ell...)$
- 3. Form factors: ratios in Helicity basis, LCSRs within SCET,...
- 4. Charm loop: 2-gluon corrections, amplitude dependence of $\Delta C_9^{\rm eff}$, ...
- Power corrections: Difficult!! Characterize the structure of power suppressed contributions within SCET, model subleading nonperturbative quantities and genuine non-factorizable contributions. Relate to non-leptonic modes. Long term project.
- **6.** Test for similar effects in other channels (e.g. $B \rightarrow K \nu \bar{\nu}$) –[Belle II]
- 7. CP violation, e^+e^- / $au^+ au^-$ modes, polarization observables, ...

Epilogue: NP scale?

$$\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{\alpha}{4\pi}\mathcal{C}_9 = \frac{c}{\Lambda^2}$$

For $C_9 \sim 1$ the NP scale Λ would be:

- Tree-level flavor-generic NP, with $g \sim 1 \ (c \sim 1)$: $\Lambda \sim 38 \, {\rm TeV}$
- Tree-level flavor-CKMish NP, with $g \sim 1 \ (c \sim V_{tb}V_{ts}^*)$: $\Lambda \sim 8 \text{ TeV}$
- Tree-level flavor-generic NP, with $g \sim 0.1~(c \sim 0.01)$: $\Lambda \sim 3.8~{\rm TeV}$
- Loop-level flavor-generic NP, with $g \sim 1 \ (c \sim \frac{1}{(4\pi)^2})$: $\Lambda \sim 3 \text{ TeV}$
- Loop-level flavor-CKMish NP, with $g \sim 1 \ (c \sim \frac{V_{tb}V_{ts}^*}{(4\pi)^2})$: $\Lambda \sim 600 \,\text{GeV}$

Epilogue: MSSM

Javier Virto (U. Siegen)

The $B \rightarrow K^* \mu \mu$ Anomaly

27.01.2014 21 / 23

 P'_5 is extremely difficult to reproduce in the MSSM, because:

- Large values of C_9 are correlated to large values of other coefficients.
- Large values of C_7 can do it, but are excluded by $B \rightarrow X_s \gamma$.

References

- The LHCb papers on the $B \rightarrow K^* \mu \mu$ angular analysis: LHCb collaboration, 1304.6325[hep-ex], 1308.1707[hep-ex] • Statement and analysis of the " $B \rightarrow K^* \mu \mu$ Anomaly": Descotes-Genon, Matias, JV, 1307.5683[hep-ph] • Definition of the *Optimised observables* and SM predictions: Matias, Mescia, Ramon, JV, 1202.4266[hep-ph] Descotes-Genon, Matias, Ramon, JV, 1207.2753[hep-ph] Descotes-Genon, Hurth, Matias, JV, 1303.5794[hep-ph] • Further papers addressing the Anomaly: Altmannshofer, Straub, 1308.1501[hep-ph] Buras, Girrbach, 1309.2466[hep-ph] Beaujean, Bobeth, van Dyk, 1310.2478[hep-ph] Gauld, Goertz, Haisch, 1308.1959[hep-ph], 1310.1082[hep-ph] Horgan, Liu, Meinel, Wingate, 1310.3887[hep-ph] Datta, Duraisamy, Gosh, 1310.1937[hep-ph] Mahmoudi, Neshatpour, JV, 1401.2145[hep-ph] • Form factors and charm-loop effects: Khodjamirian, Mannel, Pivovarov, Wang, 1006.4945[hep-ph]
 - Horgan, Liu, Meinel, Wingate, 1310.3722[hep-lat]
- The theory of $B \to K^* \ell \ell$ at large and low recoil: Beneke, Feldmann, Seidel, 0106067[hep-ph], 0412400[hep-ph] Beylich, Buchalla, Feldmann, 1101.5118[hep-ph]

Grinstein, Pirjol, 0404250[hep-ph]

Backup Slides

 C_9 - C'_9 Scenario

\mathcal{C}_9 - \mathcal{C}_9' Scenario

Javier Virto (U. Siegen)

The $B \rightarrow K^* \mu \mu$ Anomaly

$B \rightarrow K^* \mu^+ \mu^-$ Branching Ratio

where the blue curve is SM and the red curve corresponds to $C_9^{NP} = -1.5$. Interestingly the central value it goes in the right direction, but given the error bars all is consistent with data.

Experimental correlations & Branching Ratio

Fit to Form-Factor-dependent observables S_i

$B^+ \rightarrow K^+ \mu^+ \mu^-$ Branching Ratio (Preliminary)

Javier Virto (U. Siegen)

The $B \rightarrow K^* \mu \mu$ Anomaly