Detection of B-mode Polarization on Degree Angular Scales with the BICEP2 Experiment at the South Pole

Abby Vieregg for the BICEP2 Collaboration University of Chicago

27 May 2014

Our Universe As Told By Its Oldest Light

- Universe Initial Conditions Seeds of Structure
- Age of the Universe 13.8 Gyr
- Geometry of the Universe Flat
- Baryon (5%) / Dark Matter (27%) / Dark Energy (68%) Composition – Λ_{CDM}
- Plus much more

CMB Temperature Spectrum

The Horizon "Problem"

Homogeneous, isotropic, spatially flat,

The Horizon "Problem"

Inflation: The Real Big Bang

Inflation Generates Two Types of Waves

- Inflationary gravitational waves would lay down a faint but unique signature in the polarization of the CMB
 - \rightarrow Strength scales with energy scale of inflation

→ Detectable if inflation happened ~10¹⁶ GeV (GUT Scale)

Why is the CMB Polarized?

- Thomson scattering cross section depends on polarization
- Quadrupole anisotropy (as seen by electron) @ last scattering → net linear polarization

E-Modes & B-Modes

Density Wave

E-Mode Polarization Pattern

B-Mode Polarization Pattern

11	1		``	~ ~	1	`	`	•	,	/	/	/	/	1	-	`	1	1	. \	`	`	•	1	1	/	/	/	1		`	1	\mathbf{i}	1	、、	·	1	11
11	1		``	< >	1	1	`	·	,	/	/	/	/	1		`	`	1	. \	\mathbf{i}	`		,	/	/	/	/	/		`	1	`	1	、、		,	11
11	1		、 、	< >	1	1	`	·	,	/	/	/	/	1	·	`	`	1	. 丶	\mathbf{i}	`		,	1	/	/	/	/		`	1	`	1	、、			11
11	/	-	``	< >	1	1	`		,	/	/	1	/	,	-	`	`	1	. \	`	`	-	,	/	/	/	/	/	-	`	1	\	1	、、			11
11	/		、 、	< >	1	1	`		,	1	/	1	1	,		`	1	1	. \	\mathbf{i}	`		,	1	1	/	1	,		`	1	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	>	、、		,	11
11	/		、 、	< \	1	\mathbf{i}	`		,	1	/	1	/	,		`	1	1	. \	\mathbf{i}	1		,	1	/	/	/	/		`	1	\mathbf{i}	> >	、、		,	11
11	/		、 、	< \	1	1	`		,	/	/	1	/	,		`	`	\mathbf{i}	. ヽ	\mathbf{i}	`		,	/	/	/	/	,		`	1	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	1	``			11
11	/		、 、	< >	1	1	`		,	/	/	1	1	,		`	1	1	. \	\mathbf{i}	`	-	,	/	1	/	1	,		`	1	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	>	、、		,	11
11	,		、 、	1	1	1	~		,	/	/	1	/	,		`	1	1	. \	\mathbf{i}	`	-	,	/	1	/	/	,		`	1	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	>	、、			11
11	1		、 、	< \	1	1	`	·	,	/	/	/	/	,		`	1	1	. \	$\mathbf{\mathbf{k}}$	`	•	,	/	/	/	/	,		`	1	$\mathbf{\mathbf{k}}$	1	、、		,	11
11	1	-	、 、	< >	1	1	`		,	/	/	/	/	1	-	`	`	\mathbf{i}	. \	\mathbf{i}	`		,	/	/	/	/	/	-	`	1	$\mathbf{\mathbf{k}}$	1	、、			11
11	/		、 、	1	1	\mathbf{i}	`		,	/	/	1	/	,		`	`	1	. ヽ	\mathbf{i}	`		,	1	/	/	/	/		`	1	\	> >	、、			11
11	1		、 、	< >	1	\mathbf{i}	`		,	/	/	1	/	,		`	`	1	. ヽ	\mathbf{i}	`		,	/	/	/	/	,		`	1	>	>	、、			11
11	/		•	< \	1	1	`		,	/	/	/	1	,		`	1	\mathbf{i}	. 丶	\mathbf{i}	`		,	/	/	/	1	,		`	1	$\mathbf{\mathbf{k}}$	>	、、		,	11
11	1		•	~ ~	1	1	`		,	/	/	1	/	,		`	`	1	. \	$\mathbf{\mathbf{k}}$	`		,	/	/	/	/	,		`	1	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	1	``			11
11	/		、 、	< >	1	\mathbf{i}	\mathbf{i}		,	/	/	1	/	/	·	`	`	1	. \	\mathbf{i}	`		,	/	/	/	/	/		`	1	\	1	、、			11
11	/		、 、	< >	1	1	`		,	/	/	1	/	,	-	`	`	\mathbf{i}	. \	\mathbf{i}	`		,	/	/	/	/	,	-	•	1	\	>	、、		,	11
11	/		、.	1	1	\mathbf{i}	`		,	/	/	/	/	,		`	`	1	. 丶	\mathbf{i}	`		,	/	/	/	1	,		`	1	1	>	、、		,	11
11	1		、 、	1	1	\mathbf{i}	`		,	/	/	/	/	1		`	1	1	. ヽ	$\mathbf{\mathbf{k}}$	`		,	1	/	/	/	/		`	1	`	1	``			11
11	/		、 、	< \	1	1	`		,	/	/	/	/	,		`	1	\mathbf{i}	. ヽ	\mathbf{i}	`		,	1	/	/	/	/		`	1	$\mathbf{\mathbf{k}}$	1	、、		-	11
11	/	-	• •	1	1	1	`	-	/	/	/	1	/	,		`	`	1	1	`	`	-	/	/	/	/	/	,		•	1	$\mathbf{\mathbf{k}}$	1	、、	-	/	11

E-Modes & B-Modes

Gravitational Lensing: Converting E to B

- Gravitational lensing deflects CMB photon trajectory
- Twists E-modes to have some component of B-modes
- Lensing B-modes detected by SPT and PolarBEAR in 2013

 $\hat{n} \rightarrow \hat{n} + \nabla \phi(\hat{n})$

Features of the CMB Spectrum

Temperature spectrum traces density evolution of acoustic oscillations in early universe.

E-polarization spectrum (first measured by DASI, Kovac et al. 2002) :

- 10² lower
- correlated with T but out of phase

B-polarization spectrum:

- 10² 10³ lower still!
- gravitational waves: large angular scale
- lensing: small angular scale

B-modes are a teeny signal! Hard to detect!

The Hunt for B-modes

- Characterize the strength of the inflationary signal by the tensor-to-scalar ratio, **r**
- Up to now: upper limits from searches for B-modes
 - Best limit on r from BICEP1: r < 0.7 (95% CL)
- At high multipoles, lensing B-mode signal dominant

Experimental Strategy

- \rightarrow Small aperture telescope
- \rightarrow Target the 2 degree peak of the B-mode spectrum
- \rightarrow Integrate continuously from South Pole

Experimental Strategy

The Dark Sector Lab BICEP SPT

The BICEP2 Telescope

- Cold (4K), on-axis, refractive optics
- 12" aperture → 0.5 degree beams
- Compact telescope for tight systematics control and ability to rotate around optical axis
- Detectors cooled to 250 mK using a helium sorption refrigerator

Anatomy of A BICEP2/Keck Focal Plane

A. G. Vieregg for the BICEP2 Collaboration

24

Detecting CMB Radiation

Observational Strategy

Target the "Southern Hole" – an exceptionally clean region of the sky

Observe @ 150 GHz until you see B-modes

- → Near peak of CMB spectrum
- → Dust + synchrotron predicted to be at a minimum

Expected foreground contamination of the B-mode power: $r \le \sim 0.01$

The South Pole Site

- Extremely stable, dry atmosphere
- Pressure altitude: 10,500 ft
- One night and one day per year
- High Observing Efficiency
 - "Southern Hole" visible 24/7
- Power, 200 GB/day, cryo facility, 3 square meals, and Tuesday Pub Trivia.

In-Situ Calibration Measurements

Far field beam mapping

Detector Polarization Calibration

High fidelity beam maps of individual detectors

Data Quality Cuts

BICEP2 3-year Data Set

A. G. Vieregg for the BICEP2 Collaboration

BICEP2 T and Stokes Q/U Maps

Total Polarization

B-modes of $\mathbf{r} = 0.1$ contribute ~1/10 of the total polarization amplitude at $\ell = 100$

B-mode Contribution

B-modes of $\mathbf{r} = 0.1$ contribute ~1/10 of the total polarization amplitude at $\ell = 100$

B-mode Contribution

B-modes of $\mathbf{r} = 0.1$ contribute ~1/10 of the total polarization amplitude at $\ell = 100$

B-mode Contribution

B-modes of $\mathbf{r} = 0.1$ contribute ~1/10 of the total polarization amplitude at $\ell = 100$
B-mode Map vs. Simulation

Simulation pipeline: compare real data to 500 lensed- Λ_{CDM} +noise simulations each at various levels or **r**, including all filtering.

From simulations, derive bias and uncertainties in our measurements

BICEP2 B-mode Power Spectrum

A. G. Vieregg for the BICEP2 Collaboration

Temperature and Polarization Spectra

Bandpower Deviations

First Impressions

Van Gogh/Halpern

Munch/Bischoff

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 AND χ (sum-of-deviation) Tests

Jackknife	Bandpowers	Bandpowers	Bandpowers	Bandpowers	
	$1-5 \chi^2$	$1-9 \chi^2$	$1-5 \chi$	$1-9 \chi$	
Deck jackk	nife				
FE	0.046	0.030	0.164	0.299	
BB	0.774	0.329	0.240	0.082	_ /
EB	0.337	0.643	0.204	0.267	1
Scan Dir ia	ckknife				
EE	0.483	0.762	0.978	0.938	1
BB	0.531	0.573	0.896	0.551	1
EB	0.898	0.806	0.725	0.890	
Tag Split ja	ckknife				
EE	0.541	0.377	0.916	0.938	
BB	0.902	0.992	0.449	0.585	
EB	0.477	0.689	0.856	0.615	
Tile jackkn	ife				
EE	0.004	0.010	0.000	0.002	1
BB	0.794	0.752	0.565	0.331	1
ED	0.172	0.419	0.902	0.790	1
Phase jack	cnife				1
EE	0.673	0.409	0.126	0.339	
FB	0.591	0.739	0.842	0.944	1
M	-11-16	0.017	0.010	0.005	_ \
Mux Coi ja	CKKNITE	0.000	0.407		
EE	0.812	0.587	0.196	0.204	
EB	0.866	0.968	0.876	0.697	
Alt Deck is	ckknife				
EE	0.004	0.004	0.070	0.236	
BB	0.397	0.176	0.381	0.086	
EB	0.150	0.060	0.170	0.291	
Mux Row j	ackknife				
EE	0.052	0.178	0.653	0.739	
BB	0.345	0.361	0.032	0.008	
EB	0.529	0.226	0.024	0.048	
Tile/Deck j	ackknife				
EE	0.048	0.088	0.144	0.132	
BB	0.908	0.840	0.629	0.269	
EB	0.050	0.154	0.591	0.591	
Focal Plane	e inner/outer jac	kknife			
EE	0.230	0.597	0.022	0.090	
BB	0.216	0.531	0.046	0.092	
	0.050	0.042	0.000	0.050	
Tile top/bo	ttom jackknife		0.480		
EE	0.289	0.347	0.459	0.599	
EB	0.545	0.683	0.902	0.932	
Tila innark	utar includenta				
EE	0.727	0.522	0.129	0.485	
BB	0.255	0.086	0.421	0.036	
EB	0.465	0.737	0.208	0.168	
Moon jack	knife				1
EE	0.499	0.689	0.481	0.679	_ /
BB	0.144	0.287	0.898	0.858	1
EB	0.289	0.359	0.531	0.307	1
A/B offset	best/worst				/
EE	0.317	0.311	0.868	0.709	/
BB	0.114	0.064	0.307	0.094	
EB	0.589	0.872	0.599	0.790	

14 jackknife tests applied to 3 spectra, 4 statistics

All 4 statistics defined from the jackknife tests result in uniform probability to exceed (PTE) distributions:

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 and χ (sum-of-deviation) Tests

Iackknife	Bandnowers	Bandnowers	Bandnowers	Bandpowers
Jackkinic	$1-5 \chi^2$	$1-9 \chi^2$	$1-5 \chi$	$1-9 \chi$
		A	~	
	14			
Deck jackk	nife			
EE	0.046	0.030	0.164	0.299
EB	0.337	0.529	0.240	0.082
Com Dia la	-l.life	01012	01201	01201
Scan Dir ja	CKKNIIC	0.7(2	0.070	0.020
DD	0.483	0.762	0.978	0.938
EB	0.898	0.806	0.725	0.890
Tag Split is	akknifa	01000	011-20	01020
rag opin ja	0.541	0.277	0.016	0.028
RR	0.541	0.992	0.916	0.938
EB	0.477	0.689	0.856	0.615
Tile jackkn	ife			
EF	0.004	0.010	0.000	0.002
BB	0.794	0.752	0.565	0.331
EB	0.172	0.419	0.962	0.790
Phase jackl	knife			
EF	0.673	0.409	0.126	0.339
BB	0.591	0.739	0.842	0.944
EB	0.529	0.577	0.840	0.659
Mux Col ja	ickknife			
EE	0.812	0.587	0.196	0.204
BB	0.826	0.972	0.293	0.283
EB	0.866	0.968	0.876	0.697
Alt Deck ja	ickknife			
EE	0.004	0.004	0.070	0.236
BB	0.397	0.176	0.381	0.086
EB	0.150	0.060	0.170	0.291
Mux Row j	ackknife			
EE	0.052	0.178	0.653	0.739
BB	0.345	0.361	0.032	0.008
EB	0.529	0.226	0.024	0.048
Tile/Deck j	ackknife			
EE	0.048	0.088	0.144	0.132
BB	0.908	0.840	0.629	0.269
ĽВ	0.050	0.154	0.391	0.591
Focal Plane	e inner/outer jac	kknife		
EE	0.230	0.597	0.022	0.090
BB	0.216	0.531	0.046	0.092
1.0	0.050	0.042	0.000	0.030
Tile top/bo	ttom jackknife		0.480	0 500
EE	0.289	0.347	0.459	0.599
EB	0.293	0.236	0.154	0.028
TTIL Loss of	ourse in the life	0.000	0.702	0.774
Tile inner/o	o zaz	0.522	0.120	0.405
EE	0.727	0.533	0.128	0.485
EB	0.255	0.086	0.421	0.036
Maariat	lenife		0.000	
moon jack	knine	0.000	0.001	0.070
EE	0.499	0.689	0.481	0.679
EB	0.289	0.287	0.531	0.858
10-00-0	0.209	0.007	0.001	001
A/B offset	Dest/worst		0.070	
EE	0.317	0.311	0.868	0.709
DD	0.114	0.044	0.207	0.004
BB EB	0.114 0.589	0.064 0.872	0.307	0.094 0.790

Splits the 4 boresight rotations

Amplifies differential pointing in comparison to fully added data.

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 and χ (sum-of-deviation) Tests

Jackknife	Bandpowers	Bandpowers	Bandpowers	Bandpowers	
	$1-5\chi^{2}$	$1-9\chi^{2}$	$1-5\chi$	$1-9\chi$	
Dack include	mife				
Deck јаски	0.046	0.020	0.164	0.200	
BB	0.046	0.030	0.164	0.299	
EB	0.337	0.643	0.204	0.267	
Scan Dir ia	akknifa				
EE	0.483	0.762	0.978	0.938	
BB	0.531	0.573	0.896	0.551	1
EB	0.898	0.806	0.725	0.890	•
Tag Split ja	ckknife				
EE	0.541	0.377	0.916	0.938	
BB	0.902	0.992	0.449	0.585	
EB	0.477	0.689	0.856	0.615	
Tile jackkr	iife				
EE	0.004	0.010	0.000	0.002	
BB	0.794	0.752	0.565	0.331	
EB	0.172	0.419	0.962	0.790	
Phase jack	knife				
EE	0.673	0.409	0.126	0.339	
BB	0.591	0.739	0.842	0.944	
EB	0.529	0.577	0.840	0.659	
Mux Col ja	ickknife				
EE	0.812	0.587	0.196	0.204	
BB	0.826	0.972	0.293	0.283	
LD	0.800	0.908	0.870	0.097	
Alt Deck ja	ackknife				
EE	0.004	0.004	0.070	0.236	
EB	0.150	0.060	0.170	0.291	
Mux Row	incldenife				
EE	0.052	0.178	0.653	0.720	
BB	0.052	0.178	0.032	0.008	
EB	0.529	0.226	0.024	0.048	
Tile/Deck	iackknife				
EE	0.048	0.088	0.144	0.132	
BB	0.908	0.840	0.629	0.269	
EB	0.050	0.154	0.591	0.591	
Focal Plan	e inner/outer jac	kknife			
EE	0.230	0.597	0.022	0.090	
BB	0.216	0.531	0.046	0.092	
EB	0.036	0.042	0.850	0.838	
Tile top/bo	ttom jackknife				
EE	0.289	0.347	0.459	0.599	
BB	0.293	0.236	0.154	0.028	
EB	0.545	0.685	0.902	0.952	
Tile inner/o	outer jackknife				
EE	0.727	0.533	0.128	0.485	
EB	0.255	0.086	0.421	0.036	
Moon in d	knifa				
TE NOON JACK	0.400	0.680	0.481	0.670	
BR	0.499	0.089	0.481	0.679	
EB	0.289	0.359	0.531	0.307	
A/B offset	best/worst				
EE	0.317	0.311	0.868	0.709	
BB	0.114	0.064	0.307	0.094	
EB	0.589	0.872	0.599	0.790	

Splits by time

Checks for contamination on long and short timescales. Short timescales probe detector transfer functions.

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 AND χ (sum-of-deviation) Tests

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 AND χ (SUM-OF-DEVIATION) TESTS

Jackknife	Bandpowers 1–5 χ^2	Bandpowers 1–9 χ^2	Bandpowers 1–5 χ	Bandpowers 1–9 χ		
Dack inclu	mifa					
Deck jacks	0.046	0.020	0.164	0.200		
BB	0.040	0.030	0.104	0.082		
EB	0.337	0.643	0.204	0.267		
Scan Dir ja	ickknife					
EE	0.483	0.762	0.978	0.938		
BB	0.531	0.573	0.896	0.551		
Tag Split is	0.090	0.800	0.725	0.690		
rag spin ja	o 641	0.277	0.016	0.020		
PP	0.541	0.377	0.916	0.938		
EB	0.477	0.689	0.856	0.615		
Tile jackkr	iife					60
EE	0.004	0.010	0.000	0.002		50
BB	0.794	0.752	0.565	0.331		59
EB	0.172	0.419	0.962	0.790		ି 58
Phase jack	knife					ala 57
EE	0.673	0.409	0.126	0.339		de
BB	0.591	0.739	0.842	0.944		<u> </u>
M C L	0.529	0.577	0.840	0.059	<u> </u>	- පී 55
Mux Coi ja	0.812	0.597	0.106	0.204		eAa 54
BB	0.812	0.587	0.190	0.204		E
EB	0.866	0.968	0.876	0.697		53
Alt Deck ja	ackknife					52
EE	0.004	0.004	0.070	0.236		51
BB	0.397	0.176	0.381	0.086		10
EB	0.150	0.060	0.170	0.291		-12
Mux Row	jackknife					
EE	0.052	0.178	0.653	0.739		
EB	0.345	0.361	0.032	0.008		
Tile/Deck i	ackknife					
FE	0.048	0.088	0.144	0.132		
BB	0.908	0.840	0.629	0.269		
EB	0.050	0.154	0.591	0.591		
Focal Plan	e inner/outer jac	kknife				
EE	0.230	0.597	0.022	0.090		
BB	0.216	0.531	0.046	0.092		
Tile ton/ho	ttom inskknife	0.042	0.000	0.000		
FE	0.289	0.347	0.459	0.500		
BB	0.293	0.236	0.154	0.028		
EB	0.545	0.683	0.902	0.932		
Tile inner/e	outer jackknife					
EE	0.727	0.533	0.128	0.485		
BB	0.255	0.086	0.421	0.036		
EB	0.465	0.757	0.208	0.168		
Moon jack	knife	0.690	0.691	0.670		
BB	0.499	0.689	0.481	0.679		•
EB	0.289	0.359	0.531	0.307		
A/B offset	best/worst					
EE	0.317	0.311	0.868	0.709		
BB	0.114	0.064	0.307	0.094		
EB	0.589	0.872	0.599	0.790		

Splits by possible external contamination

Observation pattern in ground coordinates

Checks for contamination from ground-fixed signals, such as polarized sky or magnetic fields.

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 and χ (sum-of-deviation) Tests

Jackknife	Bandpowers 1–5 χ^2	Bandpowers 1–9 χ^2	Bandpowers 1–5 χ	Bandpowers 1–9 χ	
Deck jackk	nife				
EE	0.046	0.030	0.164	0.299	
BB	0.774	0.329	0.240	0.082	
C D	0.557	0.045	0.204	0.207	
Scan Dir ja	ickknife				
EE	0.483	0.762	0.978	0.938	
EB	0.898	0.806	0.725	0.890	
Tag Split is	uckknife				
rag opin ja	o #41	0.277	0.016	0.028	
RR	0.541	0.377	0.916	0.938	
EB	0.477	0.689	0.856	0.615	
Tile jackkr	ife				
EE	0.004	0.010	0.000	0.002	
BB	0.794	0.752	0.565	0.331	
EB	0.172	0.419	0.962	0.790	
Phase jack	knife				
EF	0.673	0.409	0.126	0.339	
BB	0.591	0.739	0.842	0.944	
EB	0.529	0.577	0.840	0.659	
Mux Col ia	ackknife				
EE	0.812	0.587	0.196	0.204	
BB	0.826	0.972	0.293	0.283	
EB	0.866	0.968	0.876	0.697	
Alt Deck ja	ackknife				
EE	0.004	0.004	0.070	0.236	
BB	0.397	0.176	0.381	0.086	
EB	0.150	0.060	0.170	0.291	
Mux Row	jackknife				
EE	0.052	0.178	0.653	0.739	
BB	0.345	0.361	0.032	0.008	
EB	0.529	0.226	0.024	0.048	
Tile/Deck j	ackknife				
EE	0.048	0.088	0.144	0.132	
BB	0.908	0.840	0.629	0.269	
ĽВ	0.050	0.154	0.391	0.391	
Focal Plan	e inner/outer jac	kknife			
EE	0.230	0.597	0.022	0.090	
BB	0.216	0.531	0.046	0.092	
LD -	0.050	0.042	0.650	0.030	
Tile top/bo	ttom jackknife				
EE	0.289	0.347	0.459	0.599	
EB	0.293	0.236	0.154 0.902	0.028	
TTL	ourse in the life	0.000	0.702	0.702	
The inner/o	o zaz	0.522	0.120	0.495	
EE	0.727	0.533	0.128	0.485	
EB	0.465	0.737	0.208	0.168	
Moon inst-	knifa				
EE	0.400	0.680	0.481	0.670	
BB	0.499	0.089	0.481	0.679	
EB	0.289	0.359	0.531	0.307	
A/B offset	hest/worst				
FF	0.317	0.311	0.868	0.709	
BB	0.317	0.064	0.308	0.094	
EB	0.589	0.872	0.599	0.790	

Splits to check intrinsic detector properties

Checks for contamination from detectors with best/worst differential pointing. "Tile/dk" divides the data by the orientation of the detector on the sky.

Systematics Removal: Deprojection

False polarization from beam differences is deterministic, given temperature map (WMAP/Planck)

Deproject differential gain and pointing, subtract differential ellipticity

→ Residuals are small

Systematics beyond Beam imperfections

Many other systematics studied with simulations based on measured imperfections

No significant residuals for any!

Cross Correlation with BICEP1

BICEP2: Phased antenna array and TES readout 150 GHz

BICEP1: Feedhorns and NTD readout 150 and 100 GHz

BICEP1 is less sensitive, but **different technology** and **multiple colors** on the **same sky**.

Cross-correlations with both colors are **consistent** with the B2 auto spectrum

Cross with B2 x B1₁₀₀ detects BB power at 3σ

Additional Cross Spectra

 $\textbf{3.5\sigma}$ detection of BB in cross with color-combined BICEP1

Excess power also evident in cross with 2 years of Keck Array data (150 GHz)

Polarized Foregrounds

- Any polarized astrophysical emission between the surface of last scattering and us
- Dust "Blue" ~ v^{+1.75}
 - Needs careful thought
- Synchrotron "Red" ~ v⁻³
 - WMAP, Planck Sky Model: upper limit r<0.003. Negligible.
- Polarized sources (all possibilities but localized in space)
 - Planck source catalogs, ATCA. Negligible.

Polarized Dust Foreground Projections

The BICEP2 region is chosen to have extremely low foreground emission.

Various models of polarized dust emission to estimate foregrounds

 \rightarrow All well below signal level

Spectral Index of the B-mode Signal

- Constrain BB signal color with B2₁₅₀xB1₁₀₀
 - If **pure dust**, expect little correlaiton
 - If **pure synchrotron**, expect bright correlation
 - Find consistent with CMB
- Disfavor benchmark dust and synchrotron models at 2.2/2.3σ

Constraint on Tensor-to-scalar Ratio r

- Best fit **r = 0.20** (PTE of fit 0.9)
 - Consistent with large-field, GUT-scale inflation
- r = 0 is disfavored at 7.0σ
- Sample variance dominated → need more sky!

Effect of Foregrounds

- Foregrounds could contribute a small amount of observed BB
- Total power spectrum does not look like foreground expectations
- Subtracting DDM2 gives $r = 0.16^{+0.06}_{-0.05}$
- Still disfavors r = 0 at 5.9σ

Parameter Constraints, For Example

- Some tension with SPT/Planck, etc.
 - Indirect measurement from temperature: r<0.11
- Could be relieved with running, foregrounds, etc.
- Specific resolution remains to be seen

BICEP2 Results

What comes next for us?

The Keck Array (2011 -)

- 5x BICEP2
- New: pulse tube coolers
- 2012-13: 5 @ 150 GHz

A. G. Vieregg for the BICEP2 Collaboration

Winter Overs: Robert Schwarz and Steffen Richter

Achieved BICEP/Keck Array Program

New in 2014: Keck Array Upgraded to 100 GHz

- 2 Receivers now at 100 GHz
- Frequency coverage: important for immediate feedback on color

A. G. Vieregg for the BICEP2 Collaboration

BICEP3 (2015 -)

Will deploy in December 2014: 2056 Detectors @ 100 GHz

- Larger aperture, faster optics → 10x BICEP2's optical throughput
- Doubles the program's survey speed
- Important for foreground separation

BICEP3 Status

- Detectors in production at Caltech
- Successful cryogenic run at Stanford (December 2013)
- → Harvard for beam mapping and integration Spring 2014
- \rightarrow South Pole October 2014

A Foundation for Something Bigger

- What next on inflationary science?
 - Beat down sample variance on r, multiple frequencies, measure n_T
- CMB Stage-IV ground based
 experiment
 - Inflation
 - Physics at the GUT scale
 - Neutrino masses
 - Large scale structure
- A combination of large and small angular scales
- 100,000's of detectors in multiple platforms

Conclusions

- 5.3 σ excess above lensed Λ_{CDM} ; 7.0 σ preference for nonzero r
- Significant contributions from foregrounds and systematics disfavored
- Consistent with expectations from primordial gravitational waves from GUT-scale inflation
- We await confirmation from Planck, SPTPol, etc.
- The future of CMB science is as bright as ever

A. G. Vieregg for the BICEP2 Collaboration

DICED2/Kaak Arrow