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What we have now

® |n the first release, EMC only deals with EM showers and
lonization.

® EM shower: energy loss is distributed based on Moliere radius
(2-dimension Gaussians) with smearing in each crystal.

® |onization: energy loss (from PacTrk) is distributed based on
path length in each crystal (without smearing [should have] ).

® Current energy resolution is too good compared to
Babar. Shower shape is not tuned yet either.



To-do list

Hadron showers

Track-cluster matching

Transverse shower shape tuning

Energy resolution tuning

New materials (not available in Babar simulation)
Cluster merging/splitting

Variable barrel thickness

Forward/Backward endcap

Validation plots macro



Hadronic shower modeling problem

® Hadronic showers are irregular and difficult to model with
simple parametrization.

® Shower library is not easy to implement either. A
complete implementation requires large space, non-trivial
look-up scheme, and running full simulation each time

geometry or material is changed.

® New idea (originated from Dave Brown’s) is to randomize
distributions large enough to produce irregularity from a
smooth function.



What hadronic showers look like

® Samples of 1GeV/c KL shower shapes from Babar full
simulation (only about 1/2 of all KL leave a cluster in Babar EMC)
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Hadronic shower modeling procedure

|. Determine the total deposited energy E.
2. Start from the crystal (i,j) where a hadron enters.

3. Determine the average energy Eij in that crystal (a fraction
of E) based on an integral of a 2D Gaussian.

4. Fluctuate Eij using a Poisson with a large quanta.
e Eij = TRandom::Poisson(Eij/quanta) * quanta
* and then smear it : Eij = Eij + TRandom::Gaus(0,0E)
5. Fill that crystal with Eij, and reduce E by Eij.

6. Random walk to a nearby crystal (i, ). If (i’,j’) has already
been dealt with, walk again.

/. Repeat step 3 until E <= 0.
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Test one

® E= 300, quanta=50, OE=10 (MeV); smooth Gaussian 0=
|.7 CI")’St&' SIZ€. (Test is done with a simple root macro.)
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Test one (cont.)




Test two

® E= 300, quanta=100, OE=30 (MeV); smooth Gaussian 0=
|.7 crystal size.




Test two (cont.)
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Comments

This procedure is able to produce quite irregular

distributions. Considering this is the first try with randomly guessed parameters,
it performs quite well.

Need to quantify the differences between this procedure
and full MC.

The differences may or may not be resolved by tuning
parameters.

There seem to be more split clusters than it should be.
Will implement this in PacEmc for further test.



