

First Data and Prospects for DM-Ice

Reina Maruyama Yale University

INFN / Dip. di Fisica - "Sapienza" Università di Roma Particle Physics Seminar May 12, 2014

Evidence for Dark Matter

Many gravitational evidence for dark matter

Reina Maruyama

t (ns) What is Dark Matter? 10 100 1000 $m_x = 100 \text{ GeV}$ 10^{-4} 106 10-6 104 Leading Candidates: 10-8 102 **Axions** Y 10-10 100 - mass ~10⁻³ - 10⁻⁶ eV 10-12 10-2 - Arises in the Peccei-Quinn solution to 10-14 10^{-4} the strong-CP problem 10-16 WIMPs: Weakly Interacting Massive Particles 10 - mass of 1 GeV - 10 TeV WIMP-type Candidates Ω.~1 - weak scale cross sections results in neutrino v .5 observed abundance WIMP neutralino x 10 $\sigma \approx 10^{-39} - 10^{-46} \text{ cm}^2$ $\log(\sigma_{int}/(1 pb))$ is is is *m*_χ≈100 GeV wimpzilla $<\sigma_{A} v > \approx 10^{-26} \text{ cm}^{3}/\text{s}$ axion a axino ã **Observational evidence indicates:** Non-baryonic -30 gravitino Ĝ Cold and massive (non-relativistic and exerts gravity) Interact little with ordinary matter M_{GUT} M Stable and long-lived 3 (Roszkowski 2004) log(m_x/(1 GeV))

Dark Matter Distribution

Planck all-sky image of the distribution of dark matter via distortions on CMB by gravitational lensing (April 2013)

Artist's impression of the Milky Way galaxy. The blue halo of material surrounding the galaxy indicates the expected distribution of dark matter. (ESO/Calçada)

Regions Dense in Dark Matter

Detecting WIMPs

annihilation

"Indirect Detection"

Collect dark matter in Stars and Galaxies, then let them annihilate among themselves.

Detect the decay particles

Let dark matter recoil off of nuclei

Look for nuclear recoil

Reina Maruyama

Current Detectors: Annihilation signals

Cherenkov telescopes & satellites

Neutrino Telescopes

Galactic Center

Direct Detection of WIMPs

Direct Detection Search Strategies

- 1. Count individual nuclear recoils
- 2. Look for annual modulation
- Galactic Center 3. Diurnal directional modulation

Local Dark Matter Density / Velocity

Direct Detection Experiments here: recent results + future SNOLab DEAP/CLEAN Boulby YangYang Picasso ZEPLIN KIMS Poccus (Russia) COUPP DRIFT United Kamioka Canada Homestake Modane XMASS LUX **EDELWEISS** Newage Soudan (Spare) Clarke North SuperCDMS (South Korea) Canfranc Atlantic Ocean CoGeNT ENVI Gran Sasso ArDM Jinping XENON Rosebud Panda-X CRESST ANAIS CDEX DAMA/LIBRA DR Cong DarkSide Indenesia Panua New WARP Angola-Nambia dian (Itadagescar) Dotsmans Ocean South Australia uth Atlantic cific Ocean Laura Baudis ean Argentina DM Overview South Pole Neutrino 2012 DM Ice Souther

Direct Detection, Current and Future

Reina Maruyama

Hints and Claims for Direct Detection of DM

Challenges: Astrophysics, Particle Physics, & Instrumental Effects

Dark Matter Signal or Background?

12, 2017

Hints and Claims for Direct Detection of DM

Challenges: Astrophysics, Particle Physics, & Instrumental Effects Solution: Repeat the same experiment with same detector medium, but with better handle on background(s)

Modulation Observed by DAMA

Longest standing and the largest signal: 9.3 σ modulation over 14 years

- Modulation consistent with dark matter:
 - Phase: 144 ± 7 days (peak on May 24)
 - Period: 0.998 ± 0.002 yr
 - Background: ~ 1 cnts/keV/kg/day
 - Amplitude: 0.0112 ± 0.0012 cnts/keV/kg/day
- Two generations:
 - DAMA/Nal: 100 kg (1996 2003)
 - DAMA/LIBRA-phase1: 250 kg (2003 2010)

(no sign of it going away)

but is it dark matter?

arxiv:1308.5109

Nal Detectors for Direct Dark Matter Detection

- **Detector**: Nal scintillating crystals + Photomultiplier tubes
- Scintillation signal only
 - Discrimination between nuclear recoil versus electron recoil possible only at higher energies via pulse shape
 - At energy region of interest (2 10 keV), PS discrimination not possible.
- To achieve low threshold, we need:
 - require coincidence between two PMTs to eliminate PMT noise
 - two PMTs also help with light collection
 - ultra-pure Nal crystals + shielding for low background
- Stable environment: DAMA's claim relies solely on the observation of at the annual modulation with the correct phase.

Testing DAMA's Dark Matter Claim

Definitive (5 σ) detection or exclusion with

- 500 kg-yr Nal(Tl) (DAMA x 2 yrs)
- same or lower threshold (< 2 keV_{ee})
- background < (DAMA x 5)

		7
		1
	DAMA	3
	background	5
		7
		1
evee	1/10 DAMA	3

arXiv:1106.1156

		DIVIFICEIT	INAIAD-Scale	DAMA-Scale
	Years	17.0 kg	44.5 kg	250 kg
	1	0.45	0.72	1.71
x8 DAMA	3	0.77	1.25	2.96
^l background	5	1.00	1.61	3.82
8	7	1.18	1.91	4.52
	1	0.63	1.02	2.42
x4 DAMA	3	1.09	1.77	4.18
background	5	1.41	2.28	5.40
U	7	1.67	2.70	6.39
	1	0.85	1.37	3.26
Double DAMA	3	1.47	2.38	5.64
background	5	1.90	3.07	7.29
	7	2.25	3.64	8.62
	1	1.20	1.94	4.61
DAMA background	3	2.08	3.37	7.98
	5	2.69	4.35	10.31
	7	3.18	5.14	12.19
	1	3.80	6.15	14.57
1/10 DAMA	3	6.58	10.65	25.24
background	5	8.50	13.75	32.59
	7	10.06	16.27	38.56

NAIAD-ecolo DAMA-ecolo

500 kg·year Nal detector sensitivity

(2 - 4 keV) with bgd of 1, 2, and 5 cnts/keV/kg/day.

Additional Information by lowering the threshold below 2 keV.

Annual Modulation Dark Matter Searches with Nal Detectors

Northern Hemisphere	Gran Sasso DAMA/Libra 250kg running	Gran Sasso SaBRE R&D	Canfranc ANAIS 250 kg starting in 2014?	PICO-LON KIMS etc
Southern Hemisphere	South Pole DM-Ice 17 kg running R&D for 250 kg			ice rock

Several Groups conducting ultra-pure crystal with several vendors to go to the full scale **DM-Ice:**

- Nal dark matter search in an entirely different environment
- South Pole offers:
 - Ultra-clean and ultra-stable environment
 - Seasonal variation unambiguously different from dark matter modulation
 - IceCube offers muon monitoring and veto as well as experience
 - NSF-run South Pole Station for logistical support

Reina Maruyama

Rome, May 12, 2014

Phased Program for DM-Ice

Directly test DAMA's assertion that the observed annual modulation is due to dark matter & understand its origin

- probes longest-standing dark matter claim
- Nal(TI) target

DM-Ice17

- aims to understand origin of DAMA's signal
- only experiment with access to both Northern & Southern Hemispheres

A Phased Experimental Program

DM-Ice 250 South

Deployment at South Pole if modulation seen in North & ice drilling becomes available

Operating since 2011 17 kg of Nal(TI) at 2450m depth at South Pole

DM-Ice 250 North

Northern Hemisphere Run portable 250 kg Nal(Tl) detector, first deployment in the Northern Hemisphere

Prototype: DM-Ice-17

Deployed at the South Pole in December 2010

- A 17 kg Nal detector
- Operation since Feb. 2011
- Data run from June 2011

Demonstrated:

- Feasibility of deploying a remotely-operable dark matter detector in the Antarctic Ice
- Stability of the environment
- Radiopurity of the antarctic ice / hole ice
- Explore the capability of IceCube to veto muons

Science and Facilities at the South Pole

Amundsen-Scott South Pole South Pole Station

1 km

AMANDA SPT, BICEP II

IceCube Lab

M MAN AN .

SPT/BICEP-II

IceCube Below

ІсеТор

TOSIRH

DM-Ice-17 Detector

- Remotely programable sample rate, HV & threshold
- Each PMT set to trigger ~0.2 spe

DM-Ice17 DAQ Overview

- Waveform recorded only when coincidence between both PMTs w/in 800 ns on a single crystal
- Waveform from each PMT digitized separately in the ice by IceCube mainboards and sent to hub
- Time stamp synchronized to IceCube GPS and calibrated for transit time
- Data sent over satellite to Madison, WI

DM-Ice-17 Construction & Deployment

DM-Ice17: Detector Operations

- Physics data taking since June 2011
- Monitored quantities:
 - Temperature of the boards
- ~10°C above surrounding ice
 Fast (2-3 weeks) de during freeze-in
 - slower decrease over a few months after freeze-in
 - Pressure follows similar trend as temperature (ADC resolution limited)
- Values recorded every 2 sec. before April 2012. Every 60 sec. since April 2012.

Rom

Detector Uptime

- Commissioning and optimization from Feb June 2011
- Data run since June 2011
- 99.8% uptime for most weeks with well defined down time for occasional power cycling + pedestal and dark noise runs

Reina Maruyama

Capturing Waveforms with IceCube Mainboards

- 40 MHz 10-bit flash ADC for slow high energy events
- 2 parallel Analog Transient Waveform Digitizer (ATWD) chips with 10-bit resolution and sampling speeds programmable from 250 MHz to 1 GHz
- Each ATWD contains 3 gain paths: x16, x2, x0.25
 looking at the PMT input and giving an effective
 14-bits of resolution to span the PMT dynamic range
- Reprogrammable from surface

Waveform Examples

DM-Ice17 Spectrum

DM-Ice Collaboration arXiv:1401.4804v1

Spectrum vs. Simulation

- Good agreement with simulation •
- Simulation based on:
 - Nal from alphas and K from data
 - radioassay of spare parts •

10²

Reina Maruyama

Rome, May 12, 2014

DM-Ice Collaboration arXiv:1401.4804v1

3000

Pulse-shape discrimination (1 - 9 MeVee)

alpha

Bi-Po

6000

7000

8000

Energy (keV)

9000

220

200

180

160

140

120

100

80

60

40

20

1000

gamma

Average Mean Time (ns)

Antarctic Ice: Radiopurity

- Measurements from ice cores at Vostok.
- Absorption and scattering lengths measured by AMANDA/ lceCube
- -2500 m at South Pole is ~100,000 years old
- Most of the impurities come from volcanic ash, < 0.1 ppm
- Radioactive contaminants in ice:
 - U ~ 0.1 1 ppt
 - Th ~ 0.1 1 ppt
 - K ~ 0.1 1 ppb

J. Geophys. Res., 111, D13203 (2006)

Low Energy Spectrum

Reina Maruyama

Rome, May 12, 2014

Reina Maruyama

Rome, May 12, 2014

Event Selection: "Thin" pulses

- Characteristics:
 - high pulse-height relative to charge
 - asymmetric between two PMTs
- 90% of events between 5-10 keV are "thin"
- Current cut effective above 7 keV energy spectrum:

before & after thin pulse cut

Light Collection and Detector Resolution

Cosmogenic ¹²⁵I (in the Nal crystal)

Gain Stability

- Detector calibration is stable to 1% over 18 months.
- 2% decrease over 24 months in light collection (peak position) observed at 600 keV in 3 PMTs
- No observable change in calibration at 45 keV

Reina Maruyama

Antarctic Ice: Overburden at -2500 m (2200 m.w.e.)

IceCube - DM-Ice Coincidence

December 2012 – Event #14 2012-12-21 RunID: 121431, EventID 79868923 Events that trigger both DM-Ice and IceCube Found!

Muon rate in DM-Ice (appear as mip): 2/day

66 found in 11 months of muon stream. sDST will give more

Implications:

- 5-inch position resolution in two locations
- Energy threshold studies
- DM-Ice trigger for IceCube?

Hubbard

December 2012- Event #14

[13EventHeader :: StartTime: 2012-12-21 17:09:53 UTC EndTime : 2012-12-21 17:09:53 UTC RunID : 121431 SubrunID : 0 EventID : 79868923 SubEventID : 0 SubEventID: 0 J	

DOM 60 highlighted

Hubbard

Muon-activated events

Energy Spectrum < 100 keV

- Events in ROI dominated by ⁴⁰K, ²¹⁰Pb, and ¹²⁹I in the crystal.
- ²¹⁰Pb in simulation tuned to match data
- ⁴⁰K level is from beta-shoulder
 ~ 800 keV (not 3 keV).
- 3 keV peak from ⁴⁰K observed
- Understanding efficiencies below 8 keV is key
- Controlling contaminations on nearby surfaces crucial
- c.f. DAMA = 1 dru

Testing DAMA's Dark Matter Claim

Definitive (5o) detection or exclusion with

- 500 kg-yr NaI(TI) (DAMA x 2 yrs)
- same or lower threshold (< 2 keV_{ee})
- background < (DAMA x 5)

500 kg·year Nal detector sensitivity

(2 - 4 keV) with bgd of 1, 2, and 5 cnts/keV/kg/day.

	Years	17.0 kg	44.5 kg	250 kg
	1	0.45	0.72	1.71
x8 DAMA	3	0.77	1.25	2.96
^l background	5	1.00	1.61	3.82
0	7	1.18	1.91	4.52
	1	0.63	1.02	2.42
x4 DAMA	3	1.09	1.77	4.18
background	5	1.41	2.28	5.40
-	7	1.67	2.70	6.39
	1	0.85	1.37	3.26
Double DAMA	3	1.47	2.38	5.64
background	5	1.90	3.07	7.29
	7	2.25	3.64	8.62
	1	1.20	1.94	4.61
DAMA	3	2.08	3.37	7.98
background	5	2.69	4.35	10.31
	7	3.18	5.14	12.19
	1	3.80	6.15	14.57
1/10 DAMA	3	6.58	10.65	25.24
background	5	8.50	13.75	32.59
	7	10.06	16.27	38.56

arXiv:1106.1156

DM-Ice17 NAIAD-scale DAMA-scale

Additional Information by lowering the threshold below 2 keV.

Nal Powder R&D

- From simulation, internal backgrounds dominate, particularly 3 keV ⁴⁰K
- DAMA's crystals (NIMA 592 (2008) 297-315):
 - ²³⁸U : 1 10 ppt
 - ²³²Th : 1 10 ppt
 - ^{nat}K : < 20 ppb
- NAIAD (DM-Ice17) crystals : 5 10x DAMA bkg (PLB 616 (2005) 17–24)

32" diameter Nal Crystal

Manufacturer	Form	Measurement	238	232	nat
Saint Gobain	Powder	DAMA (HPGe)	< 20	< 20	< 100
Saint Gobain	Crystal	DAMA/LIBRA	0.7 - 10	0.5 - 7.5	< 20
Saint Gobain	Crystal	ANAIS-0	6.1	3.2	410
Bicron/Saint Gobain	Crystal	NaIAD/DM-Ice	20	20	650
Sigma-Aldrich	Powder (standard grade)	DM-Ice (HPGe)	40	89	440
Sigma-Aldrich	Powder (astro grade)	DM-lce (HPGe)	63	< 95	< 126
Sigma-Aldrich	Powder (astro grade)	A-S (ICPMS)	-	-	~ 4
Alpha-Spectra	Powder	DM-Ice (HPGe)	< 100	< 200	< 120
Alpha-Spectra	Powder	ANAIS-25 (HPGe)	< 55	< 130	< 90

• Also working with SICCAS (Shanghi)

Technical challenge == a method to measure K < 100 ppb level

• ICPMS \rightarrow < 10 ppb ?

DM-Ice250 Simulations

Close-Packed Detector Array inner crystal outer crystal outer crystal inner detector Array

Sensitivity to DAMA Modulation Signal assume 225 kg exposure/yr (90% livetime)

1 year:3.3σ2 years:4.6σ3 years:5.7σ

Based on MC sample of modulated signal, using same binning and analysis method as DAMA, fit to fixed phase and period. DM-Ice250 Background 2-6 keV region: 1.75 dru average (worst case with veto)

New Low-Background Nal(TI) Crystals

Development of Nal(TI) detectors with Alpha Spectra, Inc (ASI) in CO, USA Three groups work with Alpha Spectra: DM-Ice, ANAIS, KIMS. Communication and sharing of R&D results

- 2 x 18 kg crystals from Alpha Spectra are at Fermilab MINOS near hall for testing.
- If these crystals confirm specifications, total of 250 kg can be grown and encapsulated as detectors at ASI in less than 12 months.

Backgrounds are within acceptable levels for an experiment with 2 counts/day/keV/kg. Sufficient to test the DAMA signal at > 5 σ with 3 years of data.

Next Steps for DM-Ice

DM-Ice17

Operating since 2011 17 kg of Nal(Tl) at 2450m depth at South Pole

DM-Ice 250 North

Northern Hemisphere Run portable 250 kg Nal(Tl) detector, first deployment in the Northern Hemisphere. Several sites can house DM-Ice

DM-Ice 250 South

Deployment at South Pole if modulation seen in North & ice drilling becomes available

- Nal test crystals at Fermilab - verify their cleanliness

- Movable detector housing and electronics being finalized
- Northern deployment as the first step

Summary

Directly test DAMA's assertion that the observed annual modulation is due to dark matter & understand its origin

- Success installation and running of DM-Ice17 at the South Pole
- Background level in DM-Ice17 as expected and in agreement with simulations
- New Nal crystals to be delivered within 1 week
- Next: full-scale experiment w/ portable detectors to be deployed in the north, move south if signal observed.

