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Geometry Neutrino Oscillations Baryogenesis Dark Matter
Can scientists find a "fundamental” theory of nature that
© describes all observed phenomena and

@ can be tested empirically?
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Can scientists find a "fundamental” theory of nature that
© describes all observed phenomena and

@ can be tested empirically?

Remarks...
@ test = confirm existence of all particles and study their interactions

@ Of course this need not be a complete theory of nature, as there
may be phenomena beyond reach of our instruments.
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The Standard Model and General Relativity together almost
fulfil both conditions, but. ..

@ gravity is not quantized

@ a handful of observations remain unexplained
@ overall geometry of the observable universe
@ neutrino oscillations
@ baryon asymmetry of the universe

@ dark matter

ummary
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In addition there are some hints. ..
@ esthetic concerns

@ hierarchy problem(s)
@ strong CP-problem
@ parameter values, flavour structure, gauge group. . .

@ inconclusive issues

©

vacuum stability

g-—2

neutrino oscillation anomalies
hints for dark radiation
varying a

¢ © 6 ¢ ©

... the meaning of which is unclear at this stage.
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@ Majorana masses My, introduce new mass scale(s)
@ For different Majorana mass values they can explain

@ neutrino oscillations

@ baryogenesis

@ dark matter

@ dark radiation, oscillation anomalies
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The CMB shows that the universe was remarkably simple at
redshift z ~ 1100. But how did this happen?

@ horizon problem
@ flatness problem

@ origin of temperature perturbations

Can be explained by a period of accelerated cosmic expansion
= Cosmic Inflation
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The CMB shows that the universe was remarkably simple at
redshift z ~ 1100. But how did this happen?

@ horizon problem
@ flatness problem

@ origin of temperature perturbations

Can be explained by a period of accelerated cosmic expansion
= Cosmic Inflation

@ requires negative equation of state
@ potential energy of scalar field

@ scalar field in general can parameterise complicated new physics
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Higgs inflation

Let x be the Higgs field value (¢T®)(/2) in the Einstein frame.

@ non-minimal coupling £ can make the potential U(x) flat at large x
= x "rolls slowly" Bezrukov/Shaposhnikov

@ inflation while U(x) dominates the energy

. o y1—0.9361 as—0.1184
@ works if my > Mei = 129.6 + 2.0 % 55555 0.5%5 5507
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BICEP2 and the critical point

@ Ifmy > Myt

@ quantum corrections to U(x) small
@ COBE normalisation implies ¢ ~ 47000v/X
@ generic predictionr ~ 0.003, ng ~ 0.97

o If My~ Mcrit

@ sensitivity to quantum corrections

@ inflation seems to work for £ ~ 10

@ r=0.1,ns = 0.96 implies my ~ 126.4 GeV and m; ~ 171.6 GeV,
close to observed values!

Bezrukov/Shaposhnikov 1403.6078
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Neutrino Oscillations
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Introduction Geometry Baryogenesis Dark Matter Summary
Seesaw Mechanism

1 —Tc 0 mp Z/E
E(VL VR)< M My ) ( Ve >+h.c.

@ the mass matrices mp = vF and My are not diagonal in the basis
of weak interaction eigenstates

@ The seesaw limit mp <« My, yields two sets of mass states,

v o~ Ul(n —60v]) + coni.
N

12

vr + 0" 1f + conj.
with & = mp M,\;l < 1 and mass matrices

m, ~ —Mu6" , My ~ My
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Mixing with sterile neutrinos

0 is the mixing with the sterile neutrinos

@ at energies E <« My the N are too heavy to be produced ,

@ N can be "integrated out" and leave only an indirect trace by
generating the mass term

1
Zormuu + h.c.

2
@ itis constrained by the seesaw-relation
m, ~ —0My0" = —mpM'm} = —FM*FT %

@ at energies E > My the N appear as new particles

= Ve, u,» MiX With N
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Neutrino Mixing

@ at T = 0the N only interact via their mixing with the SM

@ they participate in all processes that the SM neutrinos take part in,
but with an amplitude suppressed by 6 < 1

v
X
1

1 N
—_—

v

@ at T > Tgw there are Higgs particles in the primordial plasma
= N, can be produced in various scattering processes

)
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Introduction Geometry Neutrino Oscillations Dark Matter Summary
Baryogenesis ( 200MeV < M < 10%° GeV)
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Baryogenesis

@ The baryons that our world is made of are the remnant of a small
matter-antimatter asymmetry 7, ~ % ~ 10719 in the early
universe

@ any pre-inflationary asymmetry is diluted by inflation
= 7 has to be generated after inflation
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Baryogenesis

The baryons that our world is made of are the remnant of a small
matter-antimatter asymmetry 7, ~ % ~ 10719 in the early
universe

any pre-inflationary asymmetry is diluted by inflation
= 7 has to be generated after inflation

there are three necessary “Sakharov conditions” for this

in principle all three conditions are fulfilled in SM

@ baryon number violation
@ C and CP violation

@ nonequilibrium
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Baryogenesis

The baryons that our world is made of are the remnant of a small
matter-antimatter asymmetry , ~ % ~ 1071 in the early
universe

any pre-inflationary asymmetry is diluted by inflation
= 7 has to be generated after inflation

there are three necessary “Sakharov conditions” for this

in principle all three conditions are fulfilled in SM

@ baryon number violation
by sphaleron processes
@ C and CP violation

@ nonequilibrium
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Baryogenesis

The baryons that our world is made of are the remnant of a small
matter-antimatter asymmetry n ~ =2 ~ 109 in the early
B+Ng

universe

any pre-inflationary asymmetry is diluted by inflation
= 7 has to be generated after inflation

there are three necessary “Sakharov conditions” for this
in principle all three conditions are fulfilled in SM

@ baryon number violation

by sphaleron processes
@ C and CP violation

by weak interaction and CKM phase
@ nonequilibrium
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Baryogenesis

The baryons that our world is made of are the remnant of a small
matter-antimatter asymmetry n ~ =2 ~ 109 in the early
B+Ng

universe

any pre-inflationary asymmetry is diluted by inflation
= 7 has to be generated after inflation

there are three necessary “Sakharov conditions” for this
in principle all three conditions are fulfilled in SM

@ baryon number violation

by sphaleron processes
@ C and CP violation

by weak interaction and CKM phase
@ nonequilibrium

by expansion of the universe
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Baryogenesis

The baryons that our world is made of are the remnant of a small
matter-antimatter asymmetry 7, ~ % ~ 10719 in the early
universe

any pre-inflationary asymmetry is diluted by inflation
= 7 has to be generated after inflation

there are three necessary “Sakharov conditions” for this
in principle all three conditions are fulfilled in SM

@ baryon number violation

by sphaleron processes OK.
@ C and CP violation

by weak interaction and CKM phase TOO SMALL!
@ nonequilibrium

by expansion of the universe TOO SMALL!
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Baryogenesis via Leptogenesis

@ baryon number (B) violation

@ again sphalerons violate B, but conserve B — L
@ neutrino masses violate individual lepton flavour numbers
@ in addition My, violates total lepton number
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Baryogenesis via Leptogenesis

@ baryon number (B) violation
@ again sphalerons violate B, but conserve B — L
@ neutrino masses violate individual lepton flavour numbers
@ in addition My, violates total lepton number

@ C and CP violation

@ weak interaction violates P
@ additional complex phases in F violate CP
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Dark Matter

Geometry
Baryogenesis via Leptogenesis

Introduction Neutrino Oscillations

@ baryon number (B) violation
@ again sphalerons violate B, but conserve B — L
@ neutrino masses violate individual lepton flavour numbers
@ in addition My, violates total lepton number
@ C and CP violation
@ weak interaction violates P
@ additional complex phases in F violate CP

@ nonequilibrium

@ N, production
@ N, freezeout
@ N, decay

all conditions are fulfilled

Summary
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Leptogenesis during N,-freezeout/decay

@ Majorana fermions N, can decay into leptons or antileptons

@ The probabilities for both decays are different due to the
CP-violation in F

@ decay violates total lepton number L

@ sphalerons convert part of L into B

Fukugita/Yanagida 1986
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Leptogenesis during N, production

@ CP-violating oscillations amongst N, generate L, during their
thermal production

@ sphalerons convert part of them into B
Akhmedov/Rubakov/Smirnov 1998, Asaka/Shaposhnikov 2006

@ With two RH neutrinos this requires a mass degeneracy ~ 103
Canetti/MaD/Frossard/Shaposhnikov 1208.4607

@ With three RH neutrinos no such degeneracy is needed!

MaD/Garbrecht 1206.5537
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Minimal scenario: Two RH neutrinos

10—12 L L L L L
0.2 0.5 1.0 20 5.0 10.0
M [GeV]
U2 = trd’o

Canetti/MaD/Frossard/Shaposhnikov 1208.4607
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Leptogenesis with three RH Neutrinos
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Neutrino Oscillations

Dark Matter

Probing the origin of matter in the laboratory

GeV range masses

Summary

two RH neutrinos

three RH neutrinos

baryogenesis

works without degeneracy

lab searches

SHIP,. ..

LHCDb, BELLE, SHIP....

TeV range masses

two RH neutrinos

three RH neutrinos

baryogenesis

work in progress

lab searches

work in progress

MaD/Garbrecht 2013, Canetti/MaD/Frossard/Shaposhnikov 2013,
Canetti/MaD/Shaposhnikov 2013, Ibarra/Molinaro/Petcov 2011,
Atre/Han/Pascoli/Zhang 2009, Smirnov/Kersten 2007
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Dark Matter (M ~ keV)
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If RH neutrinos are DM, then there are three basic questions
@ They are decaying DM. Where is the decay line?

@ How were they produced?
@ Are they consistent with structure formation?

Summary
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If RH neutrinos are DM, then there are three basic questions

@ They are decaying DM. Where is the decay line?

@ main channelis N — 3y - unobservable!
@ radiative decay N — 1y

@ Search for X-ray line!
@ How were they produced?
@ Are they consistent with structure formation?

Summary
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If RH neutrinos are DM, then there are three basic questions

@ They are decaying DM. Where is the decay line?

@ main channelis N — 3y - unobservable!
@ radiative decay N — 1y

@ Search for X-ray line!
@ How were they produced?

@ Are they consistent with structure formation?

@ DM is absolutely essential to form structures in the universe
@ DMis“cold” , i.e. (k) < M at freezeout

Summary
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X-ray constraints
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MaD 1303.6912, thanks to S. Riemer-Sgrensen

HOwW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS?
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Introduction Geometry

Neutrino Oscillations

Baryogenesi

s Dark Matter

Dark Matter Production

@ produced via active-sterile
neutrino mixing

@ most efficientat T ~ 100
MeV

@ affected by chemical potential
Shi/Fuller,
Laine/Shaposhnikov

@ spectrum is non-thermal

@ effectively a superposition of
CDM and WDM (CWDM)

102

a%1(q)

plot from Boyarsky/Ruchayskiy/Shaposhnikov 2009

Summary
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Structure Formation
@ free streaming of DM erases small scale structures
= DMis “cold” , i.e. (k) <M at freezeout
@ for thermal spectrum this implies: DM particle is heavy
@ but for non-thermal spectrum predictions are complicated. ..
M [M,]
10' 10'6 10" 10'2 10" 10° 10° 104
100 i ' | ' ] . ' ' '
Cosmic Cluster Galactic o
o e Unknown small
*  scale behavior
=
— non-linear (simulation)
MR o S .
Baryon
o1l Acoustic
: Oscillations
WDM(8keV)
001557 0.1 i 10 ST 102
k [Mpe '] from 1209.5745

30/37



Introduction Geometry Neutrino Oscillations Baryogenesi S Dark Matter Summary

Quasar absorption lines (Ly a-forest) map structure in the universe

___ Emission lines from the Quasar

| _Heavy etementabsorption

Hydrogen absorption dus to galaxy

3500 4000 4500 5000 5500 6000

——— Lyman alpha forest ———
Observed wavelength (A) * M Urphy/We bb

This is compared to structure formation simulations

1104.2929
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Structure formation with CWDM

@ CDM works very well on large scales
@ WDM seems to work better on small scales (subhalos)
@ few simulations exist for non-thermal spectra / CWDM

@ the initial spectra were calculated under very simplifying
assumptions about the chemical potentials
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Dark Matter Bounds - Summary
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Boyarsky/Ruchayskiy/lakubovskyi/Franse 1402.4119
3.5 keV signal found in 1402.2301 and 1402.4119 fits predictions
perfectly!

HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS?
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Summary

@ Right handed neutrinos with different Majorana masses can explain

@ neutrino oscillations (almost any M)

@ Dark Matter (M ~ keV)

@ baryon asymmetry of the universe (M > 200 MeV)
@ Dark Radiation?, oscillation anomalies? (M < eV)

@ they can be searched for in the lab and in the sky
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@ Right handed neutrinos with different Majorana masses can explain

@ neutrino oscillations (almost any M)

@ Dark Matter (M ~ keV)

@ baryon asymmetry of the universe (M > 200 MeV)
@ Dark Radiation?, oscillation anomalies? (M < eV)

@ they can be searched for in the lab and in the sky

@ But can they explain all of this simultaneously ?

Can the SM+GR+ g be a valid effective field theory up to the
Planck scale?

34 /37



Introduction Geometry Neutrino Oscillations Baryogenesi s Dark Matter

| want it all!
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A theory of (almost) everything

Yes.
@ let's assume that there are three RH neutrinos

@ one has a keV mass
@ composes the observed Dark Matter

@ two have masses > 200 MeV

@ give masses to SM neutrinos via seesaw mechanism
@ create the baryon asymmetry of the universe via leptgenesis

@ if there were a fourth one with an < eV mass it could be Dark
Radiation or explain neutrino oscillation anomalies

Asaka/Shaposhnikov 2005, Canetti/MaD/Shaposhnikov 1204.3902
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How many new particles do we need after the Higgs?

Three.

HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS?
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How many new partlcles do we need after the Higgs?

Three.

Frustea fit per plura
quod potest fieri per pauciora.

[It is futile to do with more things
that which can be done with fewer]

William of Ockham, Summa Totius Logicae
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