Università di Genova, April 11, 2013.

Holography and the Quark-Gluon Plasma

Francesco Bigazzi INFN, Pisa, Italy

Holography and the Quark-Gluon Plasma

Plan

- Quark-Gluon Plasma from heavy ion collisions
- Holography
- Applications

Plan

- Quark-Gluon Plasma from heavy ion collisions
- Holography
- Applications

Need novel theoretical tools for real-time properties at strong coupling

RHIC: Au+Au collisions. 200 GeV/nucleon pair. Running since 2000. LHC: Pb+Pb collisions. 3 TeV/nucleon pair. Running since 2010.

High energies, heavy nuclei: Au = 197 nucleons; Pb = 208 nucleons Why? QCD at high energy densities=Universe a few μ s old

Main picture

Large energy density: deconfinement

Static properties (thermodynamics)

 Lattice optimized for equilibrium, at small baryon density Energy density ε/T⁴ [F.Karsch, 2002]
 Trace anomaly: (ε-3p)/T⁴ [Borsanyi et al, 2010; Nf =2+1]

- At T<Tc: hadron gas [O(1) d.o.f.]. At T>Tc: QGP [O(Nc^2+NcNf)]
- At T >Tc , ϵ/T^4 is $\approx 80\%$ of free quark-gluon gas
- Quasi-conformal trend in a window of T > 2 Tc

Dynamics: QGP is a strongly coupled medium

Dynamics: elliptic flow

Azimuthal anisotropy is observed: collective behavior.

Dynamics: elliptic flow

- If QGP quickly formed, elliptic flow data fit with...
- ... a relativistic hydrodynamic model with...
- ... a very low shear viscosity/s (s= entropy density)

$$\frac{\eta}{s} = A \frac{1}{4\pi} \left(\frac{\hbar}{K_B} \right) , \qquad A \in [1,3]$$

Cfr.: η /s (water) \approx (380) (1/4 π); η /s (liquid He) \approx (9) (1/4 π)]

- Similar values for ultracold atoms at unitarity (BEC-BCS crossover)

Recall: Hydrodynamics

- Effective theory for small frequency ($\omega << T$), long wavelength ($|\mathbf{k}| << T$) fluctuations around local thermal equilibrium
- Expansion of $T_{\mu\nu}$ in derivatives of 4-velocity.
- Characterized by transport coefficients. First order: shear (η) and bulk (ζ) visc
- η /s: measures rate of, say, py momentum diffusion in a transverse direction x.
- I.e. how fast a stream spread out in the ocean?
- Strong (weak) coupling \rightarrow small (large) mean free path $\rightarrow \eta$ /s small (large)
- Hence: QGP is a strongly coupled liquid!

Recall: Hydrodynamics

- To connect with microscopic theory can use linear response

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^R_{xy,xy}(\omega, \mathbf{0})$$
 Kubo formula

$$G^{R}_{xy,xy}(\omega,\mathbf{0}) = \int dt \, d\mathbf{x} \, e^{i\omega t} \theta(t) \langle [T_{xy}(t,\mathbf{x}), \, T_{xy}(0,\mathbf{0})] \rangle \qquad \text{Retarded correlator}$$

-How to compute in QCD at strong coupling? Do we get small η /s for the QGP?

-Lattice (Euclidean) not suited.

-Extrapolation from pQCD gives wrong results by order of magnitude

Dynamics: jet quenching

Strong suppression of back-to-back jets: QGP strongly coupled, highly opaque

Dynamics: jet quenching

- Mainly due (LHC) to energy loss of partons by gluon emission
- Effect of the medium (at scales \sim T) accounted by jet quenching parameter q
- Non perturbative def. : a light-like Wilson loop in the adjoint [Wiedemann]

$$\langle W^A[C] \rangle_T \sim \exp\left[-\frac{\hat{q}}{4\sqrt{2}}L_-L^2\right]$$

- Contour C: a rectangle; L_along lightcone; L transverse; L_>>L
- Data: \hat{q} in the range $5 15 \,\mathrm{GeV}^2/\mathrm{fm}$
- Extrapolation from pQCD: $\hat{q} < 1 \text{GeV}^2/\text{fm}$
- Lattice not well suited: light-like WL requires Minkowski signature

Plan

- Quark-Gluon Plasma from heavy ion collisions
- Holography
- Applications

Provides novel tools for strongly coupled QFT, both in and out equilibrium

"Ordinary quantum field theories are secretly quantum theories of gravity in at least one higher dimension"

Heuristic Hint 1

• Renormalization Group equations

$$u\frac{dg}{du} = \beta(g)$$

local in the scale u.

• Idea: RG flow of a D-dim QFT as "foliation" in D+1 dims . RG scale u = Extra dimension

Heuristic Hint 2

- Effective description in D+1 must have same number of d.o.f. as the QFT in D-dims
- Gravity is a good candidate: it is "holographic"
- See black hole physics

Black holes... are not so black

Quantum effects: emit thermal radiation.

Obey laws of thermodynamics

Entropy scales like the area of the event horizon and not as the enclosed volume! [Bekenstein, Hawking 1974]

Quantum gravity, whatever it is, is holographic. Degrees of freedom in a d+1 dimensional spacetime volume encoded by some theory on the d-dimensional boundary. ['t Hooft, Susskind, 1994]

- But still... (quantum) gravity in D+1 so different from a QFT in D!
- Any possible connection should work in a very subtle way
- In fact...

Certain regimes where the QFT is strongly interacting, mapped into classical (i.e. weakly interacting) gravity! Certain regimes where the QFT is strongly interacting, mapped into classical (i.e. weakly interacting) gravity!

• First explicit example from string theory [Maldacena 1997]:

 $\mathcal{N} = 4 \; SU(N_c) \; \text{SYM in } D = 4 \; \text{dual to gravity on } AdS_5 \times S^5.$ Classical gravity regime: $N_c \gg 1$, $\lambda = g_{YM}^2 N_c \gg 1$.

- An enormous amount of validity checks has been provided
- Extended to many other QFTs, including confining ones

Unfortunately holographic QCD is an hard task!

N=4 SYM $\Lambda_{QCD} \sim M \exp\left(-\frac{a}{q_{VM}^2(M)N_c}\right)$ Μ Decoupling: $g_{YM}^2(M)N_c \ll 1$ E Classical gravity: $g_{YM}^2(M)N_c \gg 1$ Moreover: high spin resonances not accounted by just gravity. Λ QCD **Need a complete stringy description**. Technically hard.

Therefore

- Price: classical gravity allows us to holographically describe dual QFTs which are not QCD. Toy models.
- However: there are phases of QCD (e.g. at T>Tc) for which holographic models provide good benchmarks
- Key: universality. Some dynamical properties not so tied to microscopic details
- Gain: calculability. Can explore regimes (e.g. finite baryon density, real-time issues) at strong coupling, otherwise hard to access with standard theoretical tools.

How to compute?

RG scale $E \rightarrow$ radial extra dim. r

QFT vacuum → Gravity background

Operator $O(x) \rightarrow Gravity field \varphi(x,r)$

 $\langle O(x) O(y) \rangle \Rightarrow$ On-shell action for φ

Can compute these at strong coupling just from classical gravity equations of motion! [Witten; Gubser, Klebanov, Polyakov, 1998]

QFT vacuum → Gravity background

Operator $O(x) \rightarrow$ Gravity field $\phi(x,r)$

- Example 1(stress tensor): $T^{\mu\nu}(x) \to g_{\mu\nu}(x,r)$
- Example 2 (conserved current): $J^{\mu}(x) \rightarrow A_{\mu}(x,r)$

$$\langle e^{-\int d^d x \phi_0(x) \mathcal{O}(x)} \rangle_{QFT} \approx e^{-S_{gravity}[\phi_0(x)]}$$

$$\lim_{r \to \infty} \phi(x, r) = \phi_0(x)$$
 (schematically)

- Solve gravity e.o.m. with that boundary condition
- Plug into the gravity action : Sgravity[φ₀] on-shell.
 Boundary value of field = source for corresponding operator

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle \sim \frac{\delta^2 S_{grav}[\phi_0]}{\delta\phi_0(x)\delta\phi_0(y)}|_{\phi_0=0}$$

• Can compute (Euclidean and real-time) correlators at strong coupling!

Wilson loops

$$W_R[C] = Tr_R P e^{i \int_C A_\mu dx^\mu}$$

- R= representation (fundamental, adjoint...);
- C= contour (e.g. a rectangle T, L in Euclidean): W=exp[-T E[L]]
- Holographically:

Plan

- Quark-Gluon Plasma from heavy ion collisions
- Holography
- Applications

- Strongly coupled thermal QFT \rightarrow Black Hole in higher dim.
- QFT Thermodynamics \rightarrow Black Hole thermodynamics.
- Hydrodynamics -> Fluctuations around black hole background

1. A toy model for a quark+gluon plasma

[F.B., Cotrone, Mas, Paredes, Ramallo, Tarrio 09; F.B., Cotrone, Mas, Mayerson, Tarrio 10]

- SU(Nc) Yang Mills coupled with massless fields:
- 6 real scalars in the adjoint
 4 Weyl fermions in the adjoint
 N=4 SYM
- Nf fermions in the (anti)fundamental (quarks)
- Nf scalars in the (anti) fundamental (squarks)
- At finite T and finite quark chemical potential μ

• Parameters:

$$\lambda_h = g_{YM}^2(T)N_c \gg 1, \quad N_c \gg 1 \qquad \epsilon_h = \frac{\lambda_h}{8\pi^2} \frac{N_f}{N_c} \ll 1$$

$$\delta = \frac{4}{\sqrt{\lambda_h}} \frac{\mu}{T} \left(1 - \frac{5}{24} \epsilon_h \right) \ll 1$$

Just to present simpler expression. Results extended to any δ. [F.B., Cotrone, Tarrio, to appear]

+

Nf hypers

Consistent Thermodynamics

$$s = \frac{1}{2}\pi^2 N_c^2 T^3 \left[1 + \frac{\epsilon_h}{2} (1 + \delta^2) + \frac{7\epsilon_h^2}{24} (1 + \delta^2) \right]$$

$$\varepsilon = \frac{3}{8}\pi^2 N_c^2 T^4 \left[1 + \frac{\epsilon_h}{2} (1 + 2\delta^2) + \frac{\epsilon_h^2}{3} (1 + \frac{7}{4}\delta^2) \right]$$

$$p = \frac{1}{8}\pi^2 N_c^2 T^4 \left[1 + \frac{\epsilon_h}{2} (1 + 2\delta^2) + \frac{\epsilon_h^2}{6} (1 + \frac{7}{2}\delta^2) \right]$$

- $\varepsilon(N_f = 0) = 3p(N_f = 0)$ consistently with CFT

- $\varepsilon \approx 0.75 \,\varepsilon(\lambda = 0)$ similarly to QGP at $T \in [1.5, 3]T_c$

- Trace anomaly of order ϵh^2 . Massless dynamical flavors break conformality.

Jet quenching parameter

Evaluating light-like Wilson loop holographically (minimal area) [for N=4 SYM, see: Liu, Rajagopal, Wiedemann 06]

$$\hat{q} = \frac{\pi^{3/2} \sqrt{\lambda_h} \Gamma(\frac{3}{4})}{\Gamma(\frac{5}{4})} T^3 \left[1 + \frac{1}{8} (2+\pi) \epsilon_h + 0.56 \epsilon_h^2 \right]$$

Comparing with Nf=0 theory at fixed T and fixed energy density, get that quarks enhance jet quenching: they have larger cross section than gluons

[F.B. Cotrone, Mas, Paredes, Ramallo, Tarrio 09; Magana, Mas. Mazzanti, Tarrio 12]

Extrapolating to QGP: Nc=Nf=3, λ =6 π , T=300 MeV, get

 $q \approx 4 \div 5 \text{ GeV}^2/\text{fm}$ (right in the ballpark of data)

2. Non-conformal plasmas: a simple bottom-up approach

- (Toy) Model QCD in the Quark-Gluon-Plasma phase as
- ... a strongly coupled large N QFT at finite temperature...
- ... with conformality slightly broken by....
- ... a marginally relevant operator (as TrF^2)....
- ... dual to a scalar field in 5d

Accounted by a simple effective dual gravity model in 5d ($\gamma \ll 1$)

$$S = \frac{1}{16\pi G_N} \int d^5x \sqrt{-\det g} \left[R[g] - \frac{1}{2} (\partial \phi)^2 + \frac{12}{L^2} e^{\gamma \phi} \right]$$

- If $\gamma = 0$ it has an AdS5 vacuum (L=AdS radius) with ϕ =const
- If $\gamma \ll 1$, $\phi \approx -3\gamma \log(r)$ i.e. logarithmic running with RG scale
- Conformality broken. E.g. speed of sound: $c_s^2 = \frac{1}{3} \frac{\gamma^2}{2}$

Hydrodynamics: the shear viscosity

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \ d\vec{x} \ e^{i\omega t} \ \langle [T_{xy}(t, \vec{x}), T_{xy}(0, \vec{0})] \rangle$$

- Compute correlator following basic holographic formula
- Source term for Txy: external metric gxy.
- Essentially compute graviton absorption cross section from the black hole

$$\frac{\eta}{s} = \frac{1}{4\pi} \frac{\hbar}{K_B}$$

[Policastro, Son, Starinets, 2001; Kovtun, Son, Starinets 2004]:

- Universal: for any isotropic QFT plasma with 2der. gravity dual
- Right in the ballpark of estimated QGP value
- (Not a bound. 1/N and 1/ λ corrections can lower it.)

Second order hydrodynamics

[Baier,Romatschke,Son,Starinets,Stephanov 2008; Romatschke 2009; Bhattacharyya, Hubeny, Minwalla, Rangamani 2008]

$$T^{\mu\nu} = \varepsilon u^{\mu}u^{\nu} + p\Delta^{\mu\nu} + \pi^{\mu\nu} + \Delta^{\mu\nu}\Pi$$

Expansion in gradients of u^{μ} and $\varepsilon \rightarrow s$ (via thermodynamics):

$$\begin{split} \pi^{\mu\nu} &= -\eta \sigma^{\mu\nu} + \eta \tau_{\pi} \Big[\langle D\sigma^{\mu\nu} \rangle + \frac{\nabla \cdot u}{3} \sigma^{\mu\nu} \Big] + \kappa \Big[R^{\langle \mu\nu \rangle} - 2u_{\alpha}u_{\beta}R^{\alpha\langle \mu\nu \rangle\beta} \Big] \\ &+ \lambda_{1}\sigma_{\lambda}^{\langle \mu}\sigma^{\nu>\lambda} + \lambda_{2}\sigma_{\lambda}^{\langle \mu}\Omega^{\nu>\lambda} + \lambda_{3}\Omega_{\lambda}^{\langle \mu}\Omega^{\nu>\lambda} + \kappa^{*}2u_{\alpha}u_{\beta}R^{\alpha\langle \mu\nu \rangle\beta} \\ &+ \eta \tau_{\pi}^{*} \frac{\nabla \cdot u}{3} \sigma^{\mu\nu} + \lambda_{4}\nabla^{\langle \mu} \log s \nabla^{\nu>} \log s \\ \text{For conformal fluids:} \left(\tau_{\pi}^{*}, \kappa^{*}, \lambda_{4} \right) = 0 \\ \Pi &= -\zeta (\nabla \cdot u) + \zeta \tau_{\Pi} D (\nabla \cdot u) + \xi_{1}\sigma^{\mu\nu}\sigma_{\mu\nu} + \xi_{2} (\nabla \cdot u)^{2} + \xi_{3}\Omega^{\mu\nu}\Omega_{\mu\nu} \\ &+ \xi_{4}\nabla_{\mu}^{\perp} \log s \nabla_{\perp}^{\mu} \log s + \xi_{5}R + \xi_{6}u^{\alpha}u^{\beta}R_{\alpha\beta} \\ \text{For conformal fluids:} \quad \zeta = 0 \\ &= \text{shear viscosity,} \quad \zeta = \text{bulk viscosity,} \quad \tau_{\pi}, \tau_{\Pi} = \text{relaxation times.} \end{split}$$

Get all the transport coefficients! [Romatschke 2009; F.B., Cotrone, Tarrio; F.B., Cotrone, 2010]

Get all the transport coefficients! [Romatschke 2009; F.B., Cotrone, Tarrio; F.B., Cotrone, 2010]

$$\delta_{cb} = (1 - 3c_s^2) \ll 1$$

Shear and bulk relaxation times differ. Difference increases as conformality breaking effects get stronger. Should be taken into account in QCD hydro codes. Difference enhanced near Tc.

$\frac{\eta}{s}$	$rac{1}{4\pi}$	$T au_{\pi}$	$rac{2 - \log 2}{2\pi} + rac{3(16 - \pi^2)}{64\pi} \delta_{cb}$	$\frac{T\kappa}{s}$	$\left \frac{1}{4\pi^2}\left(1-\frac{3}{4}\delta_{cb}\right)\right $
$\boxed{\frac{T\lambda_1}{s}}$	$\frac{1}{8\pi^2} \left(1 + \frac{3}{4} \delta_{cb} \right)$	$\left \frac{T\lambda_2}{s} \right $	$-\frac{1}{4\pi^2} \left(\log 2 + \frac{3\pi^2}{32} \delta_{cb} \right)$	$\left \frac{T\lambda_3}{s} \right $	0
$\boxed{\frac{T\kappa^*}{s}}$	$-rac{3}{8\pi^2}\delta_{cb}$	$T au_{\pi}^{*}$	$-rac{2-\log 2}{2\pi}\delta_{cb}$	$\left \frac{T\lambda_4}{s} \right $	0
$\frac{\zeta}{\eta}$	$rac{2}{3}\delta_{cb}$	$T au_{\Pi}$	$\frac{2-\log 2}{2\pi}$	$\frac{T\xi_1}{s}$	$rac{1}{24\pi^2}\delta_{cb}$
$\boxed{\frac{T\xi_2}{s}}$	$rac{2-\log 2}{36\pi^2}\delta_{cb}$	$\frac{T\xi_3}{s}$	0	$\left \frac{T\xi_4}{s} \right $	0
$\frac{T\xi_5}{s}$	$rac{1}{12\pi^2}\delta_{cb}$	$\frac{T\xi_6}{s}$	$rac{1}{4\pi^2}\delta_{cb}$		

Possible benchmarks for initial conditions (large T) on hydro coefficients of the QCD quark-gluon plasma?

• From lattice [Borsany et al 2010]: $c_s^2(T \sim 1.5T_c) \sim 0.26$ (RHIC)

$\frac{\eta}{s}$	$\frac{1}{4\pi}$	$T\tau_{\pi}$	0.228	$\frac{T\kappa}{s}$	0.021
$\frac{T\lambda_1}{s}$	0.015	$\frac{T\lambda_2}{s}$	-0.023	$\frac{T\lambda_3}{s}$	0
$\frac{T\kappa^*}{s}$	-0.008	$T\tau_{\pi}^{*}$	-0.046	$\frac{T\lambda_4}{s}$	0
$\frac{\zeta}{\eta}$	0.147	$T\tau_{\Pi}$	0.208	$\frac{T\xi_1}{s}$	0.001
$\frac{\zeta}{\eta}$ $\frac{T\xi_2}{s}$	0.147 0.001	$\frac{T\tau_{\Pi}}{\frac{T\xi_3}{s}}$	0.208 0	$\frac{T\xi_1}{s}$ $\frac{T\xi_4}{s}$	0.001

Many other directions

- Meson melting, phase transitions [Mateos, Myers, Thomson et al 07]
- Drag force on heavy quarks [Herzog, Karch, Kovtun, Kozcaz, Yaffe; Gubser 06]
- Photon spectrum (from retarded correlator of $J\mu$) [Yaffe et al 06]
- Thermalization: BH formation from colliding shock waves in AdS [Gubser et al 08; Chesler, Yaffe 11] or time-dependend backgrounds [Kraps et al 10]
- More realistic models: Sakai-Sugimoto; improved holographic bottom-up approaches [Kiritsis et al 06-12]
- Novel hydro transport coefficients driven by anomalies [Kharzeev, Son, 11]

Summary

- Holography: a novel theoretical framework for strongly coupled QFTs
- A novel set of tools which could complement well established ones especially for problems concerning e.g.
 - Real-time issues (transport properties)
 - Out of equilibrium physics
 - Finite density (cfr. sign problem in lattice)
- Often analytic control on the models. Novel intuitions.
- Still limited to effective toy models.
- Sometimes useful benchmarks on universal behaviors

Thank you