

# Application of low-energy theorems to NN scattering at unphysical pion masses

#### Vadim Baru

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany Institute for Theoretical and Experimental Physics, Moscow, Russia

Chiral Dynamics 2015, Pisa

in collaboration with

E. Epelbaum, A. Filin, and J. Gegelia

#### Introduction

How the nuclear observables depend on the fundamental parameters of the SM?

- How much fine-tuning in the quark masses is needed for life to emerge on Earth?
   ab initio nuclear lattice simulations: Epelbaum, Krebs, Lähde, Lee, Meißner PRL110 (2013)
  - ▶ The excited Hoyle state of <sup>12</sup>C:  $\varepsilon = m_{\rm Hoyle} 3\,m_{\rm ^4He} \simeq 379\,{\rm KeV}$ 
    - enhanced resonance production of <sup>12</sup>C and <sup>16</sup>O
    - Changing  $\varepsilon$  by 25% ⇒ strong decrease in production of <sup>12</sup>C and <sup>16</sup>O

      Oberhammer et al. NPA689, (2001)
      - Converting this to the quark-mass variation  $\delta m_q$  requires knowledge of
    - the NN scatt. lengths:  $a_{\,^3\!S_1}(m_\pi)$  and  $a_{\,^1\!S_0}(m_\pi)$

#### Introduction

How the nuclear observables depend on the fundamental parameters of the SM?

- How much fine-tuning in the quark masses is needed for life to emerge on Earth?
   ab initio nuclear lattice simulations: Epelbaum, Krebs, Lähde, Lee, Meißner PRL110 (2013)
  - ▶ The excited Hoyle state of <sup>12</sup>C:  $\varepsilon = m_{\rm Hoyle} 3\,m_{\rm ^4He} \simeq 379\,{\rm KeV}$ 
    - enhanced resonance production of <sup>12</sup>C and <sup>16</sup>O
    - Changing  $\varepsilon$  by 25% ⇒ strong decrease in production of <sup>12</sup>C and <sup>16</sup>O

      Oberhammer et al. NPA689, (2001)
    - Converting this to the quark-mass variation  $\delta m_q$  requires knowledge of the NN scatt. lengths:  $a_{^3S_1}(m_\pi)$  and  $a_{^1S_0}(m_\pi)$
- Impact of quark-mass variation on Big Bang nucleosynthesis (BBN)
  - ► Input:  $a_{3S_1}(m_{\pi}), a_{1S_0}(m_{\pi})$  + BE of <sup>3</sup>He, <sup>4</sup>He, ..., <sup>7</sup>Be
  - Output: quark-mass variation at the time of BBN

    Berengut et al., PRD87 (2013), Bedaque et al. PRC83 (2011),...
    - $\Rightarrow m_{\pi}$ -dependence of the NN parameters is a crucial pre-requisite

### $m_{\pi}$ -dependence of the NN parameters. Methods

- Lattice QCD simulations at unphysical pion masses
  - much progress in recent years

    Beane et al. (NPLQCD) PRD 85 (2012), PRD 87, PRC 88 (2013)

    Yamazaki et al. PRD 81 (2010), PRD 86 (2012), (2015)

•••

- Chiral Extrapolations based on Chiral EFT
  - ightharpoonup assuming scat. length a is known at some  $m_{\pi 1}$  and  $m_{\pi 2}$ 
    - ⇒ fix short-range parameters ⇒ extrapolate to physical world
- Low-energy theorems: complementary model independent info about NN
- ightharpoonup assuming a (or the effective range r) is known at some  $m_{\pi}$ 
  - ⇒ employ correlations caused by long-range pion physics
  - $\Rightarrow$  predict all other parameters in the effective range expansion at this  $m_{\pi}$

## Modified effective range expansion (MERE)

#### **ERE** and its validity

$$T_l(k) = -\frac{16\pi^2}{m} \frac{k^{2l}}{F_l(k) - ik^{2l+1}} \qquad \qquad F_l(k) \equiv k^{2l+1} \cot \delta_l(k)$$
 
$$k^{2l+1} \cot \delta_l(k) = -\frac{1}{a} + \frac{1}{2}rk^2 + v_2k^4 + v_3k^6 + v_4k^8 + \dots \qquad -\text{ERE}$$
 
$$\text{ERE validity range if there is no poles}$$
 
$$\frac{1}{2\pi - v_1} \underbrace{\frac{1}{2\pi - v_2} + \frac{1}{2\pi - v_1} + \frac{1}{2\pi - v_2} + \frac{1}{2\pi -$$

## Modified effective range expansion (MERE)

#### **ERE** and its validity

$$T_l(k) = -\frac{16\pi^2}{m} \frac{k^{2l}}{F_l(k) - ik^{2l+1}} \qquad F_l(k) \equiv k^{2l+1} \mathrm{cot} \delta_l(k)$$
 
$$k^{2l+1} \mathrm{cot} \delta_l(k) = -\frac{1}{a} + \frac{1}{2} r k^2 + v_2 k^4 + v_3 k^6 + v_4 k^8 + \dots \qquad -\text{ERE}$$
 
$$\text{ERE validity range if there is no poles}$$
 
$$\frac{3\pi \text{-cut}}{r_{77MeV}} = \frac{2\pi \text{-cut}}{r_{9MeV}} = \frac{10 \text{MeV}}{r_{10MeV}} \Rightarrow k = \pm i \, m_\pi/2 \quad -\text{branch point}$$

Idea of MERE v.Haeringen and Kok PRA 26 (1982), Cohen and Hansen PRC 59 (1999), Epelbaum and Gegelia EPJA 41 (2009)

keep long-range physics explicitly ⇒ extend the range of validity

$$V = V_L + V_S \qquad r_L \sim M_L^{-1} \qquad r_S \sim M_S^{-1} \qquad M_L \ll M_S$$
 
$$F_l^M(k^2) \equiv R_l^L(k) + \frac{k^{2l+1}}{|f_l^L(k)|} \cot[\delta_l(k) - \delta_l^L(k)]$$
 
$$-\frac{1}{a_M} + \frac{1}{2} r_M k^2 + \dots \qquad \text{known from solutions of Schrödinger Eq.} \quad \text{for } \mathbf{V}_L$$

- meromorphic for Ikl< M<sub>S</sub>/2
- systematically parameterizes short-range physics: 1/M<sub>S</sub> expansion

## Low-energy theorems (LETs). Formulation

$$k\cot\delta=\operatorname{fun}(f^L(k),\delta^L(k);\,F^M(k))$$
 
$$r,v_2,v_3,\dots$$
 long-range part short-range, MERE expansion

LET  $\equiv$  correlations between a, r and  $v_i$  caused by long-range interactions

#### LO LETS

$$k \cot \delta = \operatorname{fun}_{LO}(f^L(k), \delta^L(k); a^M)$$

$$\Rightarrow$$
  $r = \alpha_0/M_L$ ,  $v_2 = \beta_0/M_L^3$ ,  $v_3 = \gamma_0/M_L^5$ ,  $v_4 = \delta_0/M_L^7$ ,

#### **NLO LETs**

$$k \cot \delta = \operatorname{fun}_{\mathrm{NLO}}(f^L(k), \delta^L(k); a^M, r^M)$$

$$\Rightarrow$$
 corrections to  $r, v_i \sim M_L/M_S$  from  $r^M$ 

 $M_L/M_S$  expansion of ERE  $\equiv$  chiral expansion  $\chi=m_\pi/\Lambda_\chi$ 

## LETs for NN scattering

LETs are caused by long-range interactions ⇒ model and scheme independent

*Framework:* modified Weinberg chiral EFT

Epelbaum and Gegelia PLB 716 (2012)

$$T(p,p',E) = V(p,p') + m_N^2 \int_0^\Lambda \frac{dq}{2\pi^2} V(p,q) \frac{q^2}{(q^2+m_N^2) \left(E-2\sqrt{q^2+m_N^2}+i0\right)} T(q,p',E)$$
 Kadyshevsky NPB6 (1968)

$$V_{\rm LO} = V_{1\pi}(\vec{q}) + C_0,$$

$$V_{\text{LO}} = V_{1\pi}(\vec{q}) + C_0, \qquad V_{1\pi}(\vec{q}) = -\frac{g_A^2}{4F_\pi^2} \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} \, \tau_1 \cdot \tau_2$$

- explicitly renormalizable  $(\Lambda \rightarrow \infty)$
- all divergencies can be absorbed to  $C_0$ ;  $C_0^R$  is adjusted to a (or  $a_M$ )

## LETs for NN scattering

LETs are caused by long-range interactions ⇒ model and scheme independent

*Framework:* modified Weinberg chiral EFT

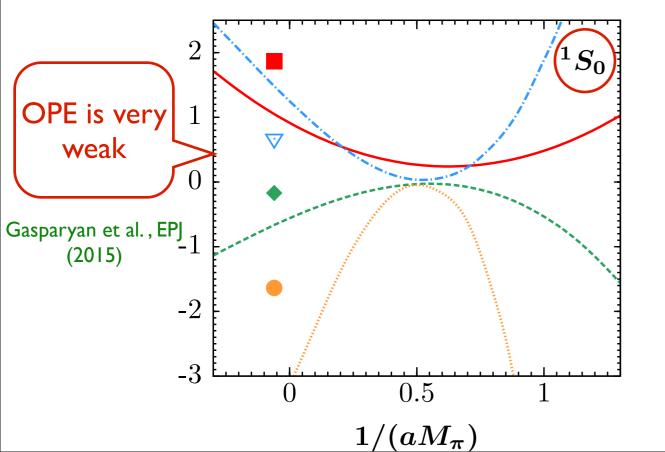
Epelbaum and Gegelia PLB 716 (2012)

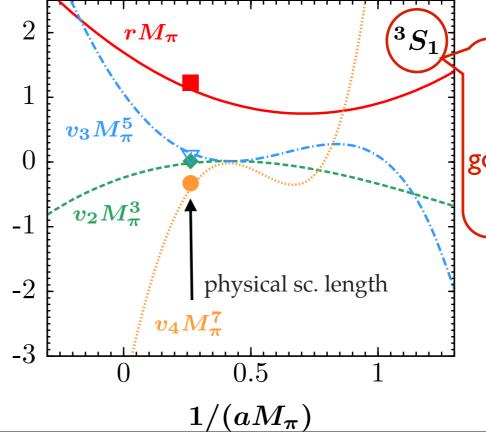
$$T(p,p',E) = V(p,p') + m_N^2 \int_0^\Lambda \frac{dq}{2\pi^2} V(p,q) \frac{q^2}{(q^2+m_N^2) \left(E-2\sqrt{q^2+m_N^2}+i0\right)} T(q,p',E)$$
 Kadyshevsky NPB6 (1968)

$$V_{\rm LO} = V_{1\pi}(\vec{q}) + C_0,$$

$$V_{\text{LO}} = V_{1\pi}(\vec{q}) + C_0, \qquad V_{1\pi}(\vec{q}) = -\frac{g_A^2}{4F_\pi^2} \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} \, \tau_1 \cdot \tau_2$$

- explicitly renormalizable  $(\Lambda \rightarrow \infty)$
- all divergencies can be absorbed to  $C_0$ ;  $C_0^R$  is adjusted to a (or  $a_M$ )





Strong tensor part of OPE governs coeffs. in **ERE** 

#### LETs at NLO

ullet Include higher order short-range interactions, adjust to  $a_M$  and  $r_M$ 

we want

⇒ non-perturbative + renormalizable theory ⇒ resonance saturation

$$V_{\rm NLO} = V_{1\pi}(\vec{q}\,) + C_0 + \beta \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^{\,2} + M^2}$$
 adjust to  $r_{\rm M}$  700 MeV

once  $\beta$  is adjusted to  $r_{\rm M} \Rightarrow$  very weak sensitivity to the form of the short-range force

| Neutron-proton <sup>3</sup> S <sub>1</sub> partial wave | a [fm] | r [fm] | $v_2$ [fm $^3$ ] | $v_3$ [fm $^5$ ] | $v_4$ [fm $^7$ ] |
|---------------------------------------------------------|--------|--------|------------------|------------------|------------------|
| LO Epelbaum, Gegelia, PLB716, 2012                      | fit    | 1.60   | -0.05            | 0.82             | -5.0             |
| NLO, this work                                          | fit    | fit    | 0.06             | 0.70             | -4.0             |
| Empirical values, de Swart et al., nucl-th/9509032      | 5.42   | 1.75   | 0.04             | 0.67             | -4.0             |
| NLO KSW, Cohen, Hansen, PRC59, 1999                     | fit    | fit    | -0.95            | 4.6              | -25              |

## LETs for $m_{\pi} \neq m_{\pi}^{\rm ph}$ . Strategy

LO

$$V_{\rm LO} = V_{1\pi}(\vec{q}, m_{\pi}) + C_0$$

- Shift of the branch point of the left-hand cut from OPE
- Include  $m_{\pi}$ -dependence of  $g_{A_n}$   $F_{\pi}$ ,  $m_N$ 
  - $\Rightarrow$  Interpolation fits of lattice data up to  $m_{\pi}$  = 500 MeV

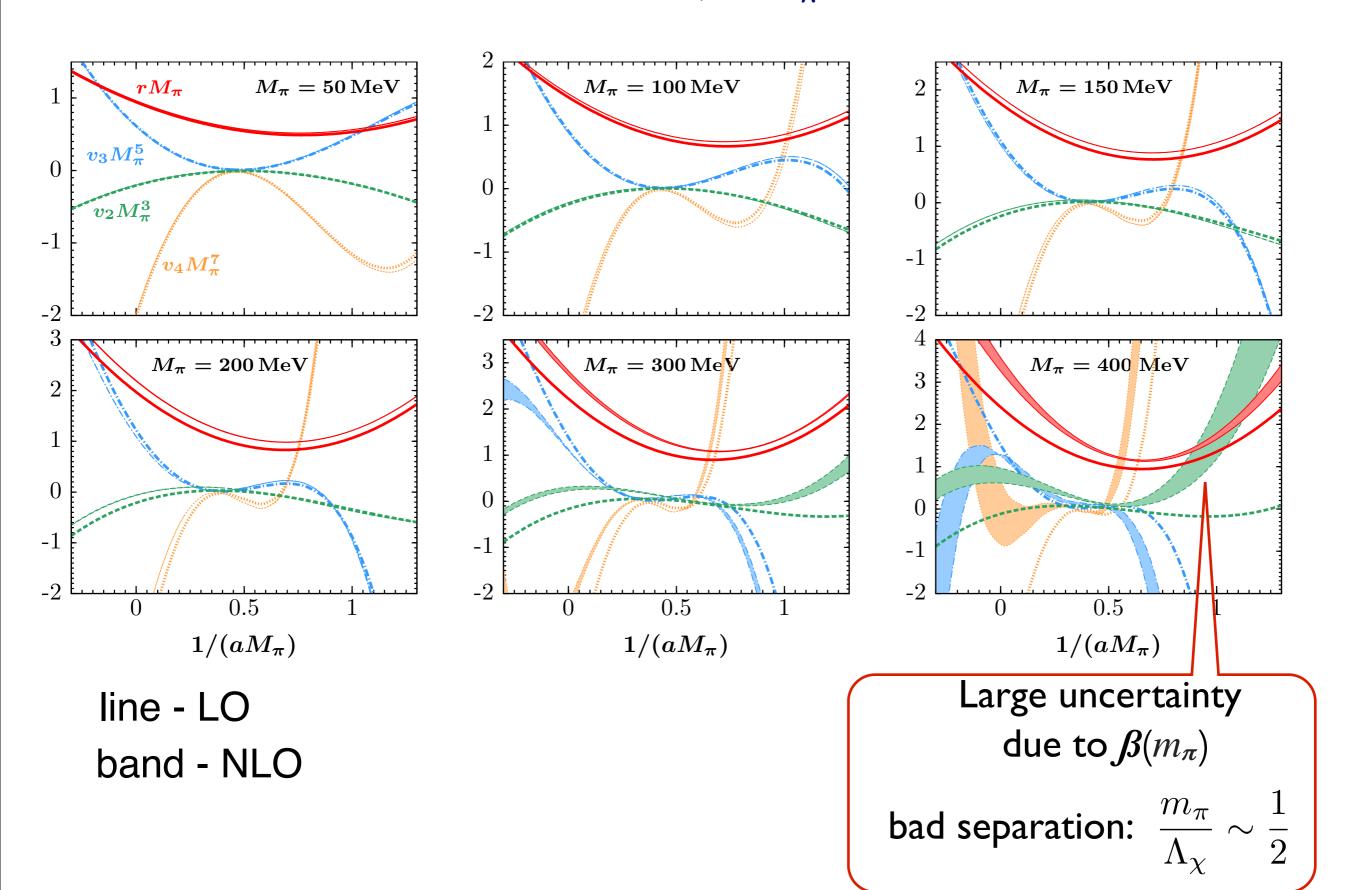
$$V_{\rm NLO} = V_{1\pi}(\vec{q}) + C_0 + \beta \frac{\vec{\sigma}_1 \cdot \vec{q} \ \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M^2}$$

**NLO** 

- Include in addition  $m_{\pi}$ -dependence of subleading short-range term
  - $\Rightarrow$  Naturalness:  $\beta$  changes by 50% for  $m_{\pi}$  = 500 MeV

$$1 - 0.5 \left| \frac{M_{\pi}^2 - (M_{\pi}^{\text{ph}})^2}{(500 \text{ MeV})^2 - (M_{\pi}^{\text{ph}})^2} \right| \le \frac{\beta(M_{\pi})}{\beta(M_{\pi}^{\text{ph}})} \le 1 + 0.5 \left| \frac{M_{\pi}^2 - (M_{\pi}^{\text{ph}})^2}{(500 \text{ MeV})^2 - (M_{\pi}^{\text{ph}})^2} \right|,$$

## LETs for $m_{\pi} \neq m_{\pi}^{\rm ph}$ . Results



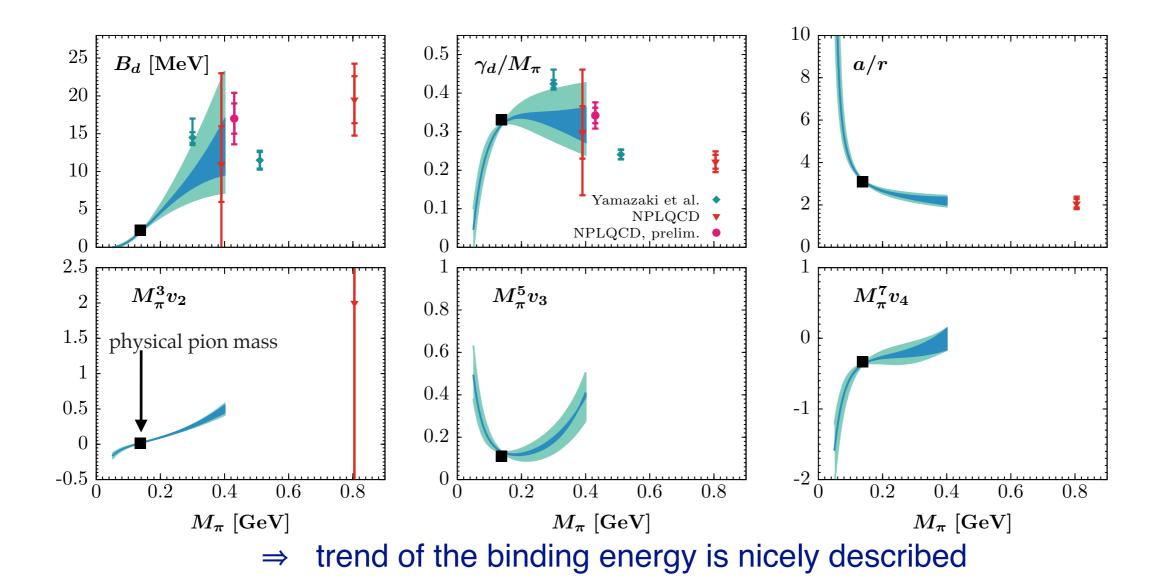
## Implications of LETs for lattice QCD

- Consistency checks of lattice results if several ERE parameters are extracted!
  - NPLQCD extracted  $B_d$  and r for  $m_{\pi} \approx 800$  MeV (Beane et al. PRC88 (2013))
  - It was conjectured that

see Talk by Silas Beane on Tuesday

$$M_{\pi}r \cong A^{(^3S_1)} + B^{(^3S_1)}M_{\pi}$$
, where  $A^{(^3S_1)} = 0.726^{+0.065}_{-0.059}^{+0.065}_{-0.059}^{+0.065}_{-0.059}^{+0.072}$ ,  $B^{(^3S_1)} = 3.70^{+0.42}_{-0.47}^{+0.42}_{-0.52}$  GeV<sup>-1</sup>,

Assuming this behavior  $\Rightarrow$  fix short-range interaction  $C_0$  at  $LO \Rightarrow$  predict coeffs. in ERE



## Summary

- Correlations between the parameters in the ERE from long-range interactions (low-energy theorems) are investigated for NN scattering
  - lacktriangleright systematically improvable results with  $\chi=\frac{M_L}{M_S}$
- Spin-triplet channel: at LO LETs describe empirical data to 25%, at NLO to a few percents
- Spin-singlet channel: only qualitative agreement due to the weakness of OPE
- LETs in the spin-triplet channel are generalized to unphysical pion masses
  - $\blacktriangleright$  expected to be valid below  $m_{\pi} \sim 400 \text{ MeV}$
- effective range and shape parameters are calculated for different  $m_\pi$  using scat. length as input
- should be useful for consistency checks of lattice simulations and for reducing the systematic errors