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  Basic theme :  

 Conformal invariance  (CFT)  and confinement

  If confinement ~ deformation of an IR f.p. CFT  

the understanding of the IR degrees of freedom in CFT 

UV  CFT                       Infrared-fixed point CFT        

is the key to see the working of confinement / XSB 

QCD:
quarks and gluons,  AF collective behavior of color  (confinement, XSB) ? 

I.    Quark confinement  vs  Chiral Symmetry Breaking
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• Abelian dual superconductor ?  (dynamical Abelianization) 

SU(3)! U(1)2 ! 1
hMi 6= 0

 Doubling of the spectrum    (*)

‘t Hooft, Nambu, Mandelstam

If  confinement and XSB both induced by      

 Accidental SU(NF2 ) : too many NG bosons  

SUL(NF )⇥ SUR(NF )! SUV (NF )

☞

☞

• Non-Abelian monopole condensation

SU(3)! SU(2)⇥ U(1)! 1

☞ Problems (*)  avoided but  

 Non-Abelian monopole are probably strongly coupled  (sign flip of b0  unlikely)

�Ma
b ⇥ = �a

b �

⇧1(U(1)2) = Z⇥ Z

⇧1(SU(2)⇥ U(1)) = Z

Quark confinement mechanism
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II.   Monopoles and dyons in nonAbelian gauge theories

  
--   a 15 min. review  --
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Topology (Mapping: Space → G)

• Charged particle ψ(x) in a monopole field

exp ige

∮

∂Ω
Ai dxi → exp ige

∫

S2
dS · H = exp 4πige gm (H = ∇gm

r
).

2 ge gm = n, n ∈ Z, Π1(U(1)) = Z

• U(1) in a nonabelian theory G (Wu, Yang): monopole ∼ Π1(G) %= ∅.

• ’t Hooft-Polyakov monopoles: Π2(SU(2)/U(1)) = Π1(U(1)) = Z;

• G
〈φ〉%=0−→ H : similar→monopoles with nonabelian charges if Π2(G/H) %= ∅

8

Dirac ~1930

Regular monopoles

Fiber bundle

Tuesday, March 19, 13



Non-Abelian monopoles

H: non-Abelian

 2 m· e ∈ Z

“Monopoles are multiplets of H  (GNOW)”

cfr.

∼

<Φ> = v = h · T

(Dirac)The normalization of the generators can be chosen [4] so that the metric of the

root vector space is10

gij =
∑

roots

αiαj = δij. (A.4)

The Higgs field vacuum expectation value (VEV) is taken to be of the form

φ0 = h · T, (A.5)

where h = (h1, . . . , hrank(G)) is a constant vector representing the VEV. The root

vectors orthogonal to h belong to the unbroken subgroup H .

The monopole solutions are constructed from various SU(2) subgroups of G that

do not commute with H ,

S1 =
1

√
2α2

(Eα + E−α); S2 = −
i

√
2α2

(Eα − E−α); S3 = α∗ · T, (A.6)

where α is a root vector associated with a pair of broken generators E±α. α∗ is a

dual root vector defined by

α∗ ≡
α

α · α
. (A.7)

The symmetry breaking (A.1) induces the Higgs mechanism in such an SU(2) sub-

group, SU(2) → U(1). By embedding the known ’t Hooft-Polyakov monopole

[34, 27] lying in this subgroup and adding a constant term to φ so that it behaves

correctly asymptotically, one easily constructs a solution of the equation of motion

[6, 19]:

Ai(r) = Aa
i (r, h · α) Sa; φ(r) = χa(r, h · α) Sa + [ h − (h · α) α∗] · T, (A.8)

where

Aa
i (r) = εaij

rj

r2
A(r); χa(r) =

ra

r
χ(r), χ(∞) = h · α (A.9)

is the standard ’t Hooft-Polyakov-BPS solution. Note that φ(r = (0, 0, ∞)) = φ0.

10In the Cartan basis the Lie algebra of the group G takes the form

[Hi, Hk] = 0, (i, k = 1, 2, . . . , r); [Hi, Eα] = αi Eα; [Eα, E−α] = αi Hi;

(A.2)

[Eα, Eβ] = Nαβ Eα+β (α + β &= 0). (A.3)

αi = (α1, α2, . . .) are the root vectors.

43

significantly relaxed in cases in which the unbroken group is smaller. In this way one

finds that the only real restriction is that the number of flavors be at least equal to

2r if the monopole transforms in the fundamental representation of SU(r). (See

e.g., Eq.(3.2).)

3 Quantum Nonabelian Monopoles

The above example of the SU(N + 1) model nicely illustrates the fact that

a semiclassical treatment alone is not enough to ensure that the set of apparently

degenerate monopoles associated with the symmetry breaking G
〈φ〉#=0−→ H are truly

nonabelian. The reason is that the “unbroken” gauge group H may well dynamically

break down to an abelian subgroup. If this occurs, one has only an approximately

degenerate set of monopoles whose masses differ by e.g., O( Λ2

〈φ〉). For this reason, the

very concept of nonabelian monopoles is never really semi-classical, in sharp contrast

to the case of abelian monopoles. Only if the “unbroken” gauge group H is not further

broken dynamically do the unconfined (topologically stable) nonabelian monopoles

and dual gauge bosons appear in the quantum theory.

Another subtlety is that it is in general not justified to study the system G
〈φ〉#=0−→ H

with a nonabelian subgroup H as a limiting situation of a maximal breaking, -

G
〈φ〉#=0−→ U(1)R, where R is the rank of the group G, by letting some of the eigen-

values of 〈φ〉 to coincide, as is sometimes done in the literature. To do so would

introduce fictitious degrees of freedom corresponding to massless, infinitely extended

“solitons”. In this limit all fields tend to constant values and so in fact these are not

solitons at all. Indeed, in the case G = SU(N), such “massless monopoles” do not

represent any topological invariant as the fundamental group of any restored SU(N)

is trivial.2

It is hardly possible to overemphasize the importance of the fact [4, 6, 19] that

nonabelian monopoles, if they exist quantum mechanically, transform as irreducible

multiplets of the dual group H̃ , not under H itself. Monopoles transforming under

2This is analogous to what would happen to the ’t Hooft - Polyakov monopole of the spontaneously

broken SU(2)
v−→U(1) theory, if one were to apply the semi-classical formulae näıvely in the limit

v → 0. We believe that this fact, together with the fact that the magnetic monopoles are multiplets

of the dual of H (see the following paragraph), are responsible for some difficulties found in such an

approach [10].

8

The normalization of the generators can be chosen [4] so that the metric of the
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The normalization of the generators can be chosen [?] so that the metric of the

root vector space is10

gij =
∑

roots

αiαj = δij. (A.4)

The Higgs field vacuum expectation value (VEV) is taken to be of the form

φ0 = h · T, (A.5)
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The symmetry breaking (??) induces the Higgs mechanism in such an SU(2) sub-

group, SU(2) → U(1). By embedding the known ’t Hooft-Polyakov monopole [?, ?]

lying in this subgroup and adding a constant term to φ so that it behaves correctly
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is the standard ’t Hooft-Polyakov-BPS solution. Note that φ(r = (0, 0, ∞)) = φ0.

The mass of a BPS monopole is then given by

M =

∫
dS · Tr φ B, B =

ri(S · r)

r4
. (A.10)

10In the Cartan basis the Lie algebra of the group G takes the form

[Hi, Hk] = 0, (i, k = 1, 2, . . . , r); [Hi, Eα] = αi Eα; [Eα, E−α] = αi Hi;
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1

H   generated by 
∼ H H

U(N) U(N)

SU(N) SU(N)/Z

SO(2N) SO(2N)

SO(2N+1) USp(2N)

∼

N

For the cases SO(N +2) ⌥ SO(N)⇤U(1) and USp(2N +2) ⌥ USp(2N)⇤
U(1), where TrHi Hj = C ⇤ij, one finds

M =
4⌃ C h · ��

g
=

4 ⌃ v

g
, (A.14)

while for SO(2N) ⌥ SU(N) ⇤ U(1), SO(2N + 1) ⌥ SU(N) ⇤ U(1), and

USp(2N) ⌥ SU(N) ⇤ U(1), the mass is

M =
8⌃ C h · ��

g
=

8 ⌃ v

g
. (A.15)

In order to get the U(1) magnetic charge11 (the last column of Table 3), we first

divide by an appropriate normalization factor in the mass formula Eq.(A.10)

Fm =

⇤
dS ·

Tr ⌥ B

N�

=

⇤
dS · B(0), B =

ri(S · r)

r4
, (A.16)

as was done in Eq.(2.14). The result, which is equal to 4⌃gm by definition, gives the

magnetic charge. The latter must then be expressed as a function of the minimum

U(1) electric charge present in the given theory, which can be easily found from the

normalized (such that Tr T (a) T (a) = 1
2
) form of the relevant U(1) generator.

For example, in the case of the symmetry breaking, SO(2N) ⌥ U(N), the

adjoint VEV is of the form, ⌥ =
⌦

4N v T (0), where T (0) is a 2N ⇤ 2N block-

diagonal matrix with N nonzero submatrices i⇥
4N

�
0 1

�1 0

⇥
. Dividing the mass

(A.15) by
⌦

N v and identifying the flux with 4⌃gm one gets gm = 2⇥
N g

. Finally,

in terms of the minimum electric charge of the theory e0 = g⇥
4N

( which follows from

the normalized form of T (0) above) one finds

gm =
2

⌦
N g

=
2

N
·

1

2 e0

. (A.17)

The calculation is similar in other cases.

The asymptotic gauge field can be written as

Fij = ⌅ijk

rk

r3
(⇥ · T), 2 ⇥ · � � Z (A.18)

11In this calculation it is necessary to use the generators normalized as Tr T (a) T (b) = 1
2
⇤ab, such

that B = B(0) T (0) + . . . .
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Goddard-Nuyts-Olive, E.Weinberg, Lee,Yi,  
Bais, Schroer, .... ‘77-80

∼
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 What 𝒩=2 SQCD (softly broken)  teaches us 

• Abelian dual superconductivity    ✔ 
Seiberg, Witten

SU(2) with NF  = 0, 1,2,3 
    monopole condensation ⇒ confinement & dyn symm. breaking   

• Non-Abelian monopole condensation for SQCD    ✔ 

SU(N)  𝒩  =2    SYM  :   SU(N)  ⇒  U(1)N-1   

SU(N)  ⇒  SU(r) x U(1) x U(1) x ....  

• Non Abelian monopoles interacting very strongly    

Argyres,Plesser,Seiberg,’96

Hanany-Oz, ’96

Carlino-Konishi-Murayama ‘00

Beautiful, but don’t look like QCD

Beautiful, but don’t look like QCD

r  vacua are local, IR free theories

SCFT of higher criticalities, EHIY points
Beautiful, interesting but difficult

Argyres,Plesser,Seiberg,Witten,

Eguchi-Hori-Ito-Yang,  ’96

SU(N), NF  quarks 

r ≤ NF /2
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Effective degrees of freedom in the
quantum r vacua of softly broken 

N=2 SQCD

• “Colored dyons”  do exist !!!

• they carry flavor  q.n.

• 〈qi α〉= v  δi α  ➯    U(Nf) ➡ U(r) x U(Nf -r) 

(r ≤ Nf  / 2 )

Seiberg-Witten ’94

Argyres,Plesser,Seiberg,’96

Hanany-Oz, ’96

Carlino-Konishi-Murayama ‘00

The e↵ective action of Seiberg-Witten correctly describes the low-energy excitations: the

exactly massless Nambu-Golstone bosons of the symmetry breaking (3) and their superpartners.

Unlike the light flavored standard QCD, the massless Nambu-Goldstone bosons do not carry

the quantum numbers of the remaining unbroken SU(2). There are also light but massive dual

photon and dual photino of the order of
p

µ⇤, which arise as a result of the dual Higgs mechanism.

All these light particles are to be interpreted as gauge invariant states (they are asymptotic

states); the presence of the original quarks degrees of freedom can be detected in the flavor

quantum numbers (1), which can be nicely understood as the result of Jackiw-Rebbi dressing of

the Abelian monopoles due

3 Dynamical Abelianization

The low energy theory describes massless monopoles and Abelian dual gauge fields coupled

minimally to them.

4 The quantum r vacua of SU(N) SQCD

The classical and quantum moduli space of the vacua of the N = 2 supersymmetric SU(N)

QCD has been first studied systematically by Argyres, Plesser and Seiberg and by others. Of

particular interest is the r-vacua characterized by an e↵ective low-energy SU(r)⇥U(1)N�r gauge

symmetry. When the adjoint scalar mass µ �2 term is added, which breaks supersymmetry to

N = 1, the only vacua that survive are those where certain massless monopole multiplets appear.

The massless Abelian (Mk) and non-Abelian monopoles (M) carry charges given in the Table

SU(r) U(1)0 U(1)1 . . . U(1)N�r�1 U(1)B

NF ⇥M r 1 0 . . . 0 0

M1 1 0 1 . . . 0 0
...

...
...

...
. . .

...
...

MN�r�1 1 0 0 . . . 1 0

Table 1: The massless non-Abelian and Abelian monopoles and their charges at the r vacua at

the root of a “non-baryonic” r-th Higgs branch.

2 μΦ2  perturbation 
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CONFINEMENT 13

r=1

r = nf /2
- - -

Non Abelian monopoles

Abelian monopoles

(Non-baryonic)
Higgs Branches

Baryonic
Higgs Branch

Coulomb
Branch

Dual
Quarks

QMS of N=2 SQCD (SU(n) with nf quarks)

r=0

<Q> 0

< >  0

N=1 Confining vacua (with   2 perturbation)

N=1 vacua (with   2 perturbation) in free magnetic phase

SCFT

μΦ

Φ ≠
m = mcr

next
slide

Di Pietro, Giacomelli ’11
μΦ
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CONFINEMENT 14

Non Abelian monopoles

Higgs Branches

Special
Higgs Branch

Coulomb
Branch

Dual
Quarks

QMS of N=2 USp(2n) Theory with nf Quarks

<Q> 0

< >  0

N=1 Confining vacua (with   2 perturbation)

N=1 vacua (with   2 perturbation) in free magnetic phase

SCFT
SCFT of 

highest criticality 
EHIY point

non-Lagrangian
Carlino-Konishi-Murayama ‘00Φ

Φ
Φ

m ≠ 0

previous
slide

(m = 0)

(Universality)

↩
10
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III.   Recent key developments 

• S-duality in SCFT at    g = ∞    e.g. SU(N) w/ NF = 2N

• Argyres-Seiberg S-duality applied to SCFT (IR f.p.) of
   highest criticality (EHIY points) 

• GST duality generalized to USp(2N), SO(N)

Gaiotto-Seiberg-Tachikawa ’11

Giacomelli  ’12

• GST duality in USp(2N) and SU(3), 
 NF =4 and confinement

• Colliding r-vacua and EHIY in SU(N)    Giacomelli, Di Pietro  ’11

Giacomelli, Konishi  ’12

and ’13

Argyres-Seiberg  ’07

N=2 SCFT’s

Gaiotto, Seiberg, Argyres, Tachikawa, 

Moore, Maruyoshi, ...  ...
       ’09 - ’12

Gaiotto  ’09 
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Argyres-Seiberg’s  S duality

• SU(3)  with  NF  = 6  hypermultiplets  (            ’ s )   at  infinite coupling Qi, Q̃i

SU(2) w/ (2 · 2� SCFTE6)SU(3) w/ (6 · 3� 3̄) =

SU(2)⇥ SU(6) ⇢ E6

Flavor symmetry ~  SU(6) x U(1)

• USp(4) with  NF  = 12   Q’ s  at  infinite coupling 

USp(4) w/ 12 · 4 = SU(2) w/ SCFTE7

g = ∞ g = 0 

SU(2)⇥ SO(12) ⇢ E7

Minahan-Nemeschansky ’96 
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Gaiotto-Seiberg-Tachikawa  (GST)

• Apply the basic idea of Argyres-Seiberg duality to the IR f.p. SCFT

• SU(N) with NF  =  2n  :  

At    u = m=0,*        y2  ~   xN+n     (EHIY point)

relatively non-local 
massless monopoles and dyons

❀  To get the correct scale-invariant fluctuations, introduce two different scalings: 

•  Straightforward treatment of fluctuations around u=m=0, gives
  an incorrect scaling laws for the masses  

ai =
I

↵i

�, aD i =
I

�i

�

� ⇠ dx y/x

n

⟹

Note

Eguchi-Hori-Ito-Yang

m(nm,ne,ni) =
p

2 |nmaD + nea + nimi|

* except for one u 
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● SU(2) gauge multiplet (infrared free) coupled to the SU(2)
flavor symmetry of the two SCFT’s  A & B

● U(1)N-n-1  gauge multiplets

● The A sector:  the SCFT entering in the Argyres-Seiberg dual of
  SU(n), NF  =2 n,  having SU(2)xSU(2n) flavor symmetry

● The B sector:  the maximally singular SCFT of the SU(N-n+1) theory
  with two flavors

B SU(2) A

☞

A:   3 free  2 ’s   (n=2);     E6  of Minahan-Nemechansky   (n=3),   etc.      

B:  the maximally singular SCFT of SU(2), NF  =2 (Seinberg-Witten)   
        for  N=3, n=2 , etc.   

where

Gaiotto-Seiberg-Tachikawa ’11

  ●  Analogous results for USp(2N), SO(N) Giacomelli  ’12

25
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• Two types of Chebyshev* vacua  ( ϕ1 = ϕ2 =  ... = 0;  ϕn 2  = ± Λ 2  ;   ϕm   det’d by Cheb. polynom. )

and dyons in an infinite-coupling regime, therefore making their physical interpretation highly

nontrivial.

In the work by Gaiotto, Seiberg and Tachikawa [2] the elegant S-dual description discovered

by Argyres and Seiberg [1] for such “infinitely strongly coupled” SCFT’s is applied to those

SCFT’s appearing as infrared fixed points of N = 2 SU(N) SQCD with even number of flavors,

Nf = 2n, solving some earlier puzzles. Their analysis has subsequently been generalized by

one of us [3] to more general class of gauge theories such as USp(2N) and SO(N) with various

Nf . These developments enable us to study new types of confining systems arising from the

deformation of the strongly critical SCFT’s.

The purpose of the present paper is to discuss a few example of the confining vacua arising

this way.

2 USp(2N), Nf = 4

The first example we consider is the N = 2 supersymmetric USp(2N) theory with Nf = 2n

matter hypermultiplets, perturbed by an adjoint scalar mass term, µTr⇥2. In the massless limit

(mi = 0, i = 1, . . . , 2n) the theory which survives1 is an interacting SCFT with global symmetry

SO(2Nf ), first discussed by Eguchi et. al. [32]. This theory is described by a singular Seiberg-

Witten curve,

xy2 ⇤
�
xn(x� �2

n)
⇥2 � 4�4x2n = x2n(x� �2

n � 2�2)(x� �2
n + 2�2). (2.1)

at �2
n = ±2�2, that is y2 ⇤ x2n. The theory at either of these two Tchebyshev vacua 2 is not

described with a local Lagrangian, as relatively nonlocal massless fields appear simultaneously.

Also,

The strategy adopted in [19] was to “resolve” this vacuum, by introducing generic, nearly equal

quark masses mi alongside the adjoint scalar mass µ. By requiring the factorization property

of the Seiberg-Witten curve to be maximally Abelian type (criterion for N = 1 supersymmetric

vacua), this point is found to split into various r vacua which are local SU(r)⇥ U(1)N�r gauge

theories, identical to those appearing in the infrared limit of SU(N) SQCD (the universality of

the conformal infrared fixed points). At small nearly equal masses mi, one of the Tchebyshev

1The other set of vacua, at the special point of the Coulomb moduli space, are not confining and will not be

considered here.
2We called these vacua this way as [19] the remaining N + 1� n finite vacuum moduli can be determined by

use of a Tchebyshev polynomial à la Douglas-Shenker. The first n� 1 �a’s have been set to 0 in (2.1).

2

y2   ∿  x2n          singular SCFT  (EHIY point);
strongly interacting, relatively non-local monopoles and dyons 

•  A strategy:   resolve the vacuum by adding small mi  ≠ 0 and determining the 
vacuum moduli  (ui ’s  or ϕi ’s  ) requiring the SW curve to factorize in maximally
Abelian  factors (double factors)    (i.e.,   Vacua in confinement phase surviving  N=1,   
μ Φ2   perturbation)   

IV.   GST  duals and confinement  

⟹➔

vacua gives rise [19] to even r vacua

✓

Nf

0

◆

+

✓

Nf

2

◆

+ . . .

✓

Nf

Nf

◆

= 2Nf�1 (2.2)

whereas the other vacuum splits into odd r vacua, with the total multiplicity
✓

Nf

1

◆

+

✓

Nf

3

◆

+ . . .

✓

Nf

Nf � 1

◆

= 2Nf�1 . (2.3)

Due to the exact 2N+2�Nf
symmetry of the massless theory, the singular (EHIY) point actually

appears 2N + 2�Nf times, and the number of the vacua for generic µ, mi is given by (2N + 2�
Nf ) 2Nf�1.

A recent study [3] by one of us, made following closely the analysis by Gaiotto, Seiberg,

Tachikawa [2], has shown that this SCFT can be analyzed by introducing two di↵erent set of

scalings for the scalar VEVs ui ⌘ h�ii (the Coulomb branch coordinates) around the singular
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A. The infrared physics of this system is then [3]

(i) U(1)N�n Abelian sector, with massless particles charged under each U(1) subgroup.

(ii) The (in general, non-Lagrangian) A sector with global symmetry SU(2)⇥ SO(4n).

(iii) The B sector is free and describes a doublet of hypermultiplets. The flavor symmetry of

this system is SU(2). In contrast to the SU(N) cases studied in [2], the Coulomb moduli

coordinate now includes u1. We interpret this as representing a low energy e↵ective U(1)

gauge field coupled to this hypermultiplet.

(iv) SU(2) gauge fields coupled weakly to the SU(2) flavor symmetry of the last two sectors.

For general Nf these still involve non-Lagrangian SCFT theory (A sector), and it is not obvious

how the µ Tr �2 deformation a↵ects the system. In a particular case n = 2 (USp(2N) theory with

Nf = 4), however, the A sector turns out to be free and describe four doublets of SU(2). This

system may be symbolically represented, ignoring the U(1)N�n Abelian sector which is trivial,

as

1 � SU(2)� 4 . (2.5)

3

even r vacua,  from one of the Cheb.
vacua

odd r vacua,  from one of the Cheb.
vacua

Carlino-Konishi-Murayama ‘00

vacua gives rise [19] to even r vacua

✓

Nf

0

◆

+

✓

Nf

2

◆

+ . . .

✓

Nf

Nf

◆

= 2Nf�1 (2.2)

whereas the other vacuum splits into odd r vacua, with the total multiplicity
✓

Nf

1

◆

+

✓

Nf

3

◆

+ . . .

✓

Nf

Nf � 1

◆

= 2Nf�1 . (2.3)

Due to the exact 2N+2�Nf
symmetry of the massless theory, the singular (EHIY) point actually

appears 2N + 2�Nf times, and the number of the vacua for generic µ, mi is given by (2N + 2�
Nf ) 2Nf�1.

A recent study [3] by one of us, made following closely the analysis by Gaiotto, Seiberg,

Tachikawa [2], has shown that this SCFT can be analyzed by introducing two di↵erent set of

scalings for the scalar VEVs ui ⌘ h�ii (the Coulomb branch coordinates) around the singular

point:

ui ⇠ ✏2i
B , (i = 1, . . . , N � n + 2); uN�n+2+i ⇠ ✏2+2i

A , (i = 0, . . . , n� 2), (2.4)

(Nf = 2n) such that ✏2N+4�2n
B = ✏2

A. The infrared physics of this system is then [3]

(i) U(1)N�n Abelian sector, with massless particles charged under each U(1) subgroup.

(ii) The (in general, non-Lagrangian) A sector with global symmetry SU(2)⇥ SO(4n).

(iii) The B sector is free and describes a doublet of hypermultiplets. The flavor symmetry of

this system is SU(2). In contrast to the SU(N) cases studied in [2], the Coulomb moduli

coordinate now includes u1. We interpret this as representing a low energy e↵ective U(1)

gauge field coupled to this hypermultiplet.

(iv) SU(2) gauge fields coupled weakly to the SU(2) flavor symmetry of the last two sectors.

For general Nf these still involve non-Lagrangian SCFT theory (A sector), and it is not obvious

how the µ Tr �2 deformation a↵ects the system. In a particular case n = 2 (USp(2N) theory with

Nf = 4), however, the A sector turns out to be free and describe four doublets of SU(2). This

system may be symbolically represented, ignoring the U(1)N�n Abelian sector which is trivial,

as

1 � SU(2)� 4 . (2.5)

3

We need to know
∏nc−(nf−1)/2

k=1 (−φ2
k). This can be calculated as

nc−(nf−1)/2
∏

k=1

(−φ2
k) =

2Λ2nc+1−nf

√
x

T2nc+2−nf

(√
x

2Λ

)∣
∣
∣
∣
x→0

= Λ2nc+1−nf lim
t→0

1

t
cos ((2nc + 2 − nf ) arccos t)

= (−1)nc−(nf−1)/2(2nc + 2 − nf )Λ2nc+1−nf . (9.113)

Then the curve is approximated as

xy2

Λ2(2nc+1−nf )
=



(−1)nc−(nf−1)/2(2nc + 2 − nf )x

(nf−1)/2
∏

a=1

(x − φ2
a) + 2Λm1 · · ·mnf





2

−4Λ2

nf
∏

i=1

(x + m2
i ). (9.114)

This is nothing but the curve of USp(2n′
c) theory with n′

c = (nf − 1)/2 upon changing nor-

malizations of x, y, φ2
a. The rest of the analysis therefore follows exactly the same as in

2nc = nf − 1 case. Even when other Chebyshev solutions obtained by Z2nc+2−nf
are used,

they simply amount to the change of phase of Λ in the above approximate curve and the

analysis remains the same.

ii) Chebyshev point: even nf

Consider now even nf cases. Again, let us study the specific case of nf = 2nc first. We shall

come back to the more general cases later on.

The Chebyshev solution is obtained in the massless limit by setting all but one of φa = 0:
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at x = ±4Λ2. There is also a branch point at x = ∞. We first consider the case φ2
nc

= +2Λ2

and will come back to the case φ2
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= −2Λ2 later on.
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is by assuming

φa ∼ m2, αnc ∼ mΛ, α2
1 ∼ · · · ∼ α2
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GST dual for the Chebyshev point of  USp(2N) (also SO(N))
Giacomelli ’12

B SU(2) A

● U(1)N-n  gauge multiplets

● The A sector:  a (in general) non-Lagrangian SCFT having SU(2)xSO(4n) flavor 
symmetry

● The B sector:  a free doublet   (coupled to U(1) gauge boson) 

y2   ∿  x2n  ≈

 For NF  = 2n= 4,  A sector ~   4 free doublets
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But this allows a direct description of IR physics !!

vacua gives rise [19] to even r vacua
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whereas the other vacuum splits into odd r vacua, with the total multiplicity
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Due to the exact 2N+2�Nf
symmetry of the massless theory, the singular (EHIY) point actually

appears 2N + 2�Nf times, and the number of the vacua for generic µ, mi is given by (2N + 2�
Nf ) 2Nf�1.

A recent study [3] by one of us, made following closely the analysis by Gaiotto, Seiberg,

Tachikawa [2], has shown that this SCFT can be analyzed by introducing two di↵erent set of

scalings for the scalar VEVs ui ⌘ h�ii (the Coulomb branch coordinates) around the singular

point:

ui ⇠ ✏2i
B , (i = 1, . . . , N � n + 2); uN�n+2+i ⇠ ✏2+2i

A , (i = 0, . . . , n� 2), (2.4)

(Nf = 2n) such that ✏2N+4�2n
B = ✏2

A. The infrared physics of this system is then [3]

(i) U(1)N�n Abelian sector, with massless particles charged under each U(1) subgroup.

(ii) The (in general, non-Lagrangian) A sector with global symmetry SU(2)⇥ SO(4n).

(iii) The B sector is free and describes a doublet of hypermultiplets. The flavor symmetry of

this system is SU(2). In contrast to the SU(N) cases studied in [2], the Coulomb moduli

coordinate now includes u1. We interpret this as representing a low energy e↵ective U(1)

gauge field coupled to this hypermultiplet.

(iv) SU(2) gauge fields coupled weakly to the SU(2) flavor symmetry of the last two sectors.

For general Nf these still involve non-Lagrangian SCFT theory (A sector), and it is not obvious

how the µ Tr �2 deformation a↵ects the system. In a particular case n = 2 (USp(2N) theory with

Nf = 4), however, the A sector turns out to be free and describe four doublets of SU(2). This

system may be symbolically represented, ignoring the U(1)N�n Abelian sector which is trivial,

as

1 � SU(2)� 4 . (2.5)

3

and dyons in an infinite-coupling regime, therefore making their physical interpretation highly

nontrivial.

In the work by Gaiotto, Seiberg and Tachikawa [2] the elegant S-dual description discovered

by Argyres and Seiberg [1] for such “infinitely strongly coupled” SCFT’s is applied to those

SCFT’s appearing as infrared fixed points of N = 2 SU(N) SQCD with even number of flavors,

Nf = 2n, solving some earlier puzzles. Their analysis has subsequently been generalized by

one of us [3] to more general class of gauge theories such as USp(2N) and SO(N) with various

Nf . These developments enable us to study new types of confining systems arising from the

deformation of the strongly critical SCFT’s.

The purpose of the present paper is to discuss a few example of the confining vacua arising

this way.

2 USp(2N), Nf = 4

The first example we consider is the N = 2 supersymmetric USp(2N) theory with Nf = 2n

matter hypermultiplets, perturbed by an adjoint scalar mass term, µTr⇥2. In the massless limit

(mi = 0, i = 1, . . . , 2n) the theory which survives1 is an interacting SCFT with global symmetry

SO(2Nf ), first discussed by Eguchi et. al. [32]. This theory is described by a singular Seiberg-

Witten curve,

xy2 ⇤
�
xn(x� �2

n)
⇥2 � 4�4x2n = x2n(x� �2

n � 2�2)(x� �2
n + 2�2). (2.1)

at �2
n = ±2�2, that is y2 ⇤ x2n. The theory at either of these two Tchebyshev vacua 2 is not

described with a local Lagrangian, as relatively nonlocal massless fields appear simultaneously.

Also,

The strategy adopted in [19] was to “resolve” this vacuum, by introducing generic, nearly equal

quark masses mi alongside the adjoint scalar mass µ. By requiring the factorization property

of the Seiberg-Witten curve to be maximally Abelian type (criterion for N = 1 supersymmetric

vacua), this point is found to split into various r vacua which are local SU(r)⇥ U(1)N�r gauge

theories, identical to those appearing in the infrared limit of SU(N) SQCD (the universality of

the conformal infrared fixed points). At small nearly equal masses mi, one of the Tchebyshev

1The other set of vacua, at the special point of the Coulomb moduli space, are not confining and will not be
considered here.

2We called these vacua this way as [19] the remaining N + 1� n finite vacuum moduli can be determined by
use of a Tchebyshev polynomial à la Douglas-Shenker. The first n� 1 �a’s have been set to 0 in (2.1).

2

For

the GST dual is (both the A and B sectors are free doublets) : Giacomelli,Konishi  ‘12,’13

the effects of  mi  and  μ Φ2    perturbation can be studied from the superpotential:   

The e↵ect of µ �2 deformation of this particular theory can then be analyzed straightforwardly

by using the superpotential

p
2 Q0(AD + m0)Q̃
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p

2 Q0�Q̃0 +
4
X
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p
2 Qi�Q̃i + µAD⇤ + µ Tr�2 +

4
X

i=1

mi QiQ̃
i . (2.6)

where m0 is the singlet mass. For equal and nonvanishing masses the system has SU(4)⇥ U(1)

flavor symmetry. In the massless limit the symmetry gets enhanced to SO(8), in accordance with

the symmetry of the underlying USp(2N) theory.

The vacuum equations are now

p
2 Q0Q̃0 + µ⇤ = 0 ; (2.7)

(
p

2 � + AD + m0)Q̃0 = Q0 (
p

2 � + AD + m0) = 0 ; (2.8)

p
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0
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+ µ �a
b = 0 ; (2.9)

(
p

2 � + mi) Q̃i = Qi (
p

2 � + mi) = 0, 8i . (2.10)

The first says that Q0 6= 0. By gauge choice

Q0 = Q̃0 =

 

2�1/4
p
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0Q̃
0
b �

1

4
(Q0Q̃

0) �a
b =

(�µ⇤)

4
p

2
⌧ 3 . (2.12)

The second equation can be satisfied by adjusting AD.

As in the mi = 0 case discussed in [5] we must discard the solution

� = a ⌧ 3, a =
⇤

4
, Qi = Q̃i = 0, 8i (2.13)

as it involves a fluctuation (⇠ ⇤) far beyond the validity of the e↵ective action: it is an artefact

of the low-energy action.

The true solutions can be found by having one of Qi’s canceling the contributions of Q0 and

� in Eq (4.7). Which of Qi is nonvanishing is related to the value of � through Eq (4.8). For

instance, four solutions can be found by choosing (i = 1, 2, 3, 4)

a = �mip
2
, Qi = Q̃i =

 

fi

0

!

; Qj = Q̃j = 0, j 6= i. (2.14)

4

cfr.    UV Lagrangian: 

W = µTr�2 +
1p
2
Qi

a�a
bQi

c Jbc +
mij

2
Qi

aQj
b Jab

Eq. (3.8) and Eq. (3.9) are satisfied by construction; Eq. (3.7) gives for a = b = 1, 2, . . . r:

did̃i −
1

nc

∑

k

dkd̃k = µ mi ; (3.19)

from which one finds that
∑

k

dkd̃k =
nc

nc − r
µ

r
∑

k=1

mk (3.20)

and

did̃i = µ mi +
1

nc − r
µ

r
∑

k=1

mk (di > 0) . (3.21)

On the other hand, Eq. (3.7) for a = b = r + 1, r + 2, . . . nc gives

∑

k

dkd̃k = nc µ c . (3.22)

This is compatible with Eq. (3.20) because of (3.15).

A solution with a given r leaves a local SU(nc − r) invariance. Thus each of them counts as a

set of nc − r solutions (Witten’s index). In all, therefore, there are

N =

min {nf ,nc−1}
∑

r=0

(nc − r)

(
nf

r

)

(3.23)

classical solutions. (For r = 0, Qi
a = Q̃b

i = 0, Φ = 0 is obviously a solution with full SU(nc)

invariance.)

For nc = 2 the formula (3.23) reproduces the known result (N = 2+nf ) as can be easily verified.

Note that when nf is equal to or less than nc the sum over r is done readily, and Eq. (3.23) is

equivalent to

N1 = (2 nc − nf ) 2nf−1, (nf ≤ nc) . (3.24)

3.2 Semi-Classical Vacua in USp(2nc)

The superpotential reads in this case

W = µ TrΦ2 +
1√
2

Qi
aΦa

bQi
c Jbc +

mij

2
Qi

aQj
b Jab , (3.25)

where J = iσ2 ⊗ 1nc and

m = −iσ2 ⊗ diag (m1, m2, . . . , mnf
) . (3.26)

In the mi → 0 and µ → 0 limit, the global symmetry is SO(2nf ) × Z2nc+2−nf
× SUR(2).

The vacuum equations are:

[Φ, Φ†] = 0 ; (3.27)
∑

i

(Qi†
a Qi

b − Qi†
nc+bQ

i
nc+a) = 0 ;

∑

i

Qi†
a Qi

nc+b = 0 ; (3.28)

12

Correct flavor symmetry for all {m} 

• mi   = m    :     SU(4) x U(1) ;    

• mi   = 0    :     SO(8) ;       etc.,    

U(1)
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The e↵ect of µ �2 deformation of this particular theory can then be analyzed straightforwardly

by using the superpotential

p
2 Q0(AD + m0)Q̃

0 +
p

2 Q0�Q̃0 +
4
X

i=1

p
2 Qi�Q̃i + µAD⇤ + µ Tr�2 +

4
X

i=1

mi QiQ̃
i . (2.6)

where m0 is the singlet mass. For equal and nonvanishing masses the system has SU(4)⇥ U(1)

flavor symmetry. In the massless limit the symmetry gets enhanced to SO(8), in accordance with
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of the low-energy action.

The true solutions can be found by having one of Qi’s canceling the contributions of Q0 and
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The second equation can be satisfied by adjusting AD.

As in the mi = 0 case discussed in [5] we must discard the solution

� = a ⌧ 3, a =
⇤

4
, Qi = Q̃i = 0, 8i (2.13)

as it involves a fluctuation (⇠ ⇤) far beyond the validity of the e↵ective action: it is an artefact

of the low-energy action.

The true solutions can be found by having one of Qi’s canceling the contributions of Q0 and

� in Eq (4.7). Which of Qi is nonvanishing is related to the value of � through Eq (4.8). For

instance, four solutions can be found by choosing (i = 1, 2, 3, 4)
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Note that the solutions (2.16) and (2.17) are unrelated by any SU(2) gauge transformation. In

all, we have found 23 = 8 solutions consistently with Eq. (2.2).

In the equal mass limit the 8 solutions group into two set of four nearby vacua, obviously

connected by the SU(4). So these look like the 4 + 4 = 8, two r = 1 vacua, from one of the

Tchebyshev vacua, see Eq. (2.3). The other Tchebyshev vacuum should give 1 + 6 + 1 = 8,

r = 0, 2 vacua. Where are they?

A possible solution is that in the other Chebyshev vacuum the superpotential has a similar

form as (5.2) but with Qi’s carrying di↵erent flavor charges. The SU(4) symmetry of the equal
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The correct realization of the underlying symmetry in various cases is not obvious, so let us check

them all.

(i) In the equal mass limit, mi = m0,
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where U(1) is carried by Q4 whereas SO(6) ⇠ SU(4) is associated with the massless

Q1, Q2, Q3 fields. Clearly in the mi = 0 limit the symmetry is enhanced to SO(8).

(ii) m1 = m2, m3, m4 generic. In this case m̃2 = �m̃3 and m̃4 and m̃1 are generic, so the

symmetry is U(1)⇥ U(1)⇥ U(2), as in the underlying theory;

5

0
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Answer:   in the second Chebyshev vacuum:  
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The correct realization of the underlying symmetry in various cases is not obvious, so let us check

them all.

(i) In the equal mass limit, mi = m0,

m̃4 = m0, m̃2 = m̃3 = m̃4 = 0, (2.20)
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Spinor representation
of SO(2NF  ) ...

Magnetic Monopoles!

GST duality is not 
electromagnetic
duality

Flavor symmetry OK in all cases:

Brief Article

The Author

December 2, 2012

mi m̃i Symmetry in UV Symmetry in IR
mi = 0 m̃i = 0 SO(8) SO(8)

mi = m 6= 0 m̃4, m̃1 = m̃2 = m̃3 = 0 U(1)⇥ SU(4) U(1)⇥ SO(6)
m1 = m2, m3, m4, generic m̃2 = �m̃3, m̃4, m̃1 generic U(1)⇥ U(1)⇥ U(2) U(1)⇥ U(1)⇥ U(2)

m1 = m2, m3 = m4, m1 6= m3 m̃2 = m̃3 = 0, m̃4, m̃1, generic SU(2)⇥ U(1)⇥ SU(2)⇥ U(1) SO(4)⇥ U(1)⇥ U(1)
. . . . . . . . . . . .

1Solutions similar to the previous case but:      1 + 1 + 6   in the mi  → m 
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•  Mass perturbation of the EHIY  (SCFT) singularity  :
   the resolution of the Chebyshev vacua into the sum of the r-vacua:
    (local Lagrangian theories with SU(r)xU(1)N-r   gauge symmetry)

• Correct identification of the N=1 vacua surviving μ Φ2   perturbation 

• But physics was unclear  (strongly-coupled monopoles and dyons)  in m → 0  limit

• But we have now checked that these features of the  singular EHIY  (SCFT) 
 theory is correctly reproduced by GST duals after  μ Φ2   perturbation.  

To recapitulate:   

•  The limit  m → 0  can be taken smoothly in the GST description
(cfr.  the usual monopole picture)

☞
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➜  XSB

points), and if the system was set into confinement phase, which kind of confinement phase it

was. Because system involves (infinitely-) strongly-coupled, relatively nonlocal monopoles and

dyons, it is not at all obvious that the standard dual Higgs picture works.

The checks made in the previous section have been primarily aimed at ascertaining that one

is indeed correctly describing the infrared physics of these SCFT’s of highest criticality, deformed

by µ�2
perturbation, in terms of the GST duals. Therefore one can study the infrared physics

in the limit, mi ! 0 in the USp(2N) theory (or m! mcr in the case of SU(N) models), which

turns out to be perfectly smooth.

Let us take again the particular case of USp(2N), Nf = 4 theory,

1 � SU(2)� 4 . (5.1)

but in the mi = 0 limit. The e↵ect of µ �2 deformation of this particular theory can then be

analyzed straightforwardly [5] by using the superpotential

p
2 Q0(AD + m0)Q̃

0 +
p

2 Q0�Q̃0 +
4
X

i=1

p
2 Qi�Q̃i + µAD⇤ + µ Tr�2 . (5.2)

The vacuum of this system was found in [5]:

Q0 = Q̃0 =

 

2�1/4
p
�µ⇤

0

!

(5.3)

� = 0, AD = 0 . (5.4)

The contribution from Qi’s must then cancel that of Q0 in Eq. (H.4). By flavor rotation the

nonzero VEV can be attributed to Q1, Q̃1, i.e., either of the form

(Q1)
1 = (Q̃1)1 = 2�1/4

p

µ⇤ , Qi = Q̃i = 0, i = 2, 3, 4. (5.5)

or

(Q1)
2 = (Q̃1)2 = 2�1/4

p

�µ⇤ , Qi = Q̃i = 0, i = 2, 3, 4. (5.6)

The U(1) gauge symmetry is broken by the Q0 condensation: an ANO vortex is formed. As

the gauge group of the underlying theory is simply connected, such a low-energy vortex must

end. The quarks are confined. The flavor symmetry breaking

SO(8)! U(1)⇥ SO(6) = U(1)⇥ SU(4) = U(4), (5.7)

14➜ Confinement

LGST = SU(2)⇥ U(1), ⇧1(SU(2)⇥ U(1)) = Z

Higgsed at low energies;    the vortex = the unique  (N=n) confining string

⇧1(USp(2N)) = 1UV:

IR:

Physics of  USp(2N), NF  = 4  theory at  m=0 

Cfr.    Abelianization implies    U(1)N   low energy theory multiplicationof the meson spectrum
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➜

OK with results at

μ, m  ≫  Λ 

●  The confining string is Abelian  cfr. non-Abelian vortex of r-vacua

● Confining o.p.  (Q0 ) triggers  XSB  o.p.  (Qi )
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Some other systems studied

• Colliding r-vacua of SU(3), Nf  =4  :  Gf  = U(4) unbroken

• Singular  r=2 -vacua of SU(4), Nf  =4  :  Gf  = U(4) ⇒ U(2)xU(2)

• SO(2N+1),  Nf  =1  :  Gf  = USp(2) =SU(2) ⇒ U(1)

• SO(2N),  Nf  =2  :  Gf  = USp(4) ⇒ U(2)

In all cases the GST  description gives the correct number of the vacua and 
the symmetry breaking pattern known from the large μ analysis 

Giacomelli, Konishi   

’13
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Conclusion

● Gaiotto-Seiberg-Tachikawa duals of singular,  IRFP  SCFT
allows to describe (confining) systems which naively involve infinitely-
strongly coupled nonAbelian monopoles and dyons

 
● Features different from the naive dual superconductor picture. 
Confinement order parameters triggers the order parameter of the global 
symmetry breaking

⇒    A new picture for Q C D  ?  

The End

● More general cases involve nonlocal (non Lagrangian) systems
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Colliding r vacua of  SU(3), NF  =4  theory

The GST dual is now:

can be regarded as two r = 0 vacua. Note that as |f1| 6= |g1| they are at distinct points of the

moduli space. On the other hand, in the other six vacua a = 0 always and |fi| = |gi|, these six

points are on the same point of the moduli space: they may be associated with the r = 2 (sextet)

vacua.

Remarks: The flavor charges (2.18) imply that Q’s are really non-Abelian magnetic monopoles.

Semiclassically magnetic monopoles appear in the spinor representations of SO(2Nf ). Also, as

the two Tchebyshev vacua are related by symmetry it is natural to interpret the charges (5.2)

also as indicating Q’s being the monopoles.

3 Colliding r vacua of the SU(3), Nf = 4 Theory

In the case of SU(3) theory, with the special value of the number of flavor, Nf = 4, the e↵ective

GST dual is made of the A sector describing the three doublets of free hypermultiplets and the

B sector, which is D3, the most singular SCFT of the SU(2), Nf = 2 theory,

D3 � SU(2)� 3 (3.1)

In order to see the e↵ect of the N = 1 perturbation µ�2 in this vacuum, let us replace the B

sector (the D3 theory) by a new SU(2) theory and a bifundamental field P ,

SU(2)
P
�SU(2)� 3 (3.2)

The superpotential has the form,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2P�P̃ +

p
2P̃�P + µ �2 + m

0
P̃P, (3.3)

where P = P↵
a and � is the adjoint scalar of the new SU(2) gauge multiplet. The new SU(2)

intereactions are asymptotically free and become strong in the infrared. As the SU(2) of GST is

weakly coupled, the dynamics of the new SU(2) is not a↵ected by it. To pick up the D3 point,

we assume that

m0 ' ±⇤
0
, (3.4)

but not exactly. The P system dynamically Abelianizes and gives rise to a superpotential,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2M�M̃ +

p
2M̃A�M + µ A�⇤

0
, (3.5)
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where D3   is the most singular  SCFT of the 𝒩  =2    SU(2), NF  =2,  theory,  and  3

is three free doublets of SU(2).  D3   is a nonlocal theory,*  it not easy to analyze. 

We replace the system  by

can be regarded as two r = 0 vacua. Note that as |f1| 6= |g1| they are at distinct points of the

moduli space. On the other hand, in the other six vacua a = 0 always and |fi| = |gi|, these six

points are on the same point of the moduli space: they may be associated with the r = 2 (sextet)

vacua.

Remarks: The flavor charges (2.18) imply that Q’s are really non-Abelian magnetic monopoles.

Semiclassically magnetic monopoles appear in the spinor representations of SO(2Nf ). Also, as

the two Tchebyshev vacua are related by symmetry it is natural to interpret the charges (5.2)

also as indicating Q’s being the monopoles.

3 Colliding r vacua of the SU(3), Nf = 4 Theory

In the case of SU(3) theory, with the special value of the number of flavor, Nf = 4, the e↵ective

GST dual is made of the A sector describing the three doublets of free hypermultiplets and the

B sector, which is D3, the most singular SCFT of the SU(2), Nf = 2 theory,

D3 � SU(2)� 3 (3.1)

In order to see the e↵ect of the N = 1 perturbation µ�2 in this vacuum, let us replace the B

sector (the D3 theory) by a new SU(2) theory and a bifundamental field P ,

SU(2)
P
�SU(2)� 3 (3.2)

The superpotential has the form,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2P�P̃ +

p
2P̃�P + µ �2 + m

0
P̃P, (3.3)

where P = P↵
a and � is the adjoint scalar of the new SU(2) gauge multiplet. The new SU(2)

intereactions are asymptotically free and become strong in the infrared. As the SU(2) of GST is

weakly coupled, the dynamics of the new SU(2) is not a↵ected by it. To pick up the D3 point,

we assume that

m0 ' ±⇤
0
, (3.4)

but not exactly. The P system dynamically Abelianizes and gives rise to a superpotential,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2M�M̃ +

p
2M̃A�M + µ A�⇤

0
, (3.5)
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where P is a bifundamental field.  The superpotential is: 

The first SU(2) is AF:  its dynamics is not affected by the  second SU(2).   But to exract the D3 

point,  need to keep                          but not exactly equal.   The system Abelianizes ➞

can be regarded as two r = 0 vacua. Note that as |f1| 6= |g1| they are at distinct points of the

moduli space. On the other hand, in the other six vacua a = 0 always and |fi| = |gi|, these six

points are on the same point of the moduli space: they may be associated with the r = 2 (sextet)

vacua.

Remarks: The flavor charges (2.18) imply that Q’s are really non-Abelian magnetic monopoles.

Semiclassically magnetic monopoles appear in the spinor representations of SO(2Nf ). Also, as

the two Tchebyshev vacua are related by symmetry it is natural to interpret the charges (5.2)

also as indicating Q’s being the monopoles.

3 Colliding r vacua of the SU(3), Nf = 4 Theory

In the case of SU(3) theory, with the special value of the number of flavor, Nf = 4, the e↵ective

GST dual is made of the A sector describing the three doublets of free hypermultiplets and the

B sector, which is D3, the most singular SCFT of the SU(2), Nf = 2 theory,

D3 � SU(2)� 3 (3.1)

In order to see the e↵ect of the N = 1 perturbation µ�2 in this vacuum, let us replace the B

sector (the D3 theory) by a new SU(2) theory and a bifundamental field P ,

SU(2)
P
�SU(2)� 3 (3.2)

The superpotential has the form,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2P�P̃ +

p
2P̃�P + µ �2 + m

0
P̃P, (3.3)

where P = P↵
a and � is the adjoint scalar of the new SU(2) gauge multiplet. The new SU(2)

intereactions are asymptotically free and become strong in the infrared. As the SU(2) of GST is

weakly coupled, the dynamics of the new SU(2) is not a↵ected by it. To pick up the D3 point,

we assume that

m0 ' ±⇤
0
, (3.4)

but not exactly. The P system dynamically Abelianizes and gives rise to a superpotential,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2M�M̃ +

p
2M̃A�M + µ A�⇤

0
, (3.5)
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can be regarded as two r = 0 vacua. Note that as |f1| 6= |g1| they are at distinct points of the

moduli space. On the other hand, in the other six vacua a = 0 always and |fi| = |gi|, these six

points are on the same point of the moduli space: they may be associated with the r = 2 (sextet)

vacua.

Remarks: The flavor charges (2.18) imply that Q’s are really non-Abelian magnetic monopoles.

Semiclassically magnetic monopoles appear in the spinor representations of SO(2Nf ). Also, as

the two Tchebyshev vacua are related by symmetry it is natural to interpret the charges (5.2)

also as indicating Q’s being the monopoles.

3 Colliding r vacua of the SU(3), Nf = 4 Theory

In the case of SU(3) theory, with the special value of the number of flavor, Nf = 4, the e↵ective

GST dual is made of the A sector describing the three doublets of free hypermultiplets and the

B sector, which is D3, the most singular SCFT of the SU(2), Nf = 2 theory,

D3 � SU(2)� 3 (3.1)

In order to see the e↵ect of the N = 1 perturbation µ�2 in this vacuum, let us replace the B

sector (the D3 theory) by a new SU(2) theory and a bifundamental field P ,

SU(2)
P
�SU(2)� 3 (3.2)

The superpotential has the form,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2P�P̃ +

p
2P̃�P + µ �2 + m

0
P̃P, (3.3)

where P = P↵
a and � is the adjoint scalar of the new SU(2) gauge multiplet. The new SU(2)

intereactions are asymptotically free and become strong in the infrared. As the SU(2) of GST is

weakly coupled, the dynamics of the new SU(2) is not a↵ected by it. To pick up the D3 point,

we assume that

m0 ' ±⇤
0
, (3.4)

but not exactly. The P system dynamically Abelianizes and gives rise to a superpotential,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2M�M̃ +

p
2M̃A�M + µ A�⇤

0
, (3.5)

7

* arises from the collision of a 

doublet vacuum and a singlet 

vacuum

Tuesday, March 19, 13



Doublet vacuum (of the new, strong SU(2) NF  =2 theory)

can be regarded as two r = 0 vacua. Note that as |f1| 6= |g1| they are at distinct points of the

moduli space. On the other hand, in the other six vacua a = 0 always and |fi| = |gi|, these six

points are on the same point of the moduli space: they may be associated with the r = 2 (sextet)

vacua.

Remarks: The flavor charges (2.18) imply that Q’s are really non-Abelian magnetic monopoles.

Semiclassically magnetic monopoles appear in the spinor representations of SO(2Nf ). Also, as

the two Tchebyshev vacua are related by symmetry it is natural to interpret the charges (5.2)

also as indicating Q’s being the monopoles.

3 Colliding r vacua of the SU(3), Nf = 4 Theory

In the case of SU(3) theory, with the special value of the number of flavor, Nf = 4, the e↵ective

GST dual is made of the A sector describing the three doublets of free hypermultiplets and the

B sector, which is D3, the most singular SCFT of the SU(2), Nf = 2 theory,

D3 � SU(2)� 3 (3.1)

In order to see the e↵ect of the N = 1 perturbation µ�2 in this vacuum, let us replace the B

sector (the D3 theory) by a new SU(2) theory and a bifundamental field P ,

SU(2)
P
�SU(2)� 3 (3.2)

The superpotential has the form,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2P�P̃ +

p
2P̃�P + µ �2 + m

0
P̃P, (3.3)

where P = P↵
a and � is the adjoint scalar of the new SU(2) gauge multiplet. The new SU(2)

intereactions are asymptotically free and become strong in the infrared. As the SU(2) of GST is

weakly coupled, the dynamics of the new SU(2) is not a↵ected by it. To pick up the D3 point,

we assume that

m0 ' ±⇤
0
, (3.4)

but not exactly. The P system dynamically Abelianizes and gives rise to a superpotential,

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2M�M̃ +

p
2M̃A�M + µ A�⇤

0
, (3.5)
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µ ⇠ O(µ) (3.6)

where a doublet of M represent light Abelian monopoles. The mass parameters are assumed to

have the form

m̃1 =
1

4
(m1 + m2 �m3 �m4) ;

m̃2 =
1

4
(m1 �m2 + m3 �m4) ;

m̃3 =
1

4
(m1 �m2 �m3 + m4) , (3.7)

as in (F.3) but without m̃4, in terms of the quark masses of the underlying SU(3) theory.

Again the flavor symmetry in various cases works out correctly (in all cases a U(1) in the

infrared comes from M):

(i) In the equal mass limit, mi = m0 (i = 1, 2, 3, 4),

m̃1 = m̃2 = m̃3 = 0, (3.8)

so the symmetry is

U(1)⇥ SO(6) = U(1)⇥ SU(4), (3.9)

where U(1) is carried by the Abelian monopole M whereas SO(6) ⇠ SU(4) is associated

with the massless Q1, Q2, Q3 fields. Note that in contrast to the USp(2N) theory, the

symmetry is not enhanced and remains to be SU(4)⇥U(1) in the mi = 0 (so m̃i = 0) limit

(ii) m1 = m2, m3, m4 generic. In this case m̃2 = �m̃3 and m̃1 is generic, so the symmetry is

U(1)⇥ U(1)⇥ SU(2), as in the underlying theory;

(iii) m1 = m2 6= 0, m3 = m4 = 0. In this case, m̃1 6= 0 and m̃2 = m̃3 = 0, so the symmetry is

U(2)⇥ U(2) in the UV while U(1)⇥ U(1)⇥ SO(4) in (2.18), which is the same.

(iv) m1 = m2 = m3 6= 0, m4 generic. In this case, m̃1 = m̃2 = �m̃3 6= 0. Again the symmetry

is the same: U(3)⇥ U(1).

(v) m1 = m2 6= 0 and m3 = m4 6= 0 but m1 6= m3. In this case m̃2 = m̃3 = 0 and m̃4 and m̃1

generic. The flavor symmetry is

SO(4)⇥ U(1)⇥ U(1) = SU(2)⇥ SU(2)⇥ U(1)⇥ U(1) ; (3.10)

this is equal to the symmetry

SU(2)⇥ U(1)⇥ SU(2)⇥ U(1) (3.11)

of the underlying theory.
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with m
➞   correct symmetry

for all  mi  :

➞   six solutions  (r=2 vacua) 

SU(3), NF  =4 theory has r=0,1,2  vacua:  where are the r=0,1 vacua?   Answer: 

Singlet vacuum (of the new, strong SU(2) NF  =2 theory) 

or

a = m̃i, Qi = Q̃i =

 

0

ki

!

; Qj = Q̃j = 0, j 6= i. (3.20)

and

k2
i = �µ⇤0

p
2

+ 2 m̃i µ. (3.21)

These give six vacua (corresponding to the r = 2 vacua). Where are other, r = 0, 1 vacua?

Let us recall that the D3 singular SCFT appears as the result of collision of a doublet sin-

gularities (at u = m
0 2) with another, singlet vacuum. The physics of the doublet singularity

(where M is massless) is described as above. Now in the singlet vacuum the low energy physics

of the new SU(2) theory is an Abelian gauge theory with a single monopole, N , thus our e↵ective

superpotential is similar with (3.5) but with N field having no coupling to the weak GST SU(2)

gauge fields:

3
X

i=1

p
2Qi�Q̃i +

3
X

i=1

m̃i QiQ̃
i + µ�2 +

p
2ÑAN + µ A⇤

0
+ m

0
ÑN. (3.22)

Now the U(1) part gets higgsed as usual, and the GST SU(2) gauge theory becomes asymptoti-

cally free, having Ñf = 3 hypermultiplets with small masses m̃i. The infrared limit of this theory

is well known: there is one vacuum with four nearby singularities and one singlet vacuum [21]. In

the quadruple vacua, the mass perturbation m̃i give four nearby vacua, the light hypermultiplets

have masses, in the respective vacua [24],

m̂1 = m̃1 + m̃2 + m̃3 =
1

4
(3m1 �m2 �m3 �m4) ; (3.23)

m̂2 = �m̃1 � m̃2 + m̃3 =
1

4
(3m4 �m1 �m2 �m3) ; (3.24)

m̂3 = �m̃1 + m̃2 � m̃3 =
1

4
(3m3 �m1 �m2 �m4) ; (3.25)

m̂4 = m̃1 � m̃2 � m̃3 =
1

4
(3m2 �m1 �m3 �m4) ; (3.26)

they correctly represent the physics of the r = 1 vacuum where the light hypermultiplets appear

in the 4 of the underlying SU(Nf ) = SU(4) group.

Finally, in the singlet vacuum of the new SU(2), Ñf = 3 theory, the light hypermultiplet is

a singlet of the flavor group, so it is also a singlet of the original SU(4) flavor group.

Now that we have ascertained that the vacuum structure is correctly reproduced by the system

(3.2), we can go to the massless limit mi ! 0. As the nonvanishing VEV arises only from

10

AF: becomes strongly coupled.  ➞  4 + 1 vacua of 

SW SU(2) NF  =3 theory!   ➞   r=1 (4)  and r=0  (1) vacua Vacuum str
ucture OK

↩
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*  Remarks

● Not all singular N=2  SCFT’s survives  N=1,  μ Φ2  perturbation
    (e.g.,   Aygyres-Douglas point in pure SU(3) ) 

● N=2  SCFT’s  in UV  flow into N=1 SCFT,
upon N=1,  μ Φ2  perturbation   (27/32)

●  N=2  IRFP  SCFT’s  can survive and brought into confinement phase;
   e.g., Colliding r-vacua of SU(N) theories,  m=0,  USp(2N)  theory
   (Tchebyshev vacua);  m=0,  SO(N)  theory 

Tachikawa, Wecht  ’09

● They are strongly interacting, nonlocal theory of monopoles and dyons, 
   in confinement phase:  interesting system to understand!!

● Some of them survive and brought into confinement phase;
   r-vacua,  (r=0,1,2,... ) upon N=1,  μ Φ2  perturbation 

⤣↵
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y

2 =
NY

a

(x� �a)2 � ⇤2N�2n
2nY

i=1

(x + mi)

�a = (�m1,�m2, . . . ,�mr, �r+1, . . .)
mi ! m,

r-vacua

This describes  SU(r) x U(1)N-r    theory 

y

2 = (x + m)2r
N�rY

b=1

(x� ↵b)2 (x� �)(x� �)

r-vacua

↩
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