EU-TO Data Backbone

Tommaso Boccali, Luca dell'Agnello, Giacinto Donvito

EU-TO (1)

- Collaboration of major European research institutes and funding agencies
 - CERN, CIEMAT-ES, DESY-GE, IFAE-ES, IN2P3-FR, INFN-IT, KIT-GE and STFC-UK
 - Particle, nuclear, astro-particle physics to cosmology, astrophysics and photon science
- Aim to create a hub of knowledge and expertise in information technology and escience
 - optimization of investment of the funding agencies in einfrastructure

EU-T0 (2)

- Aim to create a virtual Tier 0 center federating main European data management and computing centers
 - provision of software services and tools to the research communities
 - development of modern data management (and data preservation services and solutions)
 - deployment and operation of the federated computing infrastructure

Data Backbone (1)

- Proposal for a project to build an infrastructure for Data Management ("Data Backbone") under consideration
- Room for an initiative complementary to EUDAT
 - targeting different communities/requirements
 - EUDAT oriented to many small research groups with small amount of data
 - E.g. LTDP Aleph use case (aggregate of ~ 30 TB)
 - HEP collaborations cope with large amount of data (O(100) PB) at high rate (O(10) GB/s)

Data Backbone (2)

- Goal: Develop an integrated pan-European scientific data warehouse with a backbone topology,
- Target communities: Astro-particle Physics, Astronomy, Cosmology, Nuclear Physics, High Energy Physics and Photon Science
 - but open to other disciplines with similar needs
 - Building on our experience in WLCG for new scientific collaborations (e.g. CTA)
- Functionalities of DM frameworks to become features of Data Backbone infrastructure
 - develop a set of tools for small collaborations
- Black-box approach for the user coupled with complete infrastructure elasticity
 - E.g. Site unavailability "not seen" by the user

(Draft) Requirements (1)

- Interoperability with (at least) EUDAT
 - e.g. moving files from one to the other should be easily possible
- Guarantee custody and bit preservation of scientific data and corresponding metadata
 - Possibility to specify characteristics of data in the repository (e.g. custodial, temporary, scratch, access performance)
 - Recovery of replicas managed by the infrastructure (e.g. self healing of corrupted files)
 - Possibility to specify # and location of replicas
 - But also allow user "unawareness" of the actual data location

(Draft) Requirements (2)

- Technology agnostic
 - heterogeneous storage resources managed by cooperative but independent administrative domains
 - Possibility to access via standard services and protocols (e.g. HTTP/WebDAV, posixlike access, object storage)
 - using both API from command line and graphic access from browsers;

(Draft) Requirements (3)

- Able to cope with the (real-time) ingestion of huge amounts of (raw and derived) data
 - Including automatic addition of meta-data
 - Already tested at the scale of the LHC experiments (around 12 GByte/s).
- Unique Identifier for each file/object uploaded to the backbone

(Draft) Requirements (4)

- Possibility to perform structured queries on the data (search for userdefined tags)
 - System must provide a metadata catalog programmable by the users
 - User defined labels to be associated with the data
 - System managed catalog with the association "logical file name" Data replicas

(Draft) Requirements (5)

- Using standard federated identity and access right management solutions
 - E.g. EduGain
 - (Again) Close collaboration with EUDAT
- Data accessibility from any site
 - ACLs at single user level must be unique on the whole structure
- High speed network connectivity
- Computing capacity necessary to enable the data processing and a simulation environment integrated into the data backbone

Other issues

- Collaboration with data owners to enable content preservation and ensuring future usability of data (including implementation of data life-cycle policies)
- Collaboration with consumer users in order to optimize the I/O performance of their algorithms

Status & Conclusions

- Interest from PIC, INFN, IN2P3, CERN
- Phase of (advanced) brain-storming
 - First draft document under discussion
- · Aim to be complementary to cloud project
 - But this infrastructure could also be used for backup, disaster recovery, data preservation etc...
- Need to converge in next few weeks
 - September call....