In-medium K mesons from atoms to strange dibaryons Strangeness on earth & in heaven, Frascati, May 2014 Avraham Gal

Racah Institute of Physics, Hebrew University, Jerusalem

- $\bar{K}N \pi Y$ chiral dynamics and its consequences
- \overline{K} nuclear clusters; strange dibaryons
- \bar{K} -nucleus potentials from K^- atoms
- No K̄ condensation on earth SNP: NPA 881 (2012), HYP12: NPA 914 (2013)
 A.Gal, E.Friedman, N.Barnea, A.Cieplý, D.Gazda, J.Mareš Acta Physica Polonica B 45 (2014) 673-687

$\bar{K}N - \pi Y$ Chiral Dynamics

 K^-p scattering amplitude from NLO chiral SU(3) dynamics

Y. Ikeda, T. Hyodo, W. Weise (IHW), PLB **706** (2011) 63; NPA **881** (2012) 98 **Threshold amplitude constrained by SIDDHARTA exp.** Strong subthreshold K^-p attraction; $\Lambda(1405)$ physics Consequences for kaonic atoms and K^- nuclear quasibound states K^- absorption might be governed by out-of-model $K^-NN \to YN$

Two NLO chiral-model fits by Guo-Oller, PRC 87 (2013) 035202

- Fit I: one value of meson weak-decay constant $f = 125.7 \pm 1.1$ MeV.
- Fit II: separate fixed values for f_{π} , f_{K} , f_{η} . Fit II will create problems when confronted with K^{-} -atom data.
- Both amplitudes constrained at threshold by SIDDHARTA measurement.

 $K^-p \to \pi^{\pm}\Sigma^{\mp}$ reaction data fitted by LEC of NLO scheme for $\bar{K}N - \pi Y$ coupled channels $(Y = \Lambda, \Sigma)$ Y. Ikeda, T. Hyodo, W. Weise, NPA 881 (2012) 98

Large difference in cross sections \Rightarrow Strong isospin dependence.

T. Hyodo, W. Weise, PRC 77 (2008) 035204 I = 0 coupled-channel amplitudes

Location of 'resonances': $\bar{K}N \approx 1420 \text{ MeV}, \pi\Sigma \approx 1405 \text{ MeV}$ Are there two distinct ' $\Lambda(1405)$ ' resonances?

\overline{K} nuclear few-body systems

Energy dependence in \overline{K} nuclear few-body systems

• $\Lambda(1405)$ induces strong energy dependence of the scattering amplitudes $f_{\bar{K}N}(\sqrt{s})$ and the underlying effective single-channel input potentials $v_{\bar{K}N}(\sqrt{s})$.

•
$$s = (\sqrt{s_{\text{th}}} - B_K - B_N)^2 - (\vec{p}_K + \vec{p}_N)^2 \le s_{\text{th}}$$

- Expanding nonrelativistically near $\sqrt{s_{\text{th}}} \equiv m_K + m_N$: $\delta\sqrt{s} = -\frac{B}{A} - \frac{A-1}{A}B_K - \xi_N \frac{A-1}{A} \langle T_{N:N} \rangle - \xi_K \left(\frac{A-1}{A}\right)^2 \langle T_K \rangle,$ $\delta\sqrt{s} \equiv \sqrt{s} - \sqrt{s_{\text{th}}}, \ B_K = -E_K, \ \xi_{N(K)} \equiv \frac{m_{N(K)}}{(m_N + m_K)}.$
- Self-consistency: output \sqrt{s} from solving the Schroedinger equation identical with input \sqrt{s} .

3– & 4–body B & Γ calculated self-consistently

N. Barnea, A. Gal, E.Z. Liverts, PLB **712** (2012)

- Variational calculation in hyperspherical basis controlled by K_{max}
- $\bar{K}N$ energy dependence [Hyodo–Weise, PRC 77 (2008) 035204] restrains $B \& \Gamma$ by treating $\delta \sqrt{s_{\bar{K}N}}$ self-consistently
- B(4-body) small w.r.t. non-chiral estimates of over 100 MeV

- $\bar{K}NN$: is there an excited I = 1/2 quasibound state $(\bar{K}d, \text{ dominantly } I_{NN} = 0)$ on top of " K^-pp " g.s. ?
- Barnea, Gal & Liverts do not find such a bound state below the $\Lambda^* N$ threshold at B = 11.4 MeV.
- Bayar & Oset [NPA 881 (2012) 127]: **YES**, bound by about 9 MeV, from a peak in $|T_{\bar{K}NN}|^2$ calculated in a fixed-scatterer approximation to Faddeev equations.
- Shevchenko [NPA 890-1 (2012) 50]: UNLIKELY, judging from the K⁻d scattering length and effective range deduced from a K̄NN Faddeev calculation.
- Shevchenko & Revai [PRC, arXiv:1402.3935]: **NO**, searching for poles in a $\bar{K}NN$ Faddeev calculation.

K^-pp calculated binding energies & widths

(MeV)	chiral, energy dep. calculations				non-chiral, static calculations			
	var. [1]	var. $[2]$	Fad. [3]	Fad. [4]	var. $[5]$	Fad. [6]	Fad. [7]	var. [8]
В	16	17-23	9-16	32	48	50-70	60-95	40-80
Γ	41	40-70	34-46	49	61	90-110	45-80	40-85

Robust binding & large widths; chiral models give weak binding

- 1. N. Barnea, A. Gal, E.Z. Liverts, PLB **712** (2012)
- 2. A. Doté, T. Hyodo, W. Weise, NPA 804 (2008) 197, PRC 79 (2009) 014003
- 3. Y. Ikeda, H. Kamano, T. Sato, PTP **124** (2010) 533
- 4. J Revai, N.V. Shevchenko, arXiv:1403.0757
- 5. T. Yamazaki, Y. Akaishi, PLB **535** (2002) 70
- 6. N.V. Shevchenko, A. Gal, J. Mareš, PRL 98 (2007) 082301
- 7. Y. Ikeda, T. Sato, PRC ${\bf 76}~(2007)~035203,~{\rm PRC}~{\bf 79}~(2009)~035201$
- 8. S. Wycech, A.M. Green, PRC **79** (2009) 014001 (including p waves)

Yamazaki et al. PRL 104 (2010) 132502, DISTO data reanalysis at 2.85 GeV Broad K^-pp structure in $pp \rightarrow \Lambda pK^+$ at $\pi N\Sigma$ threshold Forthcoming experiments: $pp \rightarrow (K^-pp) + K^+$ at GSI $K^{-3}\text{He} \rightarrow (K^-pp) + n$ (E15) & $\pi^+d \rightarrow (K^-pp) + K^+$ (E27) at J-PARC

from $\Lambda(1405)N$ to $\Sigma(1385)N$

- $\Lambda(1405)N$ is in a way a doorway to the quasibound $I = 1/2, J^P = 0^- \bar{K}NN$ dibaryon. Lower S = -1 components are $\pi\Lambda N$ and $\pi\Sigma N$, the lowest of which is $\pi\Lambda N$, but it cannot support any strongly attractive meson-baryon *s*-wave interaction.
- The πΛN system can benefit from strong meson-baryon p-wave interactions fitted to the Δ(1232) → πN and Σ(1385) → πΛ form factors. Maximize isospin and angular momentum couplings by full alignment: I = 3/2, J^P = 2⁺. In particular, ΛN is in ³S₁. This is a Pion Assisted Dibaryon, see Gal & Garcilazo, PRD 78 (2008) 014013.

- Add the πΣN channel [PRC 81 (2010) 055205, and finalized in NPA 897 (2013) 167].
 A πΛN resonance about 10–20 MeV below the πΣN threshold is found by solving coupled-channel Faddeev equations. Results are sensitive to the pion-baryon p-wave form factors.
- This resonance is a pion assisted quasibound dibaryon, suggesting doorway states of the type Σ(1385)N and Δ(1232)Y, the lower of which is Σ(1385)N with I = 3/2 and ⁵S₂, J^P = 2⁺. These are different labels from the I = 1/2 and ¹S₀, J^P = 0⁻ for Λ(1405)N viewed as a doorway to K⁻pp.

- Adding a KNN channel does not help, because the leading ${}^{3}S_{1}$ NN configuration is Pauli forbidden.
- Search for this \mathcal{Y} dibaryon at GSI & J-PARC in: $p + p \rightarrow \mathcal{Y}^{++} + K^0, \quad \mathcal{Y}^{++} \rightarrow \Sigma^+ + p,$ or $\pi^+ + d \rightarrow \mathcal{Y}^{++} + K^0, \quad \mathcal{Y}^{++} \rightarrow \Sigma^+ + p.$
- A (π⁺, K⁺) reaction as in E27 would lead to YN decay states similar to those anticipated in searches of K⁻pp. Another possibility at J-PARC or GSI is:
 π⁻ + d → Y⁻ + K⁺, Y⁻ → Σ⁻ + n.

What do K^- atoms tell us?

 K_{atom}^- widths across the periodic table in model F (deep pot.) Lowest χ^2 phenom. model, $\chi^2 = 84$ per 65 data points, J. Mareš, E. Friedman, A. Gal, NPA 770 (2006) 84.

Left: K^- -Ni 4f atomic wavefunction overlap with nuclear density for deep potential, revealing a nuclear $\ell = 3$ quasibound state. Right: FINUDA $1s_{\Lambda}$ formation rates in K^-_{stop} capture in nuclei [Cieplý-Friedman-Gal-Krejčiřík, PLB 698 (2011) 226]. Deep K^- nuclear potential is favored.

Self-consistency requirement imposed in recent K^- atom calculations [Cieplý-Friedman-Gal-Gazda-Mareš, PLB 702 (2011) 402]:

$$\sqrt{s_{K-N}} \to E_{\rm th} - B_N - B_K - \xi_N \frac{p_N^2}{2m_N} - \xi_K \frac{p_K^2}{2m_K}$$

$$\frac{p_K^2}{2m_K} \sim -V_{K^-} \approx 100 \text{ MeV}$$

 K^- is not at rest!

Friedman-Gal, NPA 899 (2013) 60 K^-N subthreshold energy vsnuclear density in K^- atoms. **A dominant in-medium effect**

Left: IHW free-space input f_{K^-N} Right: atomic-fit output \mathcal{F}_{tot}^{eff}

- Subthreshold energy shift is applied self consistently to in-medium 1N amplitude plus (2+...)N phenomenological amplitude.
- Multiple-scattering inclusion of in-medium correlations.
- K^{-} -atom best-fit: $\chi^2/N_{data} = 118/65$ [Friedman-Gal, NPA 899 (2013) 60].

Kaonic-atom best-fit V_{K^-} for Ni & its non-additive breakdown into in-medium 1N and phenomenological m(any)N contributions.

NLO30: A. Cieply, J. Smejkal, NPA 881 (2012) 115 (in-medium).
IHW: Y. Ikeda, T. Hyodo, W. Weise, NPA 881 (2012) 98.
Figures taken from Friedman-Gal, NPA 899 (2013) 60.

 K^- nuclear 1N (left) and 2N (right) absorptive potentials, both calculated in a chiral unitary approach [PRC 86 (2012) 065205] by Sekihara, Yamagata-Sekihara, Jido, Kanada-En'yo. Note: empirical 25% 2N:1N BR is reached at too high density.

Full and reduced data set fits $[b(\rho_0) \text{ in fm}]$

	shallow potential				deep potential			
Ν	χ^2	Re $b(\rho_0)$	${\rm Im}b(\rho_0)$	χ^2	Re $b(\rho_0)$	Im $b(\rho_0)$		
65	130	$0.62 {\pm} 0.05$	0.93 ± 0.04	84	1.44 ± 0.03	$0.59 {\pm} 0.03$		
15	44	$0.78 {\pm} 0.13$	$0.92 {\pm} 0.11$	26	$1.47 {\pm} 0.05$	$0.55 {\pm} 0.06$		

Reduced sets, C(2p) Si(3d) Ni(4f) Sn(5g) Pb(7i), preserve features obtained from fits to full data.

Need more accurate measurements in a few atoms [E. Friedman, in MESON 2010, IJMPA 26 (2011) 468]

Feasibility of upper-level width measurements, on top of lower-level, vs. detector resolution for superconducting microcalorimeter detectors, normalized at 53 eV width for 100 keV x-ray.

E. Friedman, S. Okada, NPA 915 (2013) 170.

\overline{K} condensation on earth?

RMF quasibound spectra calculated self-consistently (NLO30 + SE')

- NLO30 is a chirally motivated coupled channel separable model with in-medium versions [A. Cieplý, J. Smejkal, NPA 881 (2012) 115]
- Γ_K due only to $K^-N \to \pi Y$ (no $K^-NN \to YN$) decay modes
- Self consistency: deep K^- levels are narrower than shallow ones

D. Gazda, E. Friedman, A. Gal, J. Mareš, PRC 77 (2008) 045206 Saturation of $B_{\bar{K}}(\kappa)$ in RMF for multi- K^{-40} Ca nuclei. Vector-meson repulsion among \bar{K} mesons. $B_{\bar{K}}(\kappa \to \infty) << (m_K + M_N - M_\Lambda) \approx 320$ MeV.

D. Gazda, E. Friedman, A. Gal, J. Mareš, Phys. Rev C 80 (2009) 035205 Saturation of $B_{\bar{K}}(\kappa)$ in RMF for ²⁰⁸Pb + $\eta\Lambda + \kappa K^-$.

 \overline{K} mesons do not replace hyperons in stable self-bound strange matter.

Summary

- Large widths, $\Gamma_{\overline{K}} > 50$ MeV, expected for single- \overline{K} quasibound nuclear states. Focus on light systems. Searches for K^-pp are underway in GSI and J-PARC. Look for $(I = \frac{3}{2}, J^P = 2^+) \Lambda N \pi - \Sigma N \pi$ dibaryon.
- Major issues: (i) how deep is K nuclear spectrum?
 (ii) how big is Γ(KNN → YN) w.r.t. Γ(KN → πY)?
 Do K⁻ atom selective measurements.
- $B_{\overline{K}}$ saturates in multi- \overline{K} nuclei and hypernuclei. \overline{K} condensation is unlikely in self-bound matter.
- Thanks to my collaborators N. Barnea, A. Cieplý, E. Friedman, D. Gazda, J. Mareš