HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS?

Marco Drewes TU München

based on arXiv:1404.7114 [hep-ph], Phys.Rev.Lett. 110 (2013) 6, 061801 , JHEP 1303 (2013) 096 , Phys.Rev. D87 (2013) 093006 and work in progress

2013 review: arXiv:1303.6912 [hep-ph] Int.J.Mod.Phys. E22 (2013) 1330019

29th April 2014 | INFN Genova

Can scientists find a "fundamental" theory of nature that

- describes all observed phenomena and
- 2 can be tested empirically?

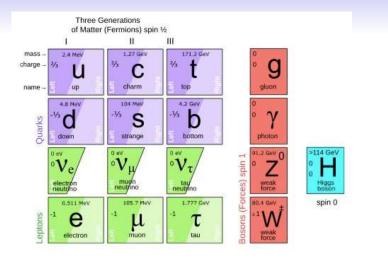
Can scientists find a "fundamental" theory of nature that

- describes all observed phenomena and
- 2 can be tested empirically?

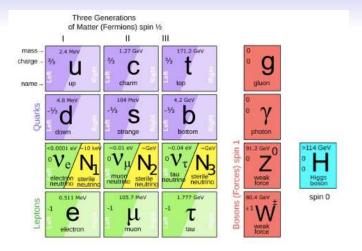
Remarks...

- test = confirm existence of all particles and study their interactions
- Of course this need not be a complete theory of nature, as there may be phenomena beyond reach of our instruments.

The **Standard Model** and **General Relativity** together *almost* fulfil both conditions, but...


- gravity is not quantized
- a handful of observations remain unexplained
 - overall geometry of the observable universe
 - neutrino oscillations
 - baryon asymmetry of the universe
 - o dark matter

In addition there are some hints...

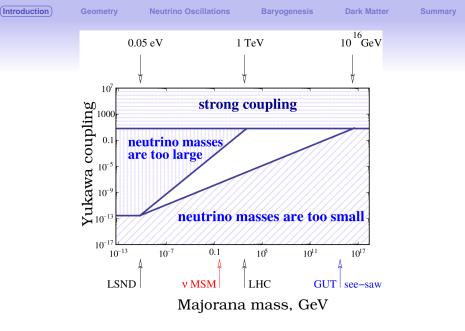

- esthetic concerns
 - hierarchy problem(s)
 - strong CP-problem
 - parameter values, flavour structure, gauge group...
- inconclusive issues
 - vacuum stability
 - g 2
 - neutrino oscillation anomalies
 - hints for dark radiation
 - varying α
 - ...

... the meaning of which is unclear at this stage.

(Introduction)

(Introduction)

Introduction)


Geometry

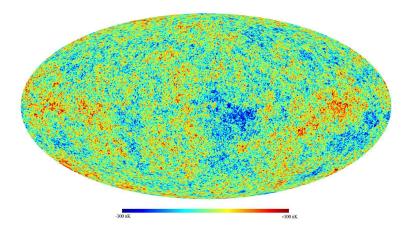
Neutrino Oscillations

$$\begin{split} \mathcal{S} &= \int d^4 \sqrt{-g} \bigg[\mathcal{L}_{SM} - \frac{M_P^2}{2} R - \xi \Phi^{\dagger} \Phi R \\ &+ i \overline{\nu_R} \partial \!\!\!/ \nu_R - \overline{l_L} F \nu_R \tilde{\Phi} - \overline{\nu_R} F^{\dagger} l_L \tilde{\Phi}^{\dagger} - \frac{1}{2} (\overline{\nu_R^c} M_M \nu_R + \overline{\nu_R} M_M^{\dagger} \nu_R^c) \bigg]. \end{split}$$

- Majorana masses M_M introduce new mass scale(s)
- For different Majorana mass values they can explain
 - neutrino oscillations
 - baryogenesis
 - dark matter
 - dark radiation, oscillation anomalies

plot from 1204.5379

HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS?


8/37

Introduction

Dark Matter

Summary

Geometry of the Universe

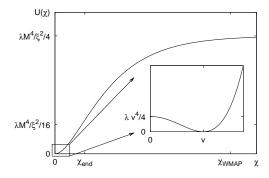
The CMB shows that the universe was remarkably simple at redshift $z \sim 1100$. But how did this happen?

- horizon problem
- flatness problem
- origin of temperature perturbations

Can be explained by a period of accelerated cosmic expansion \Rightarrow Cosmic Inflation

The CMB shows that the universe was remarkably simple at redshift $z \sim 1100$. But how did this happen?

- horizon problem
- flatness problem
- origin of temperature perturbations


Can be explained by a period of accelerated cosmic expansion \Rightarrow Cosmic Inflation

- requires negative equation of state
- potential energy of scalar field
- scalar field in general can parameterise complicated new physics

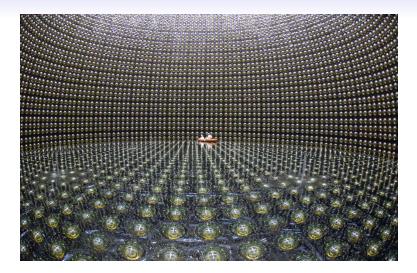
Higgs inflation

Let χ be the Higgs field value $(\Phi^{\dagger}\Phi)^{(1/2)}$ in the Einstein frame.

- non-minimal coupling ξ can make the potential $U(\chi)$ flat at large $\chi \Rightarrow \chi$ "rolls slowly" Bezrukov/Shaposhnikov
- inflation while $U(\chi)$ dominates the energy
- works if $m_H > m_{\rm crit} = 129.6 + 2.0 \frac{y_t 0.9361}{0.0058} 0.5 \frac{\alpha_s 0.1184}{0.0007}$

BICEP2 and the critical point

• If $m_H \gg m_{\rm crit}$


- quantum corrections to $U(\chi)$ small
- COBE normalisation implies $\xi \sim 47000\sqrt{\lambda}$
- generic prediction $r \simeq 0.003$, $n_s \simeq 0.97$

• If $m_H \sim m_{\rm crit}$

- sensitivity to quantum corrections
- inflation seems to work for $\xi \sim 10$
- r = 0.1, $n_s = 0.96$ implies $m_H \simeq 126.4$ GeV and $m_t \simeq 171.6$ GeV, close to observed values!

Bezrukov/Shaposhnikov 1403.6078

Neutrino Oscillations

Seesaw Mechanism

$$\frac{1}{2} (\overline{\nu_L} \ \overline{\nu_R^c}) \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + h.c.$$

- the mass matrices $m_D = vF$ and M_M are not diagonal in the basis of weak interaction eigenstates
- The seesaw limit $m_D \ll M_M$ yields two sets of mass states,

$$\begin{array}{l} \nu &\simeq & \boldsymbol{U}_{\nu}^{\dagger} \left(\nu_L - \theta \nu_R^c \right) \, + \, \mathrm{conj} \\ N &\simeq & \nu_R + \theta^{\mathsf{T}} \nu_L^c \, + \, \mathrm{conj}. \end{array}$$

with $\theta = m_D M_M^{-1} \ll 1$ and mass matrices

$$m_{
u} \simeq -\theta M_M \theta^T$$
, $M_N \simeq M_M$

Mixing with sterile neutrinos

 $\boldsymbol{\theta}$ is the mixing with the sterile neutrinos

- at energies $E \ll M_M$ the N are too heavy to be produced,
 - N can be "integrated out" and leave only an indirect trace by generating the mass term

$$\frac{1}{2}\overline{\nu_L}m_{\nu}\nu_L^c + h.c.$$

• it is constrained by the seesaw-relation $m_{\nu} \simeq -\theta M_M \theta^T = -m_D M_M^{-1} m_D^T = -F M_M^{-1} F^T \frac{1}{v^2}$

• at energies $E \gtrsim M_M$ the *N* appear as new particles

 $\Rightarrow \nu_{e,\mu,\tau}$ mix with N

Neutrino Mixing

- at T = 0 the N only interact via their mixing with the SM
- they participate in all processes that the SM neutrinos take part in, but with an amplitude suppressed by $\theta \ll 1$

• at $T > T_{EW}$ there are Higgs particles in the primordial plasma $\Rightarrow N_l$ can be produced in various scattering processes

Baryogenesis (200 ${ m MeV}\lesssim M<10^{15}$ GeV)

- The baryons that our world is made of are the remnant of a small matter-antimatter asymmetry $\eta \sim \frac{n_B n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-10}$ in the early universe
- any pre-inflationary asymmetry is diluted by inflation $\Rightarrow \eta$ has to be generated after inflation

HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS?

18/37

Baryogenesis

- The baryons that our world is made of are the remnant of a small matter-antimatter asymmetry $\eta \sim \frac{n_B n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-10}$ in the early universe
- any pre-inflationary asymmetry is diluted by inflation $\Rightarrow \eta$ has to be generated after inflation
- there are three necessary "Sakharov conditions" for this
- in principle all three conditions are fulfilled in SM
 - baryon number violation
 - C and CP violation
 - ononequilibrium

Baryogenesis

- The baryons that our world is made of are the remnant of a small matter-antimatter asymmetry $\eta \sim \frac{n_B n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-10}$ in the early universe
- any pre-inflationary asymmetry is diluted by inflation $\Rightarrow \eta$ has to be generated after inflation
- there are three necessary "Sakharov conditions" for this
- in principle all three conditions are fulfilled in SM
 - baryon number violation by sphaleron processes
 - C and CP violation
 - ononequilibrium

Baryogenesis

- The baryons that our world is made of are the remnant of a small matter-antimatter asymmetry $\eta \sim \frac{n_B n_B}{n_B + n_B} \sim 10^{-10}$ in the early universe
- any pre-inflationary asymmetry is diluted by inflation $\Rightarrow \eta$ has to be generated after inflation
- there are three necessary "Sakharov conditions" for this
- in principle all three conditions are fulfilled in SM
 - baryon number violation by sphaleron processes
 - C and CP violation by weak interaction and CKM phase
 - ononequilibrium

Baryogenesis

- The baryons that our world is made of are the remnant of a small matter-antimatter asymmetry $\eta \sim \frac{n_B n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-10}$ in the early universe
- any pre-inflationary asymmetry is diluted by inflation $\Rightarrow \eta$ has to be generated after inflation
- there are three necessary "Sakharov conditions" for this
- in principle all three conditions are fulfilled in SM
 - baryon number violation by sphaleron processes
 - C and CP violation by weak interaction and CKM phase
 - nonequilibrium by expansion of the universe

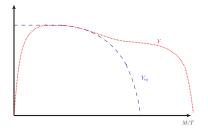
Baryogenesis

- The baryons that our world is made of are the remnant of a small matter-antimatter asymmetry $\eta \sim \frac{n_B n_{\bar{B}}}{n_B + n_{\bar{B}}} \sim 10^{-10}$ in the early universe
- any pre-inflationary asymmetry is diluted by inflation $\Rightarrow \eta$ has to be generated after inflation
- there are three necessary "Sakharov conditions" for this
- in principle all three conditions are fulfilled in SM
 - baryon number violation by sphaleron processes OK.
 - C and CP violation by weak interaction and CKM phase TOO SMALL!
 - nonequilibrium

by expansion of the universe TOO SMALL!

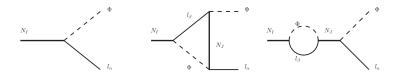
Baryogenesis via Leptogenesis

- baryon number (B) violation
 - again sphalerons violate B, but conserve B L
 - neutrino masses violate individual lepton flavour numbers
 - in addition M_M violates total lepton number


Baryogenesis via Leptogenesis

- baryon number (B) violation
 - again sphalerons violate B, but conserve B L
 - neutrino masses violate individual lepton flavour numbers
 - in addition *M_M* violates total lepton number
- C and CP violation
 - weak interaction violates P
 - additional complex phases in F violate CP

Baryogenesis via Leptogenesis


- baryon number (B) violation
 - again sphalerons violate B, but conserve B L
 - neutrino masses violate individual lepton flavour numbers
 - in addition *M_M* violates total lepton number
- C and CP violation
 - weak interaction violates P
 - additional complex phases in F violate CP
- nonequilibrium
 - N₁ production
 - N_l freezeout
 - N_l decay

all conditions are fulfilled

Leptogenesis during *N*_l-freezeout/decay

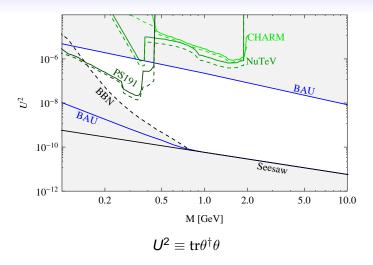
- Majorana fermions N_l can decay into leptons or antileptons
- The probabilities for both decays are different due to the CP-violation in F
- decay violates total lepton number L
- sphalerons convert part of L into B

Fukugita/Yanagida 1986

Leptogenesis during *N_l* production

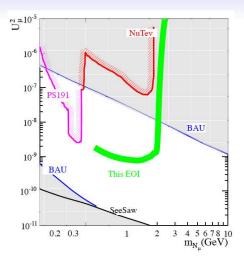
- CP-violating oscillations amongst N_l generate L_α during their thermal production
- sphalerons convert part of them into B

Akhmedov/Rubakov/Smirnov 1998, Asaka/Shaposhnikov 2006

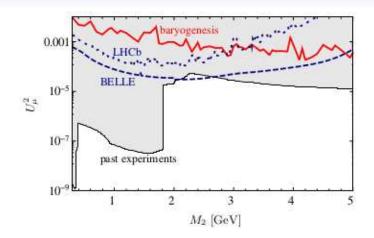

• With two RH neutrinos this requires a mass degeneracy $\sim 10^{-3}$

Canetti/MaD/Frossard/Shaposhnikov 1208.4607

• With three RH neutrinos no such degeneracy is needed!


MaD/Garbrecht 1206.5537

Minimal scenario: Two RH neutrinos


Canetti/MaD/Frossard/Shaposhnikov 1208.4607

SHIP proposal

arXiv:1310.1762 [hep-ex]

Leptogenesis with three RH Neutrinos

Canetti/MaD/Garbrecht 1404.7114

Probing the origin of matter in the laboratory

GeV range masses

	two RH neutrinos	three RH neutrinos
baryogenesis	requires mass degeneracy	works without degeneracy
lab searches	SHIP,	LHCb, BELLE, SHIP,

TeV range masses

	two RH neutrinos	three RH neutrinos
baryogenesis	requires mass degeneracy	work in progress
lab searches	tiny branching ratio from $\mu ightarrow {m e} \gamma$	work in progress

MaD/Garbrecht 2013, Canetti/MaD/Frossard/Shaposhnikov 2013,

Canetti/MaD/Shaposhnikov 2013, Ibarra/Molinaro/Petcov 2011,

Atre/Han/Pascoli/Zhang 2009, Smirnov/Kersten 2007

Introduction

(Dark Matter)

Summary

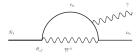
Dark Matter ($M \sim \text{keV}$ **)**

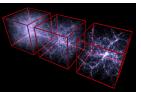
- If RH neutrinos are DM, then there are three basic questions
 - They are decaying DM. Where is the decay line?

- How were they produced?
- Are they consistent with structure formation?

27/37

If RH neutrinos are DM, then there are three basic questions


- They are decaying DM. Where is the decay line?
 - main channel is $N \rightarrow 3\nu_L$ unobservable!
 - radiative decay $N \rightarrow \nu_L \gamma$


- Search for X-ray line!
- How were they produced?
- Are they consistent with structure formation?

If RH neutrinos are DM, then there are three basic questions

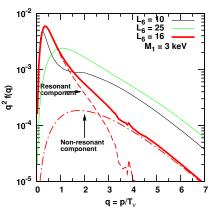
- They are decaying DM. Where is the decay line?
 - main channel is $N \rightarrow 3\nu_L$ unobservable!
 - radiative decay $N \rightarrow \nu_L \gamma$

- Search for X-ray line!
- How were they produced?
- Are they consistent with structure formation?
 - DM is absolutely essential to form structures in the universe
 - DM is "cold", i.e. $\langle \mathbf{k} \rangle < M$ at freezeout

Summary

28/37

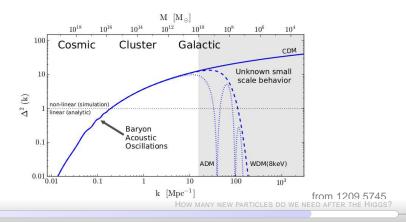
X-ray constraints


MaD 1303.6912, thanks to S. Riemer-Sørensen

Summary

29/37

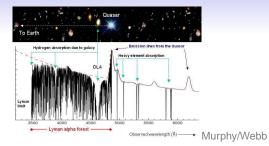
Dark Matter Production


- produced via active-sterile neutrino mixing
- most efficient at T ~ 100 MeV
- affected by chemical potential Shi/Fuller, Laine/Shaposhnikov
- spectrum is non-thermal
- effectively a superposition of CDM and WDM (CWDM)

plot from Boyarsky/Ruchayskiy/Shaposhnikov 2009

Structure Formation

- free streaming of DM erases small scale structures \Rightarrow DM is "cold", i.e. $\langle \mathbf{k} \rangle \lesssim M$ at freezeout
- for thermal spectrum this implies: DM particle is heavy
- but for non-thermal spectrum predictions are complicated...



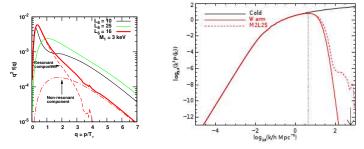
30/37


Summary

31/37

Quasar absorption lines (Ly α -forest) map structure in the universe

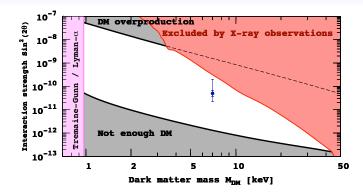
This is compared to structure formation simulations



HOW MANY NEW PARTICLES DO WE NEED AFTER THE HIGGS

- suggests w/ / one v, but relies on interpolation or simulation results for thermal s

Structure formation with CWDM


- CDM works very well on large scales
- WDM seems to work better on small scales (subhalos)
- few simulations exist for non-thermal spectra / CWDM
- the initial spectra were calculated under very simplifying assumptions about the chemical potentials

1104.2929

Summary

Dark Matter Bounds - Summary

Boyarsky/Ruchayskiy/lakubovskyi/Franse 1402.4119

3.5 keV signal found in 1402.2301 and 1402.4119 fits predictions perfectly!

• Right handed neutrinos with different Majorana masses can explain

- neutrino oscillations (almost any M)
- Dark Matter (*M* ~ keV)
- baryon asymmetry of the universe (M > 200 MeV)
- Dark Radiation?, oscillation anomalies? ($M \lesssim eV$)
- they can be searched for in the lab and in the sky

34/37

• Right handed neutrinos with different Majorana masses can explain

- neutrino oscillations (almost any M)
- Dark Matter (*M* ~ keV)
- baryon asymmetry of the universe (M > 200 MeV)
- Dark Radiation?, oscillation anomalies? (M ≤ eV)
- they can be searched for in the lab and in the sky
- But can they explain all of this simultaneously?

Can the SM+GR+ ν_R be a valid effective field theory up to the Planck scale?

34/37

I want it all!

Summary

36/37

A theory of (almost) everything

Yes.

- let's assume that there are three RH neutrinos
- one has a keV mass
 - composes the observed Dark Matter
- two have masses > 200 MeV
 - give masses to SM neutrinos via seesaw mechanism
 - create the baryon asymmetry of the universe via leptgenesis
- if there were a fourth one with an \lesssim eV mass it could be Dark Radiation or explain neutrino oscillation anomalies

Asaka/Shaposhnikov 2005, Canetti/MaD/Shaposhnikov 1204.3902

How many new particles do we need after the Higgs?

Three.

Introduction

Summary

37/37

How many new particles do we need after the Higgs?

Three.

Frustra fit per plura quod potest fieri per pauciora.

[It is futile to do with more things that which can be done with fewer]

William of Ockham, Summa Totius Logicae