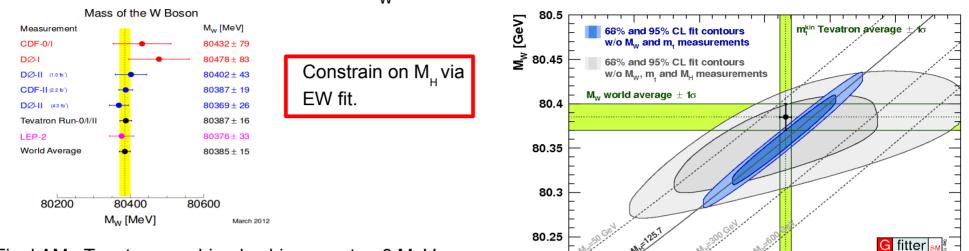

Prospettive fisica W, Z, QCD a LHC e dopo

Alberto Mengarelli(INFN Bologna)Fabio Cossutti(INFN Trieste)Giancarlo Panizzo(INFN Udine)

- Aims of this talk:
 - 1- Try to give a comprehensive review of the possible improovement on Electroweak and QCD measurement
 - 2- Give hints and suggestions to open a discussion

Focused on 14 TeV LHC 300 fb⁻¹ and HL-LHC 3000 fb⁻¹ luminosities with also "numbers" for future collider: ILC, TLEP


INTRODUCTION/2

Standard Model studies in \geq 2014 as indirect search of new physics Precision observables are important to characterize new physics...if any

- Electroweak:
 - m_w
 - $sin^2(\theta_{eff}^{I})$
 - Multi-boson production TGC & QGC
- QCD:
 - PDF
 - $\alpha_{s}(M_{z}^{2})$
 - QCD high order corrections
- Summary and Hints for discussion

Measuring M_w

A precise measurement of $\rm M_{\rm w}$ provides a crucial test on the SM predictions

140

160

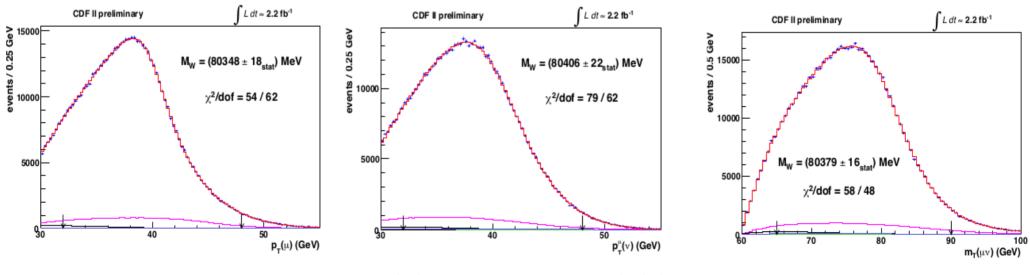
170

Correction and EW corrections.

180

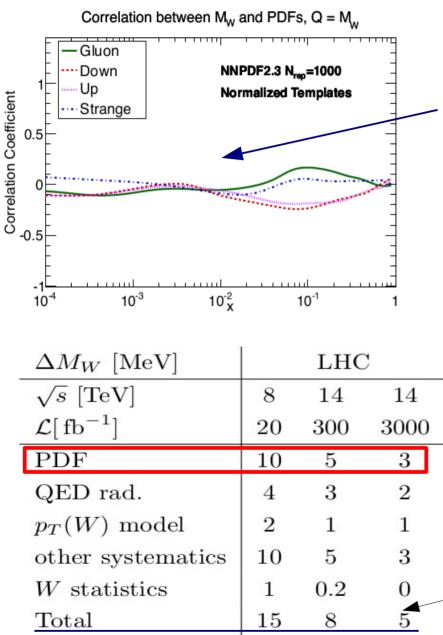
Need to understand QCD higher order

190


200

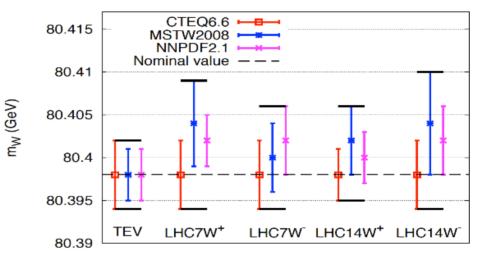
m,[GeV]

150


Final $\Delta M_{\rm W}$ Tevatron combined achievement: ~ 9 MeV

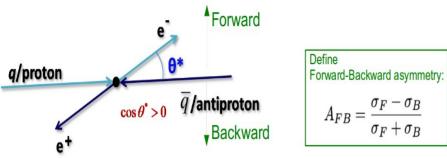
W boson mass M_w measured from the transverse mass distribution of the lepton pair $m_{\tau}(Iv)$ or the transverse momentum of the charged lepton or neutrino

22/05/2014


Workshop LTS1 2014 - La Biodola

PDF uncertainty @LHC of order 10 MeV (2xTevatron)

To reduce PDF uncertainty in the M_w measurement from m_T^W , new data constraining all quark flavors and gluons in the broadest possible x range are needed


NLO-QCD, normalized transverse mass distribution

Unc. can be reduced to 5(3) MeV (NNPDF2.3) if descrepancies between sets is removed (Rojo, Vicini, 2013)

Reasonable ambition for LHC is a target of **5 MeV** in ΔM_w as total precision

Measuring sin²(0⁴,

In hadron collider the forward-backward asymmetry ($A_{_{FB}}$) is measured and used to determine the $sin^2(\theta^I_{_{eff}})$

Measuring $\sin^2(\theta_{eff}^l)$ at *pp* collider (LHC) is difficult due to reduction/dilution of A_{FB}

0

0.235

o

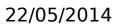
0.23

ATLAS Preliminary

L dt = 4.8 fb⁻¹@ √s = 7 TeV

0.24

0.245


sin²θ_w^{eff}

ATLAS partially solves the problem using forward lepton (reduction of unc.)

CF electron : $\sin^2 \theta_{\text{eff}}^l = 0.2304 \pm 0.0006 \text{(stat.)} \pm 0.0010 \text{(syst.)}$

Precision achieved is comparable to Tevatron but not enough!

Tension between the two most precise measurements (LEP and SLD) to be solved

ATLAS, e CC

ATLAS, e CF

ATLAS combined

ATLAS, µ

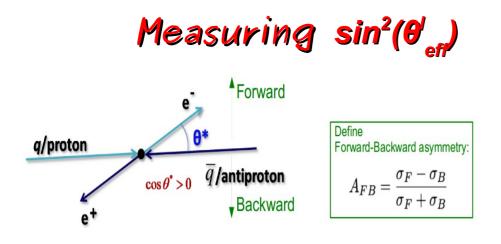
CMS

D0

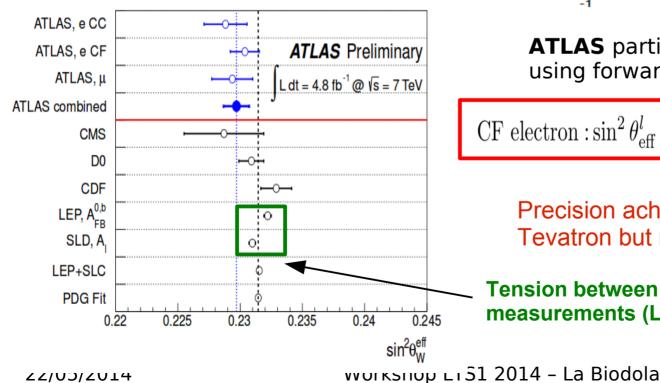
CDF

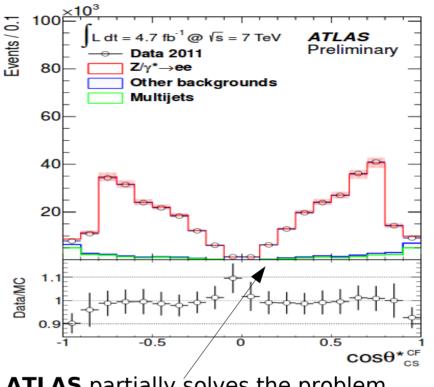
LEP, A^{0,b}_{FB}

SLD, A


LEP+SLC

PDG Fit


0.22


0.225

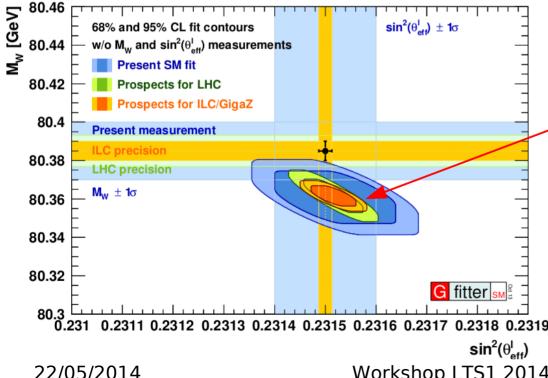
Workshop LTS1 2014 - La Biodola

Measuring $\sin^2(\theta_{eff}^{I})$ at *pp* collider (LHC) is difficult due to reduction/dilution of $A_{_{FR}}$

ATLAS partially solves the problem using forward lepton (reduction of unc.)

CF electron : $\sin^2 \theta_{\text{eff}}^l = 0.2304 \pm 0.0006 \text{(stat.)} \pm 0.0010 \text{(syst.)}$

Precision achieved is comparable to Tevatron but not enough!


Tension between the two most precise measurements (LEP and SLD) to be solved Recent improvements introduced in CDF analysis.

- Event weighting technique, cancellation of acceptance errors and also reduces the arXiv[.]0911 2850 statistical errors by 20% (40% pp collider).
- Momentum scale corrections, remove the bias in determination of muon momenta.

arXiv:1208.3710

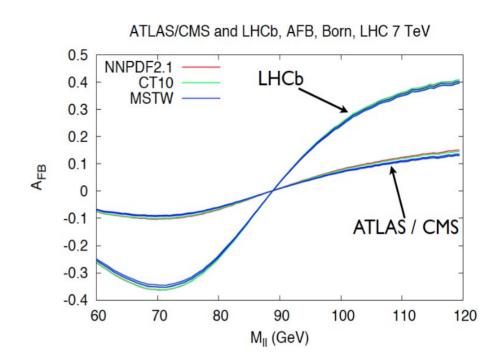
In hadron collider measurment theory uncertainty improovement on PDF and QCD correction of factor 7 and 2 are needed

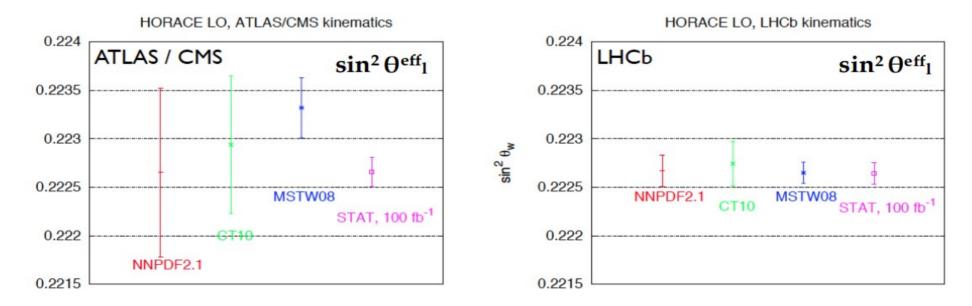
Projection on LHC precision with expected improvements on PDFs and forward lepton tagging analysis show uncertaity comparable to LEP and **SLD** limits

$\Delta \sin^2 \theta_{\rm eff}^l \ [10^{-5}]$	ATLAS	CMS	LHC/pe	r expe	riment		
$\sqrt{s} [\text{TeV}]$	7	7	8	14	14		
$\mathcal{L}[\mathrm{fb}^{-1}]$	4.8	1.1	20	300	3000		
PDF	70	130	35	25	10		
higher order corr.	20	110	20	15	10		
other systematics	70	181	60(35)	20	15		
statistical	40	200	20	5	2		
Total	108	319	75 (57)	36	21		
Prediction on the uncerteinties of							

 $sin^{2}(\theta_{off}^{I})$ for LHC/HL-LHC

EWPOs fit results can test in deep SM consistency

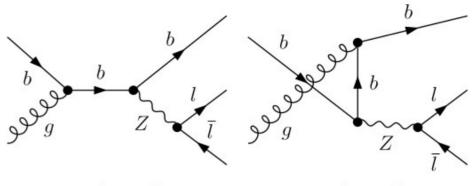

LHC/ILC fit results are obtaind assuming SM prediction:


$$\begin{split} \boldsymbol{\delta}_{\text{theo}} \, \boldsymbol{M}_{\text{w}} &= 4 \text{ MeV} \quad \longrightarrow \quad 1 \text{ MeV} \\ \boldsymbol{\delta}_{\text{theo}} \, \boldsymbol{\sin^2(\boldsymbol{\theta}_{\text{eff}}^{\text{I}})} = 4.7 \times 10^{-5} \quad \longrightarrow \quad 10^{-5} \end{split}$$

Workshop LTS1 2014 – La Biodola

What about LHCb ?

- Most sensitive to AFB asimmetry
- Less sensitive to PDF



Workshop LTS1 2014 - La Biodola

Measuring Abo FB Via Ab, LHC FB

- Highest discrepancy in SM Global Fits
 - δLEP1 = 16×10⁻⁴ vs δtheo ~ 4×10⁻⁴
 - pull value 2.5 σ = 40 ‰
- No experiment measured it after LEP ! Define:

 $A_{FB}^{b,\text{LHC}} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$

s-channel

u-channel

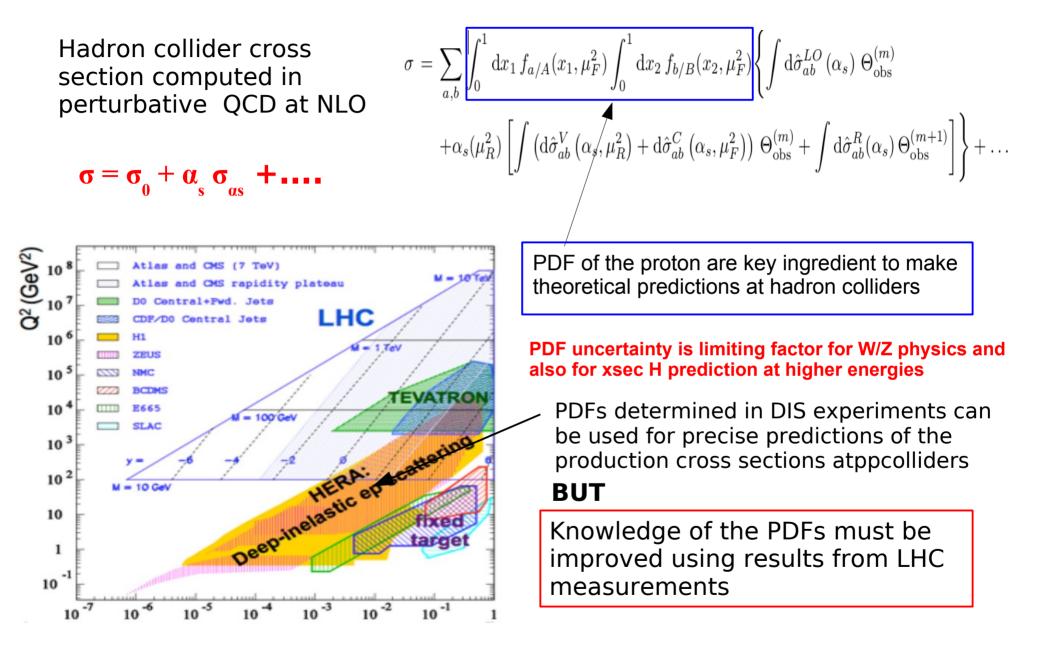
experimentally: adapt $A_{_{FB}}$ to LHC, where F/B defined event by
event in Z rest frame by the lepton angle wrt bjet axis

dilution due to bjet charge measurement

- Simplified feasibility studies set an upper bound on both statistical and systematic uncertainties
- Open field of research both from experimental and theoretical points of view (only LO prediction @ LHC): reduced uncertainties from PDFs and scale variations

$\delta A^{b,LHC}_{FB}$ [‰]	LHC	combined
\sqrt{s} [TeV]	14	14
$\mathcal{L} \ [\mathrm{fb}^{-1}]$	400	3000
PDF	5	2
other systematics	20	15
statistical	≤ 95	≤ 40
Total	≤ 97	≤ 43

http://dx.doi.org/10.1016/j.physletb.2014.01.010

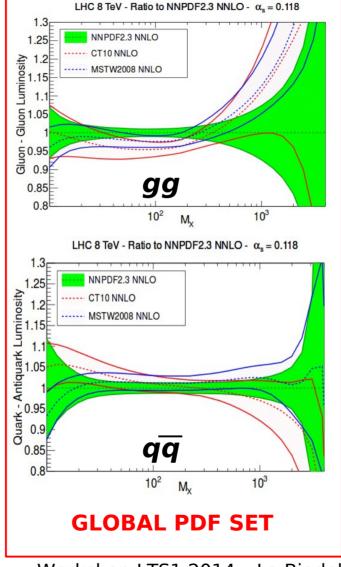

SUMMARY TABLE FOR M_w and $\sin^2(\theta'_{eff})$

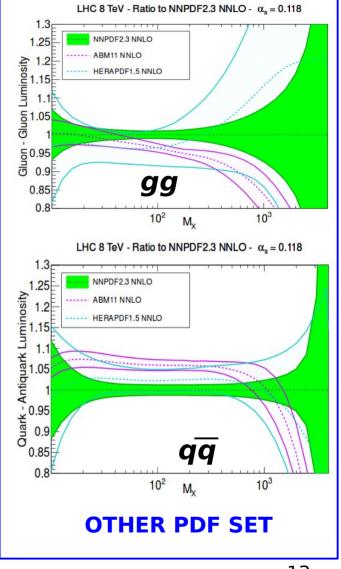
Current measured values: $M_w = 80.385 \pm 0.015 \text{ GeV}$ $\sin^2(\theta_{eff}^{I}) = (23153 \pm 16) \times 10^{-5}$ SM predictions: $M_w = 80.360 \pm 0.008 \text{ GeV}$ $\sin^2(\theta_{eff}^{I}) = (23127 \pm 7.3) \times 10^{-5}$

	LHC	LHC	ILC/GigaZ	ILC	ILC	ILC	TLEP	SM prediction
$\sqrt{s} [\text{TeV}]$	14	14	0.091	0.161	0.161	0.250	0.161	-
$\mathcal{L}[\mathrm{fb}^{-1}]$	300	3000		100	480	500	3000×4	-
$\Delta M_W \; [{ m MeV}]$	8	5	-	4.1-4.5	2.3-2.9	2.8	< 1.2	4.2(3.0)
$\Delta \sin^2 \theta_{\text{eff}}^{\ell} [10^{-5}]$	36	21	1.3	-	-	-	0.3	3.0(2.6)
						~		

- LHC/HL-LHC precision measurements of M_w and $sin^2(\theta_{eff}^l)$ limited by uncertainty on PDFs and theoretical QCD predictions.
- Great improovement will come from Lepton collider: ILC, TLEP.

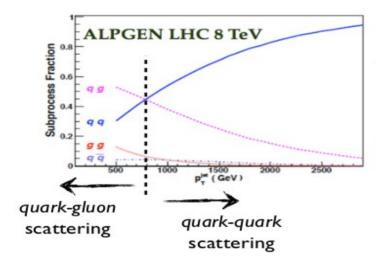
QCD: Parton Distribution Functions


PDFs: Status of the Art


Latest comparisons between recent NNLO PDFs at the level of parton luminosities and cross section

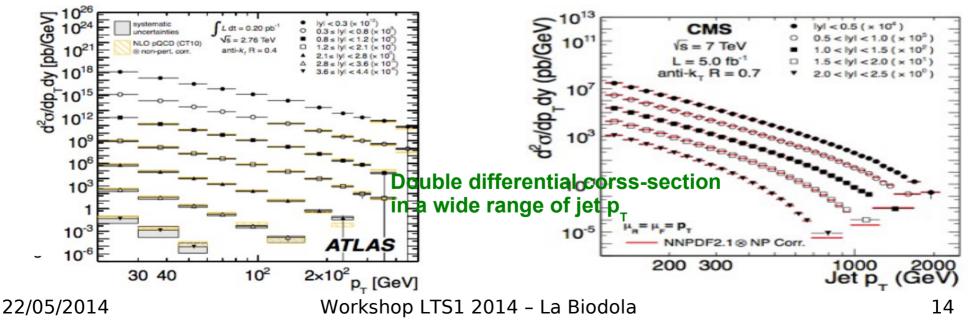
JHEP 1304, 125 (2013)

For **gg** luminosity not so good agreement in the region of the EW scale between GLOBAL PDF SET

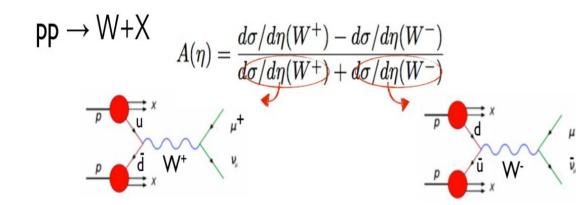

- For *qq* luminosity quite good agreement in the region of the EW scale between GLOBAL PDF SET
- Uncertainty blow up for large-mass final states

PDF constrain: jet production

Multijet production is the dominant high transverse momentum process at LHC

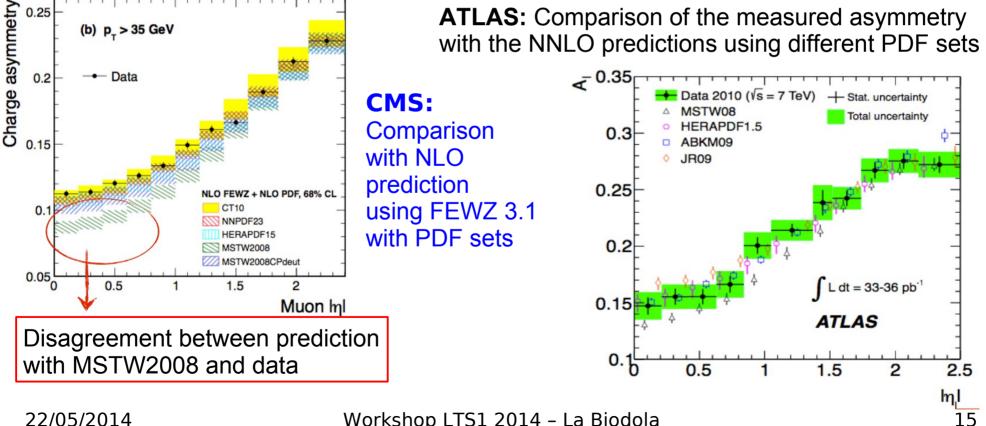


EPJC (2013) 73 2509


- for pT < 800 GeV, quark-gluon scattering is dominant jet production sensitive to the gluon
- for pT > 800 GeV, quark-quark scattering is dominant jet production sensitive to the quark

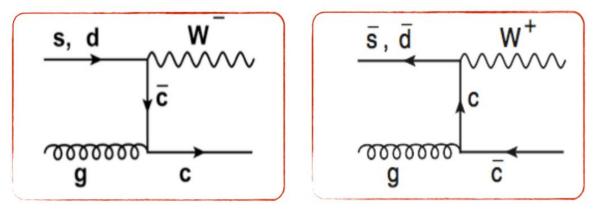
Data are found to be generally well described by theoretical predictions, corrected for non-perturbative effects

Phys. Lett. B 718 (2013) 752


PDF constrain: Asimmetry in W decay

CMS, $L = 4.7 \text{ fb}^{-1} \text{ at } \sqrt{\text{s}} = 7 \text{ TeV}$

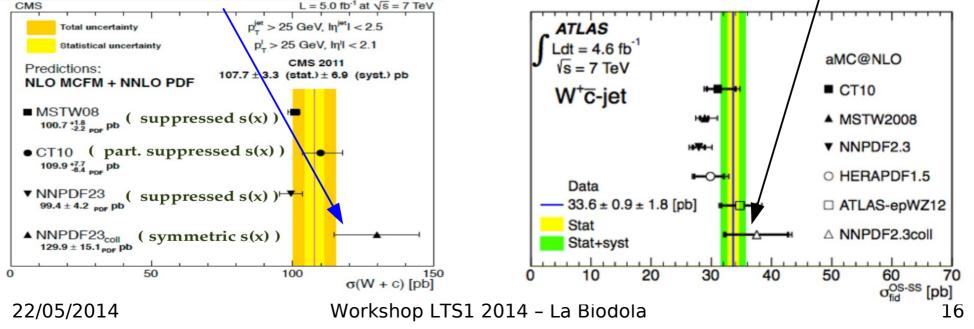
- In pp collision W⁺ is produced in eccess respect W⁻
- A(W) sensitive to valence quark distribution via ptoduction: $ud(ud) \rightarrow W^{+(-)}$
- LHC can contribute to understand PDF in the $10^{-3} < x < 10^{-1}$ range


ATLAS: Comparison of the measured asymmetry with the NNLO predictions using different PDF sets

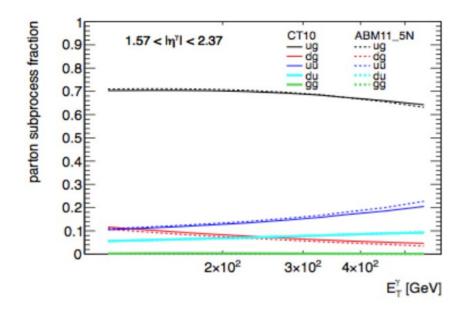
0.25

(b) p_ > 35 GeV

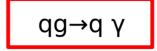
PDF constrain: W + c production



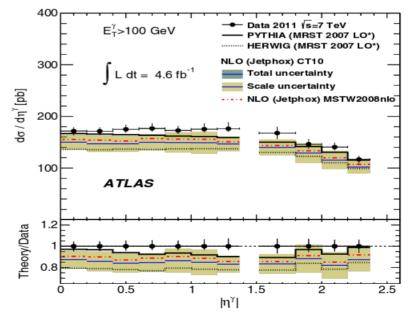
- In pre-LHC PDF fits, strangeness s(x,Q) mostly constrained from DIS neutrino data
- W production in association with charm quarks provide a clean probe of the strange PDF at the LHC


Measured by ATLAS (arxiv:1402.6263) and CMS (arxiv:13101138) with somewhat opposite (?) conclusions

CMS: s suppression in agreement with DIS data


PDF constrain: Isolated photon production

ATLAS measurement of the cross section for the production of isolated prompt photons as a function of photons pseudorapidity and transverse energy


> Data agree with NLO prediction based on CT10 and MSTW2008

Dominant prompt photons production at LHC

Inclusive photon production cross section can provide significant constraints on the gluon distribution

Phys. Rev. D89,052004 (2014)

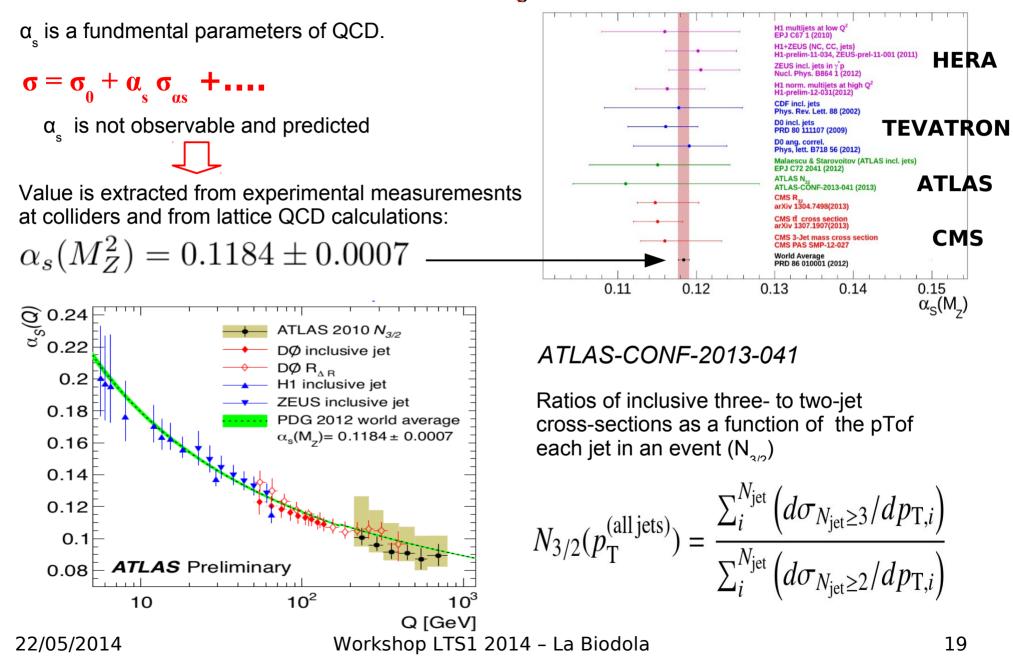
PDF: What next?

A sort of whishlist for LHC/HL-LHC:

Traditional measurements:

•Inclusive jets: data extending exp to higher pt with smaller systematics

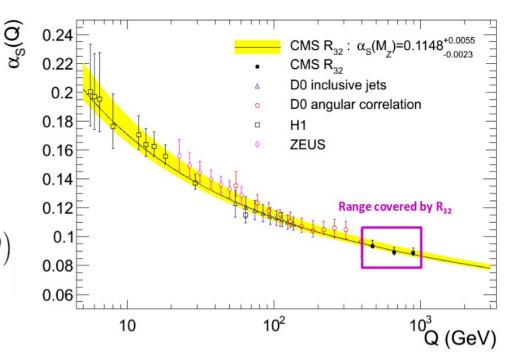
•Inclusive W and Z production and asymmetries: quark-antiquark separation (reducing uncertainties)


New LHC measurements:

•Isolated photons and photon+jets: medium x gluon (QCD Compton Scattering)

•W production with charm: quantify impact in strangeness

Quantitative improovment on PDF from LHC future data difficult to predict: exp. systematics, impact of pile-up at high luminosity...


Measuring $\alpha_s(M^2)$

Eur.Phys.J. C73 (2013) 2604

CMS: Ratio between 3-jet and 2-jet production as a function of the average p_{τ}

$$R_{32}\left(\langle p_{T1,2}\rangle\right) \equiv \frac{\mathrm{d}\sigma^{n_j \ge 3}/\mathrm{d}\left\langle p_{T1,2}\right\rangle}{\mathrm{d}\sigma^{n_j \ge 2}/\mathrm{d}\left\langle p_{T1,2}\right\rangle} \propto \alpha_s(Q)$$

From SNOWMASS report:

At hadron collider (LHC/HL-LHC) it will be challenging to achieve < 1% relative uncertainty on α_{c} .

Among hadron collider measurements best precision using tt cross section based on a full NNLO QCD calculation.

CMS Collaboration (2013), 1307.1907

<u>BUT</u>

The improved precision from hadron collider data at relatively high-Q² is still important for the robustness of α s determinations, and testing the running of α s and asymptotic freedom, as the current world average of α_s is driven by low-Q² measurements.

< 1% and also 0.1% possible at lepton collider (ILC/TLEP) using different methods

See Table in backup for details

QCD: Higher-order corrections

-State of the art: multi-body NLO predictions merged and matched with PS

-NNLO calculations are essential to reduce theoretical uncertainties - also in PDF analysis

-Up to last year, only small number of processes relevant for PDFs available at NNLO

-Recent important progress was made on some key processes NNLO inclusive jet production in the gluon-gluon channel has been completed (arxiv:1310.3993), jet data essential in PDF fits for gluons and large-x quarks

-In order to match the desired precision:

- At high energies EW and QCD corrections comparable, NLO EW needed: how to combine?
- high p_{τ} regions make predictions sensitive to EW already at 14 TeV

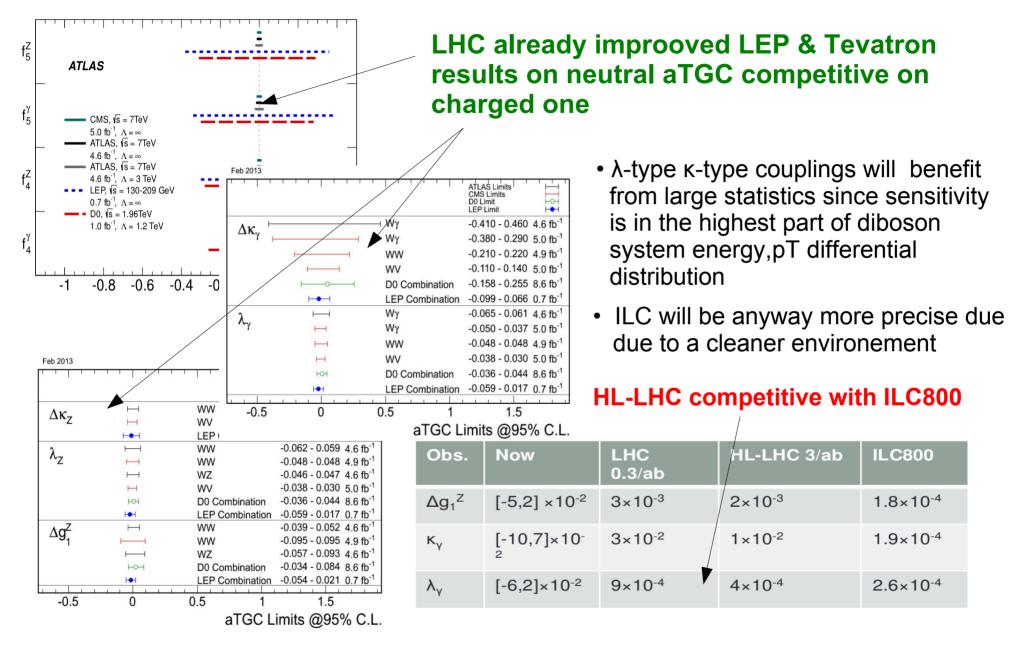
EW: Multi-bosons production TGC & QGC

Gauge boson couplings: basic
characteristics of a non-abelian theory
In SM triple and quartic GC
Deviation from SM, i.e. anomalous
couplings: new physics evidence

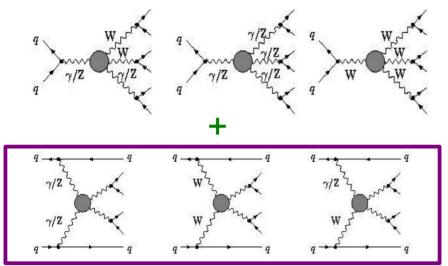
3-gauge couplings: SM anomalous $Z\gamma\gamma, W^+W^-Z$ **anomalous** $Z\gamma\gamma, ZZ\gamma, ZZZ$ **4-gauge couplings: SM** $W^+W^-\gamma\gamma, W^+W^-\gamma Z, W^+W^-ZZ, W^+W^-W^+W^$ **anomalous** $ZZ\gamma\gamma$

Analysis of multi-bosons production provides a stringent test of the SM

If the new physics scale is well above the energies reached new interactions can be included in the Lagrangian as higher-dimensional operators which are suppressed by the new physics scale Λ


EFFECTIVE FIELD THEORY APPROACH

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{N=WWW,W,B,\Phi W,\Phi B} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j=0,1} \frac{f_{S,j}}{\Lambda^4} \mathcal{O}_{S,j} + \sum_{j=0,\dots,9} \frac{f_{T,j}}{\Lambda^4} \mathcal{O}_{T,j} + \sum_{j=0,\dots,7} \frac{f_{M,j}}{\Lambda^4} \mathcal{O}_{M,j}$$


• If $\Lambda >>$ experimentally accessible scale, i.e. O(1-2 TeV), the SM is a low (compared to Λ) effective theory

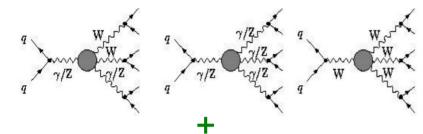
• Both TGC and QGC in **dimension 6** operators, **dimension 8** add genuine QGC

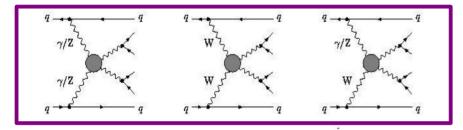
TGC current status

Limits on QGC

 Quartic Gauge Couplings arise in both *triboson* production or *diboson* produciton + jets (via VBS)

At LHC bounds on anomalous quartic gauge couplings from two-photon production of a W $^+$ W $^-$ pair at the reported by CMS


JHEP 1307, 116 (2013)


ATLAS sensitivity studies using the fully-leptonic decay modes of W $^\pm$ W $^\pm$, WZ and ZZ channels in the VBS mode as well as triboson in the Zyy channel

Increase of Luminosity crucial for gain in sensitivity

Parameter	dimension	channel	A [ToV]	300	fb^{-1}	3000	fb^{-1}
1 arameter	umension	Channer	Λ_{UV} [TeV]	5σ	$95\%~{\rm CL}$	5σ	$95\%~{\rm CL}$
$c_{\Phi W}/\Lambda^2$	6	ZZ	1.9	34 TeV^{-2}	$20 { m TeV^{-2}}$	$16 { m TeV^{-2}}$	$9.3 { m TeV^{-2}}$
$f_{S,0}/\Lambda^4$	8	$W^{\pm}W^{\pm}$	2.0	$10 { m TeV^{-4}}$	$6.8~{\rm TeV^{-4}}$	$4.5~{\rm TeV^{-4}}$	$0.8~{\rm TeV^{-4}}$
$f_{T,1}/\Lambda^4$	8	WZ	3.7	$1.3 { m TeV^{-4}}$	$0.7~{\rm TeV^{-4}}$	$0.6~{\rm TeV^{-4}}$	$0.3 { m TeV^{-4}}$
$f_{T,8}/\Lambda^4$	8	$Z\gamma\gamma$	12	$0.9~{\rm TeV^{-4}}$	$0.5~{\rm TeV^{-4}}$	$0.4~{\rm TeV^{-4}}$	$0.2 { m TeV^{-4}}$
$f_{T,9}/\Lambda^4$	8	$Z\gamma\gamma$	13	$2.0 \ {\rm TeV^{-4}}$	$0.9~{\rm TeV^{-4}}$	$0.7 \ { m TeV^{-4}}$	$0.3 { m TeV^{-4}}$

Limits on QGC

 Quartic Gauge Couplings arise in both *triboson* production or *diboson* produciton + jets (via VBS)

At LHC bounds on anomalous quartic gauge couplings from two-photon production of a W $^{\rm +}$ W $^{\rm -}$ pair at the reported by CMS

JHEP 1307, 116 (2013)

QGC in pp HE via VBS

Parameter	Luminosity	14 TeV		$33 { m TeV}$	
1 arameter	$[\mathrm{fb}^{-1}]$	5σ	95% CL	5σ	$95\%~{ m CL}$
$c_{\Phi W}/\Lambda^2 \; [{\rm TeV}^{-2}]$	3000	16.2(16.2)	9.7 (9.7)	13.2(13.2)	8.2(8.2)
	300	31.3(31.5)	18.2(18.3)	23.8(23.8)	14.7(14.7)
$f_{T,8}/\Lambda^4 \; [{\rm TeV}^{-4}]$	3000	2.9(4.7)	1.7(2.4)	1.6(1.7)	1.0(1.3)
	300	5.5(8.4)	3.2(5.3)	2.8(2.3)	1.8(1.8)
$f_{T,9}/\Lambda^4 \; [{\rm TeV}^{-4}]$	3000	5.7(6.3)	3.9(4.6)	3.8(6.6)	2.5(3.5)
	300	8.7 (9.0)	6.2(6.7)	6.3(10.1)	4.2 (8.2)

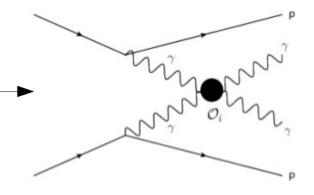
Sensitivity increase from 14 to 33 TeV ~ 1.2 - 2 for dim-6 (WZ,ZZ) ~ 12 for dim-8 (Z $\gamma\gamma$) Tribosons look very sensitive to \sqrt{s}

LHC better by 1-2 orders of magnitude compared to lepton colliders

QGC via photon-photon scattering

The ATLAS Forward Physics Project (AFP) and the Precision Proton Spectrometer (PPS, CMS/TOTEM)

Final state can be $\gamma\gamma,$ WW , ZZ \rightarrow ideal to study anomalous quartic gauge couplings (aQGC)


γγγγ anomalous couplings No constraints from collider experiments

Requirement of two intact protons + kinematics constraints \rightarrow strong background reduction

$L_{4\gamma} = \zeta_1^{\gamma} F_{\mu}$	$_{_{\mu u}}F^{\mu u}F_{ ho\sigma}F^{ ho\sigma}$	$T + \frac{\zeta^{\gamma}}{2} F_{\mu\nu} F^{\nu}$	${}^{ ho}F_{ ho\sigma}F^{\sigma\mu}$	(dimension 8)
--	--	---	--------------------------------------	---------------

Luminosity	$300 {\rm fb}^{-1}$	$300 {\rm fb}^{-1}$	300 fb ⁻¹	3000 fb ⁻¹
pile-up (µ)	50	50	50	200
coupling	\geq 1 conv. γ	\geq 1 conv. γ	all γ	all γ
(GeV ⁻⁴)	5σ	95% CL	95% CL	95% CL
ζ_1 f.f.	$1 \cdot 10^{-13}$	$9 \cdot 10^{-14}$	$5 \cdot 10^{-14}$	$2.5 \cdot 10^{-14}$
ζ_1 no f.f.	$3.5 \cdot 10^{-14}$	$2.5 \cdot 10^{-14}$	$1.5 \cdot 10^{-14}$	$7 \cdot 10^{-15}$
ζ_2 f.f.	$2.5 \cdot 10^{-13}$	$1.5 \cdot 10^{-13}$	$1 \cdot 10^{-13}$	$4.5 \cdot 10^{-14}$
ζ_2 no f.f.	$7.5 \cdot 10^{-14}$	$5.5 \cdot 10^{-14}$	$3 \cdot 10^{-14}$	$1.5 \cdot 10^{-14}$

arXiv:1312.5153 (2013)

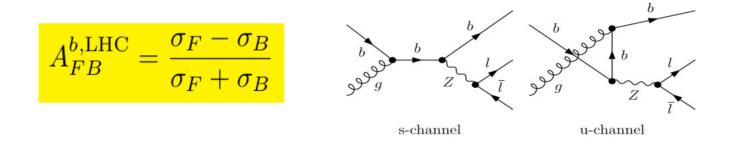
Summary & hints for discussion

- The utility of the W/Z precision measurements depends on the scenario
 - If new physics directly discovered, they are a tool to characterize it
 - Otherwise they are a tool to probe regions kinematically inaccessible
 - m_w and $sin^2(\theta_{eff})$ have different sensitivities to oblique corrections
- Boson couplings are sensitive to physics at high scales
 - The higher the precision the higher the scale probed, in a sense precision always wins (in a wide range)
- Hadronic machines require lots of QCD work to give the best results, both theoretical and experimental
 - PDFs first of all

BACKUP SLIDES

22/05/2014

Workshop LTS1 2014 - La Biodola


SUMMARY TABLE ON a (M2)

Method	Current relative precision	Future relative precision
e^+e^- evt shapes	$expt \sim 1\%$ (LEP)	< 1% possible (ILC/TLEP)
e'e evt snapes	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.)	27 ~ 1% (control n.p. via Q^2 -dep.)
e^+e^- jet rates	$expt \sim 2\% (LEP)$	< 1% possible (ILC/TLEP)
e'e jet lates	thry $\sim 1\%$ (NNLO, n.p. moderate)	$\sim 0.5\%$ (NLL missing)
precision EW	$expt \sim 3\% \ (R_Z, LEP)$	0.1% (TLEP 10), 0.5% (ILC 11)
precision E w	thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9,2]	29 $\sim 0.3\%$ (N ⁴ LO feasible, ~ 10 yrs)
τ decays	expt $\sim 0.5\%$ (LEP, B-factories)	< 0.2% possible (ILC/TLEP)
7 decays	thry $\sim 2\%$ (N ³ LO, n.p. small)	8 $\sim 1\%$ (N ⁴ LO feasible, ~ 10 yrs)
<i>ep</i> colliders	$\sim 1-2\%$ (pdf fit dependent) [30,3]	1, 0.1% (LHeC + HERA 23)
<i>ep</i> conders	(mostly theory, NNLO) 32,3	$\sim 0.5\%$ (at least N ³ LO required)
hadron colliders	~ 4% (Tev. jets), ~ 3% (LHC $t\bar{t}$)	< 1% challenging
nauron conders	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) 17,21,3	34 (NNLO jets imminent 22)
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)	$\sim 0.3\%$
lattice	(limited by accuracy of pert. th.) 35–3	$37 (\sim 5 \text{ yrs } 38)$

A^{b, LHC}_{FB}, motivations and definition

http://dx.doi.org/10.1016/j.physletb.2014.01.010

- Highest discrepancy in SM Global Fits is in the bottom sector:
 - pull value = $(O_{fit} O_{meas})/\sigma_{meas}$, pull $(A^{b,0}_{FB}) = 2.5$
- Can LHC/hadronic colliders play a role?
 - bottom-Z associated production, Z rest frame, b-jet reference axis

 Definition makes it proportional (@ LO) to the LEP observable! Suggests connection also between experimental strategies ...

Measuring A^{b, LHC} FB

http://dx.doi.org/10.1016/j.physletb.2014.01.010

• Key ingredient is to adapt LEP exp. observables to new process/collider:

$$\langle Q_{FB} \rangle \equiv \left\langle (-1)^{FB} Q_{\text{jet}} \right\rangle$$

• Then everything follows, e.g. non pure sample:

$$\langle Q_{FB} \rangle = \sum_{f} \delta^{f} A_{FB}^{f,\text{LHC}} r_{f}$$

$\delta A^{b,LHC}_{FB}$ [‰]	LHC	combined
\sqrt{s} [TeV]	14	14
$\mathcal{L} ~[{ m fb}^{-1}]$	400	3000
PDF	5	2
other systematics	20	15
statistical	≤ 95	≤ 40
Total	≤ 97	≤ 43

- r_{f} flavour fractions, δ_{f} mean charges
- dilution due to δ_{f} (jet charge measurement)
- Simplified feasibility studies set an upper bound on both statistical and systematic uncertainties
- Open field of research both from experimental and theoretical points of view (only LO prediction @ LHC)