Consiglio di sezione 15-05-2014

Decadimento beta di nuclei prodotti con fasci radioattivi: Attivita' GAMMA e prospettive per SPES

□ Gamma collaboration in CSN III: Universita': Angela Bracco, Franco Camera, Silvia Leoni, Fabio Crespi INFN : G.B., Nives Blasi,, Benedicte Million, Oliver Wieland Post-doc: A.I. Morales-Lopez, Luna Pellegri, Agnese Giaz

Beta decay: survey of general properties

- β^{-} decay is the most common type of radioactive decay
 - $-\beta^{-}$ decay
 - $-\beta^{+}$ decay
 - Electron capture (EC)

reasons to study beta decay:

- > Access to gross information on the decay, Half-life, Pn etc.
- First information on excited states far from stability
- Spin assignments owing to selection rules
- Access to non-yrast states
- > Definition of shapes of daughter nuclei
- Connection to mass measurements
- > Input for astrophysics and reactor heat calculation....

.....many more...

Z,N

Z+2

Z+1

Ζ

Z-1

Exotic nuclei exotic properties

Proximity of doubly magic ⁷⁸Ni N=40 sub-shell closure {HO}

Many new effects arising at small changes in nuclear configuration:

- deformations
- change in levels sequence
- collectivity
- isomerism and loss of isomerism
- monopole drift
- proton core excitations
- proton intruder isomers

Shell model calculations need to include a large valence space to describe all effects

Fig. 1. Fragment of the chart of nuclei around 68 Ni and 78 Ni with selected known microsecond isomers observed using 86 Kr fragmentation [7, 10, 11, 30].

K.Sieja and F. Nowacki, PRC 81, 061303 R (2010) R. Grzywacz et al., Eur. Phys. J. 25, 89 (2005).

Nucleosynthesis

R-process basics

Element formation beyond iron involving rapid neutron capture and radioactive decay

- β-decay half-lives (progenitor abundances, process speed)
- β-delayed n-emission branchings (final abundances)
- n-capture rates (Smoothing progenitor abundances during freezeout)

Beta spectroscopy: experimental technique

Mother
$$_^{148}Cs$$

 $\beta^ T_{1/2}$ = 146 ms
 $_^{148}Ba$ Daughter

Basic principle:

- Detect Mother nucleus implantation
- Correlate succeeding beta emission
 - \rightarrow measure HALF-LIFE (T_{1/2})

measure delayed GAMMA EMISSION, spectroscopy of daughter nucleus

2 ways to produce exotic nuclei →
2 different techniques to study beta spectroscopy

A) IN-FLIGHT: Stack of Si stripped detectors for implant/beta det.
B) ISOL: Tape system + Plastic/Si

Both surrounded by HPGe + additional detectors (LaBr3, Neutron det.)

IN-FLIGHT fragmentation reactions

Fragmentation reactions: Fragmentation of heavy ion beams (up to ²³⁸U) using thin targets

- ✓ both short-living (ms) and long living (100s) nuclei
- $\checkmark~$ Get information already with few particles
- Low production rates (μb-> fb)
- Need to run at low rate to distinguish contributions from each nucleus

* Active, position sensitive, pixelated stopper to correlate implanted ions (mother) with β-decay (daughter).
→ stack of several DSSSD to ensure implantation and detect electrons

Typical Trigger conditions Implantation: Signal coming from separator Decay: OR signal coming from Si detectors

 γ rays are usually acquired as SLAVE

Fragmentation facilities

GSI (Darmstadt- Germany)

Fragmentation facilities: results from a recent exp. @ RIKEN

29

1.319804e+07

2.647

27.77

0.02822

0.8317

Entries Mean x

Mean v

RMS x

RMS v

Со

Ni

- New half-lives •
- Delayed spectroscopy: •
 - Transitions measured for first time
 - Extension of level schemes

ISOL (Isotopic Separation On-Line) method

spallation/fission/fragmentation on thick targets, followed by chemical/physical processes to extract desired nuclei

- \checkmark high cross sections \rightarrow high rates
- ✓ Nearly mono-isotopical beams
- Not all nuclei can be successfully extracted
- long-living nuclei (> 100ms) owing to intermediate processes of effusion and diffusion

TAPE Station systems

(a)

Each "point" is a measuring point and can be equipped with egs. Ge detectors and Plastic or Si detectors for β particles Trigger given by implantation signal and β signal

Long-living activity is removed by moving away the tape

Beta decay spectroscopy in Milano

 Recent past: RISING @GSI "Spectroscopy of n-rich Pb nuclei", G.Benzoni et al.

G.Benzoni et al., PLB 715 (2012) 293 A.I.Morales et al., PRC 89 (2014) 014324 + conf. proceedings

• Present:

* EURICA campaign @ RIKEN "Structural changes btw N=40 and N=50 next to Ni isotopes", G.Benzoni et al.

→ under analysis. ARIS2014 - Tokyo,

* ISOLDE @CERN

"Study of octupole deformation in n-rich Ba isotopes populated via β decay",

G.Benzoni et al.

To run 7-12 August

Existence of octupole static/dynamic deformations is a long standing quest attracting much attention

Strong octupole correlations show up due to interaction of orbitals with $\Delta J = \Delta I = 3$ Two predicted regions for octupole def. are around Ba and Th-Ra Possibility of having dynamic and static correlations \rightarrow Theoretical models do not agree on onset of static deformations

Beta decay spectroscopy in Milano

Future: SPES (Selective Production of Exotic Species) @ LNL "A Letter of Intent for Beta-Decay Spectroscopy at SPES", G.Benzoni et al. Construction of a decay station (tape system) @ LNL to use beams of SPES

high performance cyclotron with high output current (~0.7 mA) and high energy (up to 70 MeV), together with the related infrastructure for the accelerator and experimental stations.

The beams will be dedicated to the nuclear physics facility producing neutron-rich ions by collisions of protons onto a UCx target ALPI RFQ Charge Breeder K HRMS ISOL 2 Radioisotopes Labs

Beta counting station is being developed together with HRIBF (Oak Ridge, USA), Bordeaux (France), ISOLDE (CERN)

Timeline: Cyclotron installation 2015 First beams available 2016

- Moving tape system
- Plastic detectors surrounding measuring point
- HPGe detectors (GALILEO-Clover), neutron detectors (NEDA),
- LaBr3 detectors: fast timing for half-lives meas.
 - total absorption spectrometer

Conclusions

Beta decay studies in exotic nuclei:

- A good tool to access first info on nuclei
- Strong correlation with nuclear astrophysics (nucleosynthesis)
- Can be applied to nuclei produced both with IN-FLIGHT and ISOL methods
- Gamma spectroscopy group in Milano has a lively program to study beta decays with both techniques
- □ Recently published analysis on n-rich Tl-Pb-Bi
- □ Current analysis of nuclei around doubly-magic ⁷⁸Ni
- □ Scheduled exp. @ CERN on ¹⁵⁰⁻¹⁵²Ba
- > Future: construction and setup of a tape decay station @ SPES,LNL