Single vs multi nucleon absorption processes in the low-energy K-nuclei interactions

Ivana Tucaković Università degli Studi di Roma "Tor Vergata" LNF-INFN ivana.tucakovic@Inf.infn.it

Investigating strangeness: from accelerators to compact stellar objects LNF-INFN, Frascati 14t^h of May 2014

Experimental program of AMADEUS

Unprecedented studies of the low-energy charged kaons interactions in nuclear matter: solid and gaseous targets (d, ³He, ⁴He) in order to obtain unique quality information about:

- Nature of the controversial A(1405)
- Possible existence of kaonic nuclear clusters (deeply bound kaonic nuclear states)
- Interaction of K⁻ with one and two nucleons.
- Low-energy charged kaon cross sections for momenta lower than 100 MeV/c (missing today)
- Many other processes of interest in the low-energy QCD in strangeness sector

 \rightarrow implications from particle and nuclear physics to astrophysics (dense baryonic matter in **neutron stars**)

Single and multi nucleon absorption processes in the $\Lambda p / \Lambda d / \Lambda t$ and $\Lambda p + \pi^-$ channels

How hadron masses and interactions change in nuclear medium .. approach by means of kaonic nuclear clusters. Deeply Bound Kaonic Nuclear States (ex. K⁻pp – K⁻ppn) predicted due to the strong KN interaction in the I=0 channel. Wycech (1986) - Akaishi & Yamazaki (2002)

interpretation strongly depends on single and multi – nucleon absorption process:

1NA: $K^{-}N \rightarrow \Lambda \pi^{-}$ (extra p only spectator) pionic 1NA: $K^{-}N \rightarrow \Sigma \pi^{-}$, $(\Sigma N')\pi^{-} \rightarrow (\Lambda N')\pi^{-}$ (extra p from Σ/Λ conversion) pionic 2NA: $K^{-}NN \rightarrow \Lambda N$ 2NA: $K^{-}NN \rightarrow \Sigma N$, $(\Sigma N)N \rightarrow \Lambda N'(N)$ (Σ/Λ conversion on another nucleon)

Theoretical work on K-pp

Theoretical works are predicting the existance of *K-pp* state but different calculations are giving **large range** of the values for the binding energy and width

Experimental data are needed to reveal this puzzle

Experiments on K-pp

-Search in the invariant mass Ap channel for a 'peak' that would reveal a resonance, try to measure the width and the binding energy, asuming the formation of a K-pp cluster

Theoretical work on K-pp

- It does exsist

... a K⁻pp puzzle

Experiments:

B = 105 ± 2 ± 5 MeV

Γ = 118 ± 8 ± 10 MeV

E27 @ J-Park

LEPS-Spring8

	F_	
L	Ь	
	V	1

HADES

The DAΦNE e⁺e⁻ collider

Double ring e⁺ e⁻ collider working in C.M. energy of Φ (≈ 500 MeV/c)
Φ → K⁺ K⁻ (49.1%) (≈ 600 K⁺ K⁻/s)

- Iow momentum Kaons (≈ 127 MeV/c)
- back to back K⁺ K⁻ topology

KLOE (2004-2005) data analysis

- Test the behaviour of the KLOE detector for hadronic physics purposes
- Possibility to study the phenomenon with an active target

•The Drift Chamber (DC) of KLOE contains mailny ⁴He (90%, 10% *isobutane*)

•From analysis of KLOE data and Monte Carlo: 0.1 % of K⁻ stop in the DC volume + 10 times more in the Carbon entrance wall of the DC

•This leads to hundreds of events with K⁻ hadronic interactions at rest

- Excellence acceptance
- Excellence resolution

Particle identification

<u>Lambda selection criteria</u>: $\Lambda \rightarrow p + \pi^{-}$

Search for vertices (by KLOE reconstruction) inside the Drift Chamber: -negative particle: π^- identified by low dE/dx in DC gas

Protons associated with EMC cluster:

Particle identification

For protons, if no cluster associated, requirement:

track reaching the calorimeter region + "proton signature" in the dE/dx of DC gas

Analysis status

 Analyses of the 2004-2005 KLOE data: Stopped K⁻ absorption in light nuclei: ⁹Be,¹²C, ⁴He. (2.2 fb⁻¹ total, ~**1.4 fb⁻¹ analyzed**)

Analysis status

- Analyses of the 2004-2005 KLOE data: Stopped K⁻ absorption in light nuclei (⁹Be,¹²C, ⁴He) (2.2 fb⁻¹ total, 1.5fb⁻¹ analyzed)
- Dedicated 2012 run with pure Carbon target inside KLOE 4/6 mm of thickness (~90 pb⁻¹; analyzed 37 pb⁻¹, x1.5 statistics)
 - **Ap** from 1NA or 2NA (single or multi-nucleon absorption)
 - Ad and At channels
 - Λ (1405) -> **Σ**⁰π⁰
 - Λ (1405) -> **Σ**⁺π⁻
 - Σ (1385) -> $\Lambda \pi^-$ ($\Sigma N/\Lambda N$ internal conversion)

Analysis status

- Analyses of the 2002-2005 KLOE data: Stopped K⁻ absorption in light nuclei (⁹Be,¹²C, ⁴He) (2.2 fb⁻¹ total, 1.5fb⁻¹ analyzed)
- Dedicated 2012 run with pure Carbon target inside KLOE 4/6 mm of thickness (~90 pb⁻¹; analyzed 37 pb⁻¹, x1.5 statistics)
 - **Ap** from 1NA or 2NA (single or multi-nucleon absorption)
 - Ad and At channels
 - Λ (1405) -> **Σ**⁰π⁰
 - Λ (1405) -> **Σ**+π⁻
 - Σ (1385) -> $\Lambda \pi^-$ ($\Sigma N/\Lambda N$ internal conversion)

this talk

1

talk by K. Piscicchia

- 1NA: $K^-n \rightarrow \Lambda \pi^-$ (extra p only spectator) pionic
- 1NA: $K^-N \rightarrow \Sigma \pi^-$, $(\Sigma N')\pi^- \rightarrow (\Lambda N')\pi^-$ (extra p from Σ/Λ conversion) pionic
- 2NA: **K⁻NN** → ΛN
- 2NA: $K^-NN \rightarrow \Sigma N$, $(\Sigma N)N \rightarrow \Lambda N'(N)$ (Σ/Λ conversion on another nucleon)

1NA: $K^-n \rightarrow \Lambda \pi^-$ (extra p only spectator) $K^-N \rightarrow \Sigma \pi^-$, $(\Sigma N)\pi^- \rightarrow (\Lambda N')\pi^-$

(extra p from Σ/Λ conversion)

2NA: K-NN→AN

 $K^{-}NN \rightarrow \Sigma N$, $(\Sigma N)N \rightarrow \Lambda N'(N)$ $(\Sigma/\Lambda \text{ conversion on another nucleon})$

A disentanglement between single and multinucleon absorption can be achieved thanks to the excellent acceptance:

⁵⁰ 2200 2250 23 M_{Λp} (MeV/c²) **KEK-E549** Mod.Phys.Lett.A23, 2520 (2008)

2350 2400

Ap analysis: MC 1NA

 $\begin{array}{l} 1NA + Internal \ Conversion \ \underline{\Sigma(n)} \rightarrow \underline{\Lambda(p)} \\ K^{-}p \rightarrow \underline{\Sigma^{+}\pi^{-}} \rightarrow \underline{\Lambda(p)}\pi^{-} \end{array}$

1NA + Internal Conversion $\Sigma(p)$ →Λ(p) K⁻n →Σ⁰π⁻→Λ(p)π⁻

Σ^+ conversion

 Σ^0 conversion

Ap analysis: MC 2NA

2NA absorption Internal Conversion $\Sigma(p) \rightarrow \Lambda(p)$ $K^-np \rightarrow \Sigma^0 n \rightarrow \Lambda(p)n$ DATA Λp all events DATA Λπ⁻p events MC (arbitrary normalization) $\begin{array}{c} 2NA \ absorption \\ Internal \ Conversion \ \Sigma(n) \rightarrow \Lambda(n) \\ \hline K^{-}pp \rightarrow \Sigma^{0}p \rightarrow \Lambda p(n) \end{array}$

Calculation of the $K^- {}^4He \rightarrow \Lambda \pi^- {}^3He$ resonant and non-resonant production

Figura 1: Left: $\Lambda \pi^-$ momentum distributions $P_s^s(p_{\Lambda \pi})$ black, $P_s^p(p_{\Lambda \pi})$ blue. Right: $\Lambda \pi^-$ mass distributions $P_s^s(m_{\Lambda \pi})$ black, $P_s^p(m_{\Lambda \pi})$ blue.

Performed by Kristian Piscicchia in collaboration with prof. Wycech

RESONANT NON-RESONANT

Figura 1: Left: $\Lambda \pi^-$ momentum distributions $P_{if}^s(p_{\Lambda\pi})$ black, $P_{if}^p(p_{\Lambda\pi})$ blue. Right: $\Lambda \pi^-$ mass distributions $P_{if}^s(m_{\Lambda\pi})$ black, $P_{if}^p(m_{\Lambda\pi})$ blue.

Simulations made and data to be studied for the following processes: (gas of the DC ⁴He 90%, 10% isobutane C_4H_{10})

Single nuclear absorption (1NA)

1) $\mathbf{K}^{-} \mathbf{H} \rightarrow \Sigma^{+} \pi^{-}$ $\Sigma^{+} n/\Lambda p$ (conversion on neutron from C)

2) $\mathbf{K}^{-} \mathbf{n} \rightarrow \Sigma^{0} \pi^{-} \Sigma^{0} \mathbf{p} / \Lambda \mathbf{p}$ (4He; 1NA) $\downarrow \rightarrow \Lambda \mathbf{p}(\mathbf{d})$

3) $\mathbf{K}^{-} \mathbf{p} \rightarrow \Sigma^{+} \pi^{-} \Sigma^{+} n/\Lambda p$ (⁴He; 1NA) $\downarrow \rightarrow \Lambda p(d)$

4) $\mathbf{K}^{-} \mathbf{n} \rightarrow \Sigma^{0} \pi^{-} \Sigma^{0} n / \Lambda n$ (⁴He ; 1NA) $\searrow \Lambda n(\mathbf{p})(\mathbf{p})$

1NA with conversion

Simulations made and data to be studied for the following processes: (gas of the DC ⁴He 90%, 10% isobutane C_4H_{10})

> Double nuclear absorption (2NA) (all on ⁴He)

5) $\mathbf{K}^{-} \mathbf{p} \mathbf{p} \rightarrow \mathbf{\Lambda} \mathbf{p}(\mathbf{n})(\mathbf{n})$

6) $K^- pp \rightarrow \Sigma^0 p(n)(n)$

10) K⁻ pn $\rightarrow \Lambda \pi^- p(d)$

(mesonic)

11) K⁻ pn $\rightarrow \Sigma^0 \pi^-$ p(d)

(mesonic)

8) $\mathbf{K}^{-} \mathbf{p} \mathbf{p} \rightarrow \Sigma^{0} \mathbf{p} \qquad \Sigma^{0} \mathbf{n} / \Lambda \mathbf{n}$

7) $\mathbf{K}^{-} \mathbf{pn} \rightarrow \Sigma^{0} \mathbf{n}$ $\Sigma^{0} \mathbf{p} / \Lambda \mathbf{p}$ $\longrightarrow \Lambda \mathbf{p}(\mathbf{n})$

9) $\mathbf{K}^{-} \mathbf{pn} \rightarrow \Sigma^{0} \mathbf{n} \qquad \Sigma^{0} \mathbf{n} / \Lambda \mathbf{n}$

8)

Another process to take into account:

University College London - London, U.K.

an example of the fit

Search for the 2NA: K-(pp) $\rightarrow \Lambda p$

Possible quantitative output: 2NA absorption rate per stopped Kaon

Katz et al., Phys.Rev.D1 (1970) 1267.

Vander Velde-Wilquet et al., Il Nuovo Cimento, Vol.49A, N.2 (1979) 0.16 ± 0.03 (in He)

0.19 ± 0.03 (in C) \leftarrow No Σ - Λ rate

FINUDA and KEK has not published this number

Search for signal of bound states in the Ad channel. Candidate to be a K-ppn cluster. Observed spectra from FINUDA and KEK showing possible bound states in the in the high invariant mass region.

At analyses

Only FINUDA and an old experiment [M.Roosen, J.H. Wickens, II Nuovo Cimento 66, (1981), 101] (with only 4 events!) have shown At spectra from K⁻ absorption

Ap analysis and more <u>Conclusions</u>

- Single and multi-nucleon absorption processes contributing the spectra are many thorough study is needed for better understanding and to disentengle them from the possible signal due to the formation of a bound state
- Quantitative information that can be extracted:
 - 1NA/2NA absolute rate per stopped kaon in ⁴He
 - 1NA/2NA $\Sigma \Lambda$ conversion rates
- Qualitative information:
 - 1NA shape
- Other analysis undergoing

Studies of Ad and At correlations in KLOE data will be investigated in the same manner

Thank you