

The Data Preservation problem (1)

- Long-term Data Preservation refers to the series of managed activities necessary to ensure continued access to digital materials for as long as necessary
 - also after the end of the life of the experiment...
- Some scientific areas, e.g. astrophysics, are well ahead in data preservation.
 - HEP experiments now focusing on this issue
 - On going at INFN for CDF (CNAF) and Aleph (Pisa)

The Data Preservation problem (2)

- DPHEP: Data Preservation in High Energy Physics
 Past experiments have already successful DP projects in place (e.g. Babar)
- All LHC experiments are devoting more efforts to data preservation
- Data preservation is one of the areas targeted in Horizon2020
- A data preservation project can be divided into two main areas:
- 1 Bit preservation : how preserve data
- 2 Analysis framework preservation : code preservation, virtualization

Bit Preservation

- (At least) two copies of data on MSS in two different places
 - Well-defined (automatic) procedure to periodically check data integrity...
 - ...and (in case) copy from the other site(s).
- Periodic migration of data from a generation of tapes to the next one...
 - Needs extra funding besides the start-up

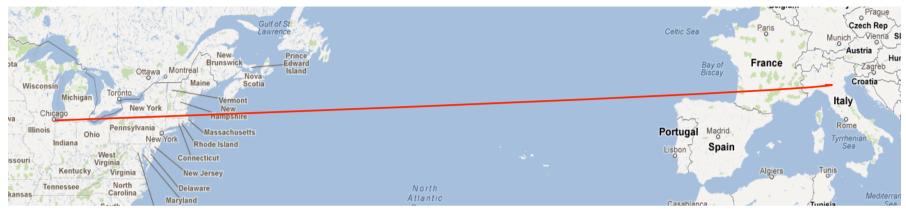
Analysis framework preservation

- Development of the long term future analysis framework.
- Preserve data access
- Preserve reconstruction and analysis software
- Give users resources to run analysis (authentication, disk space, CPU)
- Documentation

Aleph (1)

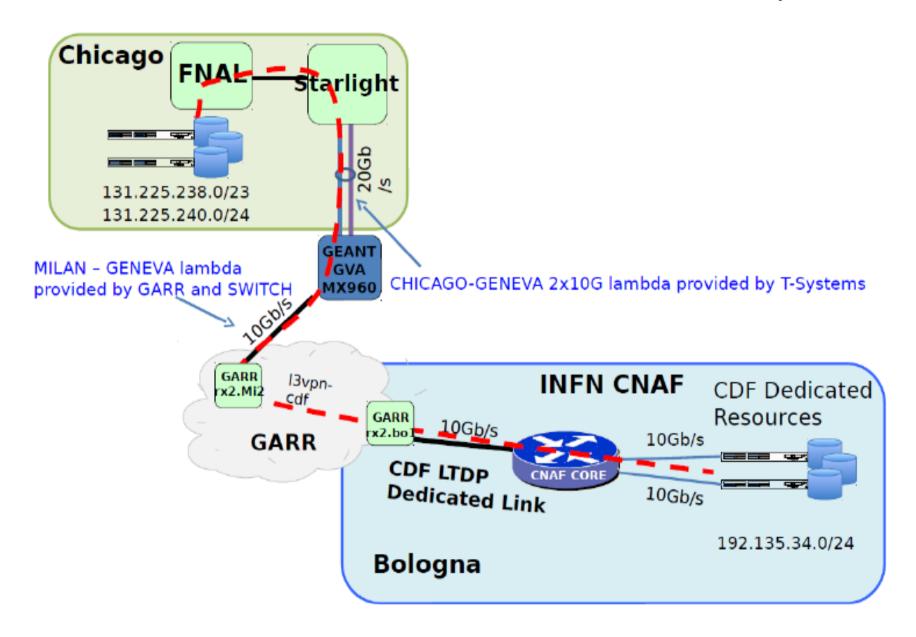
- Experiment took data at the CERN e+e- collider LEP from 1989 to 2000.
- Data still valuable
 - still get request by Theoretical Physicists for additional checks / studies on ALEPH Data
- Preservation done at INFN-PISA
 - 150k files, avg size 200 MB (30 TB)
 - Split between real collected events and Monte Carlo simulated events
 - Processing times (analysis) on recent machines is such that 1 week is enough to process all the sample
- Current policy: any paper can use ALEPH data if among the author there is at least one former ALEPH Member

Aleph (2)

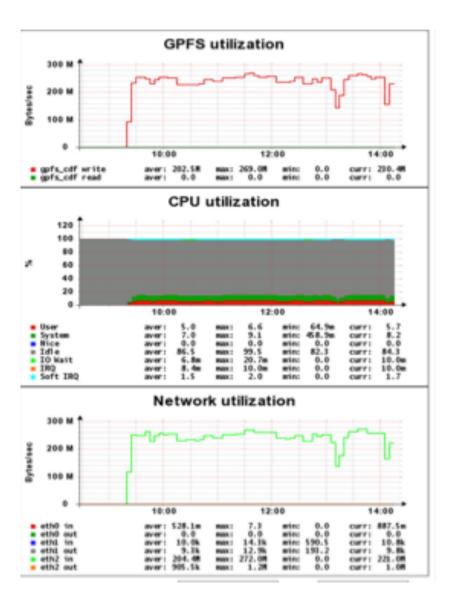

- · Computing Environment via VM approach
 - Currently using uCERN-VM (SL4)
 - Provides batch ready VMs, interactove ready VMs, development ready VMs
- Data to be served via POSIX to the executables
 - Current approach (pre Eudat) was
 - Via WebDAV (Apache, Storm, ...)
 - Seen by the VM as FUSE/DavFS2 mounted POSIX Filesyste
- Currently working on EUDAT

CNAF-CDF project

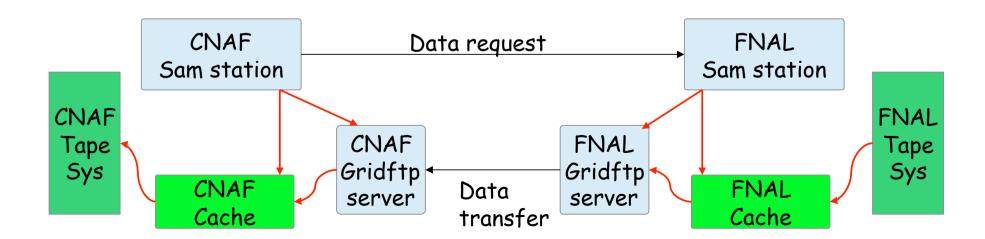
- Goal: preserve a complete copy of CDF data and MC samples at CNAF and services (access, data analysis capabilities)...
- ...using "standard" tools and shared resources!
- First problem: copy all (required) data from FNAL to CNAF
- Implement bit preservation
- Implement analysis framework for LTDP
- · Aleph approach (i.e. EUDAT) not viable


CNAF-CDF project: the copy (1)

- ~4 PB of data to be copied and preserved
 - All data and MC user level n-tuples (2.1 PB)
 - All raw data (1.9 PB)
 - Databases
- Dedicated 5 Gbps link FNAL-CNAF
 - Originally foreseen to complete the copy before Q2 2014
 - Delay in tape procurement
 - Copy will be completed at the end of Q3 2014...



Data transfer: network layout


CNAF-CDF project: the copy (2)

- Some modifications needed for:
 - CDF copy system to use third party gridftp transfers
 - the SAM station to use our MSS
- Optimization of network configuration
 - Saturation of available network (5 Gb/s)
 - Limited to allow repack
 - Gridftp: 80 simultaneous processes each of which divided into 20 parallel streams
- Complete (re)use of tools and standard Tier1 infrastructure
 - Minimal FTE overhead
 - · excepting the start-up!

CNAF-CDF project: the copy (3)

- CNAF requests data from FNAL that are staged at FNAL cache
 - The pre-staging done in parallel with the data transfer
- Data are copied via gridftp protocol (SAM performs checksum control)
- Once the data are in the CNAF cache, they are automatically migrated to tape

Data transfer archiving

- 1 Data are copied from FNAL via gridftp.
- 2 GEMSS moves data to tape
- 3 Retrieval from tape using standard CDF commands (SAM station).

About 115×8.5 TB tapes (T10KD) written => ~ 1PByte

2 T10kD drive (130MB/s reading from the CDF GPFS Filesystem)

Actual DISK => TAPE (2 drives) bandwidth can reach 260MB/s

DISK => TAPE bandwidth will be improved with additional drives (2nd half 2014)

File system 8 X GPFS NSD (420 TB) Server SAN SAN IAN Towards Worker node 2 X HSM Server to move data from tape to disk and vice versa TAN WAN SAN Towards 10 Gb/s Gridftp **FNAL** Server Oracle StorageTek Tape Library with 2 T10kD dedicated drive

1 Single Point of Failure (single gridftp)

aCold spare machine avaliable (can be configured in a acouple of hours)

Data transfer can "afford" a suspension in case of hardware failure

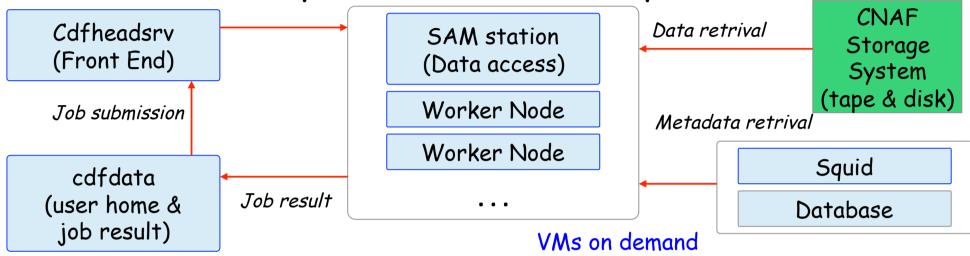
It's the same storage configuration that is used for other experiments

Present status and future development

Now we have already replicated at CNAF ≈ 1 PB of CDF data on tape

CDF data analysis in the long term future

To analyze CDF data stored at CNAF we need to implement:


- SAM station to retrieve data from tape: new version of SAM code in preparation at FNAL.
- CDF code volume, accessible via CVMFS Access to Batch facility
- Access to Oracle Databases (with local replicas at the INFN CNAF Tier1)
- Code preservation: CDF legacy software release (SL6) under test

In the long term future, CDF services and analysis computing resources can be instantiated on demand on pre-packaged VMs in a controlled environment.

Data analysis: future

Analysis framework - FNAL independent

This framework assumes limited use of CDF data in the long term future. Problems under discussion:

- Replication of Database
- Data access : QUESTION: How many years IBM will support GPFS on SL6?

 Possible solution could be NFS which provides greater compatibility with earlier version.
- Authentication: In the long future, access to the GRID resources will not be necessary.

 Possible solution could be job submission restricted to the local CNAF nodes.

Summary

- A data preservation project can be divided into two main areas:
 - Bit preservation : how preserve data
 - For CDF data transfer still on-going data (expected to be completed by the end of 2014)
 - Analysis framework preservation: code preservation, virtualization
 - (obvious) Strategy: ause virtualization (Openstack?)
- Some issues still open (e.g. common policy for data access, "standard" way of preserving accessibility etc..)
 - Fundamental to use "standard" tools and frameworks
 - Probably some activity in H2020
- First experiences in HEP world (BABAR, Aleph, CDF) in the framework of DPHEP are the prototype for WLCG and other experiments