

The Electron Capture Decay of ¹⁶³Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity

ERC-Advanced Grant 2013

PI: <u>Stefano Ragazzi</u>

Host Institution: INFN

Additional Beneficiary: Univ. di Milano-Bicocca

INFN Sez. Milano-Bicocca, INFN Sez. Genova, LNGS,

INFN Sez. Roma, Univ. Lisboa, Miami Univ., NIST, JPL, ...

Angelo Nucciotti

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

- Neutrino physics
- Direct neutrino mass measurements
- INTRE calorimetry with thermal detectors
- In 163 Ho calorimetry with thermal detectors
- HOLMES experiment
- Conclusions

Neutrino properties

- neutrinos are massive fermions
- there are 3 active neutrino flavors
- neutrino flavor states are mixtures of mass states

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 3/59

Neutrino open guestions

- mass scale: i.e. mass of the lightest v
- degenerate $(m_1 \approx m_2 \approx m_3)$ or hierarchical masses
 - ▶ mass hierarchy: $m_1 < m_2 \ll m_3$ or $m_3 \ll m_1 \approx m_2$?
- $\mathbf{v} = \overline{\mathbf{v}}$? i.e. Dirac or Majorana particle?
- CP violation in the lepton sector

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 4/59

Mass scale: experimental tools / 1

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 5/59

The Challenge: absolute neutrino mass

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 6/59

Direct neutrino mass measurements

\blacksquare kinematics of weak decays with ν emission

- ▶ low *Q* nuclear beta decays (³H, ¹⁸⁷Re...)
- only energy and momentum conservation
- ► no further assumptions

2 approaches with different systematics:

- spectrometry: the β source is outside the detector
- calorimetry: the β source is contained in the detector which measures all the energy released except the ν energy

electron kinetic energy

KATRIN large MAC-E filter spectrometer with ³H

MARE/ECHO/HOLMES

array of low temperature microcalorimeters with ¹⁸⁷Re or ¹⁶³Ho ≈5 mm

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 7/59

Experimental approaches

Spectrometers: source \neq **detector**

β analyzer

differential or integral spectrometer: β s from the ³H spectrum δE are magnetically and/or electrostatically selected and transported to the counter

Calorimeters: source ⊆ detector

β calorimeter

ideally measures all the energy *E* released in the decay except for the \overline{v}_e energy: $E = E_0 - E_v$

- high statistics
- high energy resolution
- Iarge systematics
 - source effects
 - decays to excited states
- background
- no backscattering
- no energy losses in the source
- no atomic/molecular final state effects
- no solid state excitation
- limited statistics
- pile-up background
- spectrum related systematics

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 8/59

Calorimetry with low temperature detectors (LTD)

- (ionization, excitation \rightarrow heat) \rightarrow calorimetry
- ▷ $\Delta T = E/C$ with C total thermal capacity (phonons, electrons, spins...) phonons: $C \sim T^3$ (Debye law) in dielectrics or superconductors below T_c $\rightarrow low T$ (i.e. $T \ll 1K$)
- $\triangleright \Delta E_{ms} = (k_{\rm B} T^2 C)^{1/2}$ due statistical fluctuations of internal energy E
- $\triangleright \Delta T(t) = E/C e^{-t/\tau}$ with $\tau = C/G$ and G thermal conductance

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 9/59

Calorimeter statistical sensitivity

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 10/59

¹⁸⁷Re experiments: MANU-MIBETA ... MARE

- **MARE** (Microcalorimeter arrays for a Rhenium Experiment)
- project for a sub-eV direct neutrino mass measurement
- wide international interest since Orlando (USA) meeting in 2007
- phased approach to optimize detectors technology

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 11/59

¹⁸⁷Re experiment statistical sensitivity / 1

¹⁸⁷Re past mesurements

• total statistics $N_{ev} \approx 10^7$ events

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 12/59

¹⁸⁷Re experiment statistical sensitivity / 2

exposu	re requir	ed for 0	.2 eV <i>m</i> , se	ensitivity	bka = 0
Α _β	τ _R	∆ E	N _{ev}	exposure	DKY = 0
[Hz]	[µS]	[eV]	[counts]	det×year]	5000 pixels/array
1	1	1	0.2×10 ¹⁴	7.6×10 ⁵	8 arrays
10	1	1	0.7×10 ¹⁴	2.1×10 ⁵	10 years
10	3	3	1.3×10 ¹⁴	4.1×10 ⁵	400 g ^{nat} Re
10	5	5	1.9×10 ¹⁴	6.1×10 ⁵	¹⁸⁷ Re half-life time
10	10	10	3.3×10 ¹⁴	10.5×10⁵	
		ΞŪ			(1/2 - 43.2 Gy)
exposu	re requir	red for 0	.1 eV <i>m</i> , se	ensitivity	¹⁸⁷ Re natural abundance
exposu A _β	re requir	red for 0	.1 eV m _v se N _{ev}	exposure	¹⁸⁷ Re natural abundance a.i. = 63%
exposu A _β [Hz]	re requir ^τ _R [μs]	red for 0 ∆E [eV]	.1 eV m , se N _{ev} [counts]	exposure [det×year]	¹⁸⁷ Re natural abundance a.i. = 63% metallic Rhenium
exposu A _β [Hz] 1	re requir ^τ _R [μs] 0.1	red for 0 ∆E [eV] 0.1	.1 eV m, se <i>N</i> _{ev} [counts] 1.7×10 ¹⁴	exposure [det×year] 5.4×10 ⁶	¹⁸⁷ Re natural abundance a.i. = 63% metallic Rhenium → ≈1.0 Hz/mg/s
exposu A _β [Hz] 1 10	τ _R [μ s] 0.1 0.1	ed for 0 ΔE [eV] 0.1 0.1	1 eV m , set N_{ev} [counts] 1.7×10 ¹⁴ 5.3×10 ¹⁴	exposure [det×year] 5.4×10 ⁶ 1.7×10 ⁶	¹⁸⁷ Re natural abundance a.i. = 63% metallic Rhenium → ≈1.0 Hz/mg/s
exposu A _β [Hz] 1 10 10	τ _R [μ s] 0.1 1	10 red for 0 △E [eV] 0.1 0.1 1	1 eV m , so N_{ev} [counts] 1.7×10 ¹⁴ 5.3×10 ¹⁴ 10.3×10 ¹⁴	exposure [det×year] 5.4×10^{6} 1.7×10^{6} 3.3×10^{6}	¹⁸⁷ Re natural abundance a.i. = 63% metallic Rhenium → ≈1.0 Hz/mg/s
exposu A _β [Hz] 10 10 10	τ _R [μ s] 0.1 0.1 1 3	red for 0	1 eV m , so N_{ev} [counts] 1.7×10 ¹⁴ 5.3×10 ¹⁴ 10.3×10 ¹⁴ 21.4×10 ¹⁴	ensitivity exposure [det×year] 5.4×10^{6} 1.7×10^{6} 3.3×10^{6} 6.8×10^{6}	¹⁸⁷ Re natural abundance a.i. = 63% metallic Rhenium → ≈1.0 Hz/mg/s 20000 pixels/array 16 arrays

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 13/59

Rhenium experiment status and future

- Re detector development → no good results after **20+ years** of R&D
 - ► no clear understanding of Re absorber physics
 - purity and superconductivity?
 - extra heat capacity C due to nuclear quadrupole moment?
- low specific activity \rightarrow "large" masses \rightarrow fabrication issues
- possible large systematics
 - Beta Environmental Fine Structure (BEFS)
 - detector energy response function

future of Re experiments is not very bright...

Electron capture end-point experiment / 1

¹⁶³Ho + $e^- \rightarrow {}^{163}$ Dy* + ν_e

electron capture from shell \ge M1

A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- rate at end-point and v mass sensitivity depend on Q
 - ▶ Measured: $Q_{EC} = 2.2 \div 2.8$ keV. Recommended: Q = 2.555 keV
- $\tau_{y_{4}} \approx 4570$ years \rightarrow few active nuclei are needed

Electron capture end-point experiment / 2

- no direct calorimetric measurement of Q so far
- Q and atomic de-excitation spectrum poorly known
- complex pile-up spectrum
 - end-point spectrum shaped by $(\mathbf{Q} \mathbf{E}_c) \sqrt{(\mathbf{Q} \mathbf{E}_c)^2 m_v^2}$ but...

17/59

Statistical sensitivity: Montecarlo simulations

- 2×10^{11} ¹⁶³Ho nuclei \rightarrow 1 decay/s
- ¹⁶³Ho production: p.e. neutron irradiation of ¹⁶²Er enriched Er
- embed ¹⁶³Ho in thermal detectors for low energy X-rays spectroscopy

M. Galeazzi et al., accepted for publication by PRD, arXiv:1202.4763v2

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 18/59

¹⁶³Ho experiment statistical sensitivity / 1

	exposu	re requir	0 - 2200 eV			
	Α _β	τ _R	∆ E	N _{ev}	exposure	$\varphi_{\rm EC} = 2200 {\rm GV}$
	[Hz]	[µs]	[eV]	[counts]	[det×year]	DKG = 0
	1	1	1	2.8×10 ¹³	9.0×10 ⁵	5000 pixels/array
	1	0.1	1	1.3×10 ¹³	4.3×10 ⁵	3 arrays
$\left(\right.$	100	0.1	1	4.6×10 ¹³	1.5×10 ⁴	1 year
	10	0.1	1	2.8×10 ¹³	9.0×10 ⁴	$\approx 2 \times 10^{17}$ ¹⁶³ Ho nuc
	10	1	1	4.6×10 ¹³	1.5×10 ⁵	
-	exposu	re requir	ed for 0.	1 eV m , s	ensitivity	
	Α _β	τ _R	∆ E	N _{ev}	exposure	
	[Hz]	[µS]	[eV]	[counts]	[det×year]	
	1	0.1	0.3	1.2×10 ¹⁴	3.9×10 ⁶	5000 nixels/array
$\left(\right)$	100	0.1	0.3	6.4×10 ¹⁴	2.0×10 ⁵	4 arravs
	100	0.1	1	7.4×10 ¹⁴	2.4×10 ⁵	10 years
	10	0.1	1	4.5×10 ¹⁴	1.5×10 ⁶	$\approx 3 \times 10^{17}$ ¹⁶³ Ho nuc
	10	1	1	7.4×10^{14}	2.4×10 ⁶	

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 19/59

¹⁶³Ho experiment statistical sensitivity / 2

exposu	re requir	0 - 2800 oV			
Α _β	τ _R	∆ E	N _{ev}	exposure	$Q_{EC} = 2000 eV$
[Hz]	[µs]	[eV]	[counts]	[det×year]	DKg = 0
1	1	1	3.8×1015	1.2×10 ⁸	60000 pixels/array
1	0.1	1	1.6×1015	5.3×10 ⁷	5 arrays
100	0.1	1	9.8×1015	3.1×10 ⁶	5 year
10	0.1	1	3.8×1015	1.2×107	\approx 4 \times 10 ¹⁸ ¹⁶³ Ho nucle
10	1	1	9.8×10 ¹⁵	3.1×10 ⁷	
exposu	re requir	ed for 0	.1 eV <i>m</i>, s	ensitivity	
β	τ _R	∆ E	N _{ev}	exposure	
[Hz]	[µS]	[eV]	[counts]	[det×year]	
1	0.1	0.3	2.6×10 ¹⁶	8.2×10 ⁸	10 ⁶ nixels/array
100	0.1	0.3	1.9×1017	5.9×10 ⁷	6 arrays
100	0.1	1	1.6×1017	5.0×10 ⁷	10 years
10	0.1	1	6.1×10 ¹⁶	1.9×10 ⁸	$\approx 8 \times 10^{19}$ ¹⁶³ Ho nucle
10	1	7	1 C 1 017		

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 20/59

Holmium experiment status

In 163 Ho seems to be better than 187 Re

- ► higher specific activity → don't need a "Holmium detector"
- ► self calibrating → better systematics control
- ► but
 - higher $Q \rightarrow$ maybe less sensitive
 - pile-up spectrum
 - chemical effects on Q
- (at least) two projects
 - ECHO (Heidelberg)
 - ► MARE (→ now HOLMES)
 - ► Los Alamos National Lab., Standford University ?, ...

common technical challenges

- ► clean ¹⁶³Ho production
- ▶ ¹⁶³Ho incorporation
- ► large channel number \rightarrow high speed multiplexing
- data handling (processing, storage, ...)

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 21/59

ECHO experiment

- Magnetic Metallic Calorimeters with Au absorbers (2 pixels)
 - ► $\Delta E \approx 8 \text{ eV}$ and $\tau_{rise} \approx 130 \text{ ns}$

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 22/59

HOLMES (ERC-Advanced Grant n. 340321)

goal

- neutrino mass measurement: m_v statistical sensitivity as low as 0.4 eV
- prove technique potential and scalability:
 - ► assess EC Q-value
 - assess systematic errors

baseline

- Transition Edge Sensors (TES) with ¹⁶³Ho implanted Au absorbers
 - ► 6.5×10^{13} nuclei per detector \rightarrow 300 dec/sec
 - ► $\Delta E \approx 1 \text{eV}$ and $\tau_{R} \approx 1 \mu \text{s}$
- 1000 channel array
 - ► $6.5 \times 10^{16 \ 163}$ Ho nuclei $\rightarrow \approx 18 \mu g$
 - ► 3x10¹³ events in 3 years

→ Project Start: 1 Feb 2014

http://artico.mib.infn.it/nucriomib/experiments/holmes

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 23/59

HOLMES baseline statistical sensitivity

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 24/59

Statistical sensitivity and single pixel activity

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 25/59

More MC simulations...

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 26/59

Low energy background sources / 1

• environmental γ radiation

- Compton interactions
- Photoelectric interactions with photoelectron escape
- fluorescent X-rays and X-ray escape lines
- γ and β from close surroundings
- cosmic rays
 - muons, ...
 - EM showers

Cosmic rays at sea level (muons)

- Au pixel: 200×200×3 μm³
 - ⊳ (Δ*E*)≈ 10keV, *r* ≈ 1 d⁻¹
- array Si substrate: 20×20×0.5 mm³

⊳ (Δ*E*)≈ 300keV, *r* ≈ 7000 d⁻¹

- **MIBETA**: $300 \times 300 \times 150 \ \mu\text{m}^3 \ \text{AgReO}_4 \ \text{crystals}$
 - ▶ bkg(2..5keV)≈1.5×10⁻⁴ c/eV/d/det

• TES @NIST (1600m): 350×350×2.5 μm³ Bi absorbers

bkg<1 c/eV/d/det (preliminary measurement: not conclusive...)</p>

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 27/59

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 28/59

Effect of background on sensitivity

Low energy background sources / 2

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 29/59

- ¹⁶³Ho isotope production
- ¹⁶³Ho isotope embedding in detector
- single TES optimization and testing
- TES array design, engineering and testing
- SQUID read-out and multiplexing optimization and testing
- room temperature signal processing and in-line analysis
- cryogenic set-up

¹⁶³Ho production and embedding

¹⁶³Ho production by nuclear reaction

- ► high yield
- ▶ low by-products contaminations (in particular ^{166m}Ho, $\beta \tau_{1/2}$ =1200y)
- not all cross sections are well known
 - \rightarrow neutron activation of enriched ¹⁶²Er (nuclear reactor)
 - → ¹⁶³Dy(p,n)¹⁶³Ho E_p >10 MeV (direct, low yield → PSI?)
 - \rightarrow ^{nat}Dy(α ,xn)¹⁶³Er and ¹⁵⁹Tb(⁷Li, 3n)¹⁶³Er

¹⁶³Ho Separation from Dy, Er and more ...

- radiochemistry (before and/or after irradiation)
- magnetic mass separation
- ▶ resonance ionization laser ion source (RILIS)?
- ¹⁶³Ho embedding in detector absorber
- implantation (+magnetic separation)
- Au film deposition for full containment

FCHO

HOLMES baseline

J.W. Engle et al., NIM B 311 (2013) 131-138

		•		-	-
particle	р	<i>n</i> 10 ¹⁴ n/cm2/s	ρ 16 MeV 80 μΑ	ρ 24 MeV 240 μΑ	α 40 MeV 30 μA
target	W/Ta	¹⁶² Er (40%)	^{nat} Dy 200mg/cm ²	^{nat} Dy 20g	^{nat} Dy "thick"
¹⁶³ Ho prod rate [nuclei/h]	1014	10 ¹³⁻¹⁵ / mg ¹⁶² Er	1014	1015	1013
U. Koester @NuMass 2013 —		A. Nucciotti. Lab	oratori Nazional	li del Gran Sasso.	14/5/2014 31/5

¹⁶³Ho production by neutron activation

- only few experimental data for almost all cross sections involved
- possibly high yield
 - ► $\approx 3 \times 10^{12} \, {}^{163}$ Ho nuclei/mg(162 Er)/h for a thermal neutron flux of 10^{13} n/cm²/s
- 163 Ho(n, γ) 164 Ho (burn-up)?
- ¹⁶⁵Ho(n, γ) (from Ho contaminations or ¹⁶⁴Er(n, γ)) → ^{166m}Ho, $\beta \tau_{\frac{1}{12}}$ =1200y
- analyse ¹⁶³Ho content in MARE-RD activated samples \rightarrow ICPMS
- requires enrichement and oxide chemical form (Er_2O_3)

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 32/59

¹⁶³Ho production by p irradiation

¹⁶³Dy (p,n) ¹⁶³Ho and ¹⁶⁴Dy (p,2n) ¹⁶³Ho

- only few experimental data for almost all cross sections involved
- metallic Dy target with natural composition
- lower yield
- many high energy neutrons produced by (p,xn) on Dy isotopes
 - ▶ ¹⁶⁵Ho(n, γ) (from Ho contaminations or ¹⁶⁴Dy(n, γ)) → ^{166m}Ho, $\beta \tau_{\frac{1}{12}}$ =1200y

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 33/59

MARE-RD: 163 Ho production

- ¹⁶³Ho production by Er:¹⁶²Er enriched neutron irradiation
 - \triangleright 3 irradiatons at Lisboa research reactor (ITN)
 - ▷ 1 irradiation at Grenoble reactor (ILL) \rightarrow >10MBq of ¹⁶³Ho (now *cooling*...)
- Er_2O_3/Ho_2O_3 thermoreduction \rightarrow metallic target for implantation
 - \triangleright Y₅Si₃+Ho₂O₃ \rightarrow Y_{5-x}Ho_xSi₃ a 600-800°C: didn't work out...
 - ▷ $Ho_2O_3 + 2Y(met) \rightarrow 2Ho(met) + Y_2O_3$ at 2000°C: it worked...

- effect of Ho/Er implantation in Au absorbers
 - magnetic contributions to Au heat capacity due to hyperfine interactions

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 34/59

MARE-RD: Ho oxide reduction

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 35/59

MARE-RD: tests on irradiated samples

- sample from irradiated Er_2O_3 (¹⁶²Er enriched at 20%) powder (#2)
- $\text{Er}_2\text{O}_3/\text{Ho}_2\text{O}_3$ distillation at $\approx 2000\text{K}$
- deposition on thinned Sn single crystal

- ▶ no ¹⁶³Ho peaks
- ► continuum ≈1c/s
 - → β from ¹⁵²Eu in irradiated sample?
- ► more tests...
- ► sample analysis ICPMS (@LNGS), ...
- ³⁰⁰⁰ ► sample purification

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 36/59

HOLMES detectors

- Transition Edge Sensors (TES) with Bi/Au absorber
 - bot electron microcalorimeters with electro-thermal feedback
 - \triangleright 2 μm thick electrodeposited Au for full absorbtion
- MoAu or MoCu proximity TES $\rightarrow T_c \approx 100 \text{mK}$
- on Si₂N₃ membrane

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 37/59

300

HOLMES detector array fabrication

- single pixel development @Genova
 - optimize design for speed and resolution
 - ▷ define process for ¹⁶³Ho implantation
- array design @Genova

¹⁶³**Ho**

Ge →

- subcontract array fabrication (NIST, Boulder, USA)
 - $\triangleright\,$ subcontractor fabricates array with 1 μm Au absorber
- Genova completes array fabrication

SiO

Si

- ▷ Genova implants ¹⁶³Ho at shallow depth (\approx 100Å)
- \triangleright Genova covers implant with 1 μm Au absorber
- \triangleright Genova completes array fabrication (Si₂N₃ release)

Si N

Мо

Cu

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 38/59

Cu

Bi

Ho

Au

HOLMES detector array

1000

NIST

→ HOLMES array: 256 sparse pixels (4x)

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 39/59

HOLMES array multiplexing: RF SQUID mw-mux

O. Noroozian et al., "High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array", proceedings LTD-15 arXiv:1310.7287

dc TES biasingalways ON TESs

$$\phi = \frac{2\pi M}{\Phi_0} I_{\text{TES}}$$

$$\phi = \arctan\left(\frac{\sum V_Q \sin \omega_m t}{\sum V_Q \cos \omega_m t}\right)$$

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 40/59

SN

HOLMES array multiplexing: DAQ

Digital multiplexing (Software Defined Radio) based on ROACH-2 open system

mux factor: 64 ADC: 550MS/s 12 bit

bandwidth/channel: 8.6MHz

- bandwidth for 1µs rise time: 160kHz
- \rightarrow 64 resonances between 0 and 550MHz
- → up-conversion → 5-5.5GHz
- \rightarrow down-conversion \rightarrow 0-500MHz
- \rightarrow IQ signal demux
- \rightarrow rfSQUID signal demodulation

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 41/59

HOLMES array multiplexing / 3

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 42/59

HOLMES signal processing and in-line analysis

data throughput with digitized pulses 3×10⁵ decay/s × 2k (rec len) × 16 bit = 2.5GB/s

- reduce resolution (12 bit) and record length (256)
- use variable sampling time
- real time pulse processing
 - optimal filtering, pile-up detection, pulse shape analysis
- commissioning and periodic minimum bias samples
 - tune parameters for real time pulse processing in normal data taking
 - full waveform saved to disk for immediate off-line analysis
 - Full spectrum (10% live time) and with ≈2.0keV thershold (90%)
 - **2TB/day** (to be stored only temporary)
- normal data taking
 - ▶ save only n-tuples (8 × 4 byte words) for each event above \approx 2.0keV
 - 140TB in 3 years

- ¹⁶³Ho production route (baseline: neutron activation of ¹⁶²Er)
 - \triangleright ¹⁶³Dy(p,n)¹⁶³Ho E_p >10 MeV at PSI
- Detector tecnology (baseline: TES with multiplexed SQUID read-out)
 - > Thermal mode microresonators with microwave multiplexing (FBK)
- Detector read-out (baseline: Code Division Multiplexing with dcSQUID)
 microwave rfSQUID multiplexing
 - Description of the microwave mux with Kinetic inductance parametric up-converter

large arrays for high flux high resolution X-rays spectroscopy

- \circ astrophysics \rightarrow ATHENA, ...
- \circ material science \rightarrow XAS, XAS imaging, XRF, XES ...
 - $\triangleright\,$ chemistry and biology
 - ▷ archeometry
 - ⊳ ...
- $\circ\, time\, resolved\, sub-picosecond\, XAS$
- nuclear safeguard and nuclear reactor fuel diagnostic

HOLMES schedule

	Project year	Y	′1	Y2		Y3		Y4		Y	5
Activities	Tasks	6	12	18	24	30	36	42	48	54	60
Isotope	Production optimization										
production	Final production										
	TES sensor design optimization and tests										
Pixel optimization	Absorber 163Ho embedding		2								
	Absorber with isotope optimization										
	Prototype production and testing										
Array	4x4 array production										
	32x32 array engineering and production										
	SQUID/MUX development and tests	1									
multiplexed read-out	SQUID/MUX prototype										
leau-out	SQUID and MUX production										
	Analog/digital signal processing R&D and tests										
RT electronics and	Analog/digital signal processing for prototype										
data processing	Analog/digital signal processing for HOLMES										
	Server and storage system										
Software Tools	Neutrino mass analysis package										
Software loois	In-line signal processing algorithm development										
	Temporary set-up for testing										
Cryogonics	Dilution refrigerator installation										
ci yogenics	Set-up for prototype measurement										
	HOLMES setu-up										
	4x4 array commissioning and data taking										
Physics	32x32 array commissioning										
Maasuramants	Engineering run										
	HOLMES data taking								4		
	Preliminary analysis and physics results										

Project Start: 1 Feb 2014

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 46/59

HOLMES schedule (updated)

	Project year		14	2015		2016		2017		2018	
			′1	Y2		Y3		Y4		Y5	
Activities	Tasks	6	12	18	24	30	36	42	48	54	60
Isotope	Production optimization										
production	Final production										
	TES sensor design optimization and tests										
Pixel optimization	Absorber ¹⁶³ Ho embedding system		2								
	Absorber with isotope optimization										
	Prototype production and testing										
Array	4x4 array production										
	32x32 array engineering and production										
	SQUID/MUX development and tests	1									
Multiplexed	SQUID/MUX prototype										
reau-out	SQUID and MUX production										
	Analog/digital signal processing R&D and tests										
RT electronics and	Analog/digital signal processing for prototype										
data processing	Analog/digital signal processing for HOLMES										
	Server and storage system										
Coffiniara Taola	Neutrino mass analysis package										
Software loois	In-line signal processing algorithm development										
	Temporary set-up for testing										
Crucachica	Dilution refrigerator installation										
Cryogenics	Set-up for prototype measurement										
	HOLMES setu-up										
	4x4 array commissioning and data taking						3				
Dhucico	32x32 array commissioning										
Pilysics Maasuramants	Engineering run										
ricasul ciliciits	HOLMES data taking								4		
	Preliminary analysis and physics results										

Project Start: 1 Feb 2014

key measurements

A. Nucciotti, Laboratori Nazionali del Gran Sasso, 14/5/2014 47/59

HOLMES present status

- irradiated Er_2O_3 sample with 10MBq ¹⁶³Ho **cooling** at ILL reactor
- irradiated Er₂O₃ samples ICP-MS analysis in progress
- Ho distillation/reduction system assembly **in progress**
- custom ion implanter design **in progress**
- optimized TES design **in progress** (with NIST)
- upgrade of TES fab facility @Genova in progress
- cryogen free OxfInst Triton200 refrigerator in production
- TES testbed with muxed micro-wave read-out installation **in progress**
- microwave multiplexed rfSQUID read-out design in progress
- ROACH-2 system for testing **delivered**

first TES detectors with implanted ¹⁶³Ho: July 2015

HOLMES is challenging project!

- □ it will assess the real potential of ¹⁶³Ho experiments
- □ it will give interesting limits on the neutrino mass
- □ it may be a technology demonstrator for an experiment with ≤ 0.1 eV sensitivity