Causality constraint on bound states and scattering with zero-range force

arXiv:1402.4973 [nucl-th].

do perturbative pions deserve another chance?

Vladimir Pascalutsa

Institut für Kernphysik,
University of Mainz, Germany

@ 8th Chiral Dynamics Workshop, Pisa, Italy, June 29, 2015
Outline

Motivation
Chiral EFT of few-nucleon systems

Light-by-light scattering sum rules
general principles: unitarity, causality, etc.

Zero-range force:
Bound state, tachyon, K-matrix pole
using the sum rules as consistency (causality) criterion
phi^4 theory

(Relativistic) Wigner’s inequality
positive effective range parameters

Conclusions and outlook
Motivation
Motivation

Motivation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pions</td>
<td>perturbative</td>
<td>nonperturbative</td>
</tr>
<tr>
<td></td>
<td>Zero-range +Pion-exchange at LO</td>
<td>Zero-range NN force at LO only</td>
</tr>
</tbody>
</table>
Motivation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pions</td>
<td>perturbative</td>
<td>nonperturbative</td>
<td>perturbative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero-range +Pion-exchange at LO</td>
<td>Zero-range NN force at LO only</td>
</tr>
<tr>
<td></td>
<td>straightforward</td>
<td>unclear</td>
<td>straightforward</td>
</tr>
<tr>
<td></td>
<td></td>
<td>potential is cut off and plugged into Schroedinger equation… unlike in atoms (QED), no systematic way to account for relativistic effects</td>
<td>straightfoeward</td>
</tr>
</tbody>
</table>
Motivation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pions</td>
<td>perturbative</td>
<td>perturbative Zero-range +Pion-exchange at LO</td>
</tr>
<tr>
<td>Symmetries, Field-theor. aspects</td>
<td>straightforward</td>
<td>unclear potential is cut off and plugged into Schroedinger equation… unlike in atoms (QED), no systematic way to account for relativistic effects</td>
</tr>
<tr>
<td>Converges ?</td>
<td>Maybe</td>
<td>Yes!</td>
</tr>
</tbody>
</table>
\(M_{\lambda_1 \lambda_2 \lambda_3 \lambda_4} = \varepsilon_{\lambda_4}^{*\mu_4}(\vec{q}_4) \varepsilon_{\lambda_3}^{*\mu_3}(\vec{q}_3) \varepsilon_{\lambda_2}^{\mu_2}(\vec{q}_2) \varepsilon_{\lambda_1}^{\mu_1}(\vec{q}_1) M_{\mu_1 \mu_2 \mu_3 \mu_4} \)

HELICITY AMPL.

FEYNMAN AMPL.

IN THE FORWARD DIRECTION (\(t = 0, \quad s = 4\omega^2, \quad u = -s \):)

\[M_{\mu_1 \mu_2 \mu_3 \mu_4} = A(s) g_{\mu_4 \mu_2} g_{\mu_3 \mu_1} + B(s) g_{\mu_4 \mu_1} g_{\mu_3 \mu_2} + C(s) g_{\mu_4 \mu_3} g_{\mu_2 \mu_1}, \]

\[M_{++-+}(s) = A(s) + C(s), \]

\[M_{+-+-}(s) = A(s) + B(s), \]

\[M_{++--}(s) = B(s) + C(s). \]
Light by light scattering

\[M_{\lambda_1 \lambda_2 \lambda_3 \lambda_4} = \varepsilon_{\lambda_4}^{* \mu_4} (\vec{q}_4) \varepsilon_{\lambda_3}^{* \mu_3} (\vec{q}_3) \varepsilon_{\lambda_2}^{\mu_2} (\vec{q}_2) \varepsilon_{\lambda_1}^{\mu_1} (\vec{q}_1) M_{\mu_1 \mu_2 \mu_3 \mu_4} \]

HELCITY AMPL.

FEYNMAN AMPL.

IN THE FORWARD DIRECTION (\(t = 0, \quad s = 4\omega^2, \quad u = -s \)):

\[M_{\mu_1 \mu_2 \mu_3 \mu_4} = A(s) g_{\mu_4 \mu_2} g_{\mu_3 \mu_1} + B(s) g_{\mu_4 \mu_1} g_{\mu_3 \mu_2} + C(s) g_{\mu_4 \mu_3} g_{\mu_2 \mu_1} , \]

\[M_{+++-}(s) = A(s) + C(s) , \]

\[M_{+-+-}(s) = A(s) + B(s) , \]

\[M_{++++}(s) = B(s) + C(s) . \]

1) **CROSSING SYMMETRY** (1 ↔ 3, 2 ↔ 4):

\[M_{+-+-}(s) = M_{++++}(-s) , \quad M_{+++-}(s) = M_{+-+-}(-s) \]

AMPLITUDES WITH DEFINITE PARITY UNDER CROSSING:

\[f^{(\pm)}(s) = M_{++++}(s) \pm M_{+-+-}(s) \]

\[g(s) = M_{+-+-}(s) \]
LbL sum rules

2) CAUSALITY \Rightarrow ANALYTICITY \Rightarrow DISPERSION RELATIONS:

$$\text{Re} \left\{ \frac{f^{(\pm)}(s)}{g(s)} \right\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{ds'}{s' - s} \text{Im} \left\{ \frac{f^{(\pm)}(s')}{g(s')} \right\},$$
LbL sum rules

2) CAUSALITY \Rightarrow ANALYTICITY \Rightarrow DISPERSION RELATIONS:

$$\text{Re} \left\{ \frac{f^{(\pm)}(s)}{g(s)} \right\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{ds'}{s' - s} \text{Im} \left\{ \frac{f^{(\pm)}(s')}{g(s')} \right\},$$

3) OPTICAL THEOREM (UNITARITY):

$$\text{Im} f^{(\pm)}(s) = -\frac{s}{8} \left[\sigma_0(s) \pm \sigma_2(s) \right],$$

$$\text{Im} g(s) = -\frac{s}{8} \left[\sigma_{||}(s) - \sigma_{\bot}(s) \right].$$

$\sigma_{0,2}(\sigma_{||,\bot})$ ARE CIRCULARLY (LINEARLY) POLARIZED PHOTON-PHOTON FUSION CROSS-SECTIONS
LbL sum rules

2) CAUSALITY \Rightarrow ANALYTICITY \Rightarrow DISPERSION RELATIONS:

$$\text{Re} \left\{ \frac{f^{(\pm)}(s)}{g(s)} \right\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{ds'}{s' - s} \text{Im} \left\{ \frac{f^{(\pm)}(s')}{g(s')} \right\},$$

3) OPTICAL THEOREM (UNITARITY):

$$\text{Im} f^{(\pm)}(s) = -\frac{s}{8} \left[\sigma_0(s) \pm \sigma_2(s) \right],$$

$$\text{Im} g(s) = -\frac{s}{8} \left[\sigma_{||}(s) - \sigma_{\perp}(s) \right].$$

$\sigma_{0,2}(\sigma_{||},\perp)$ ARE CIRCULARLY (LINEARLY) POLARIZED PHOTON-PHOTON FUSION CROSS-SECTIONS

$$\text{Re} f^{(+)}(s) = -\frac{1}{2\pi} \int_{0}^{\infty} ds' s'^2 \frac{\sigma(s')}{s'^2 - s^2},$$

$$\text{Re} f^{(-)}(s) = -\frac{s}{4\pi} \int_{0}^{\infty} ds' s' \frac{\Delta \sigma(s')}{s'^2 - s^2},$$

$$\text{Re} g(s) = -\frac{1}{4\pi} \int_{0}^{\infty} ds' s'^2 \frac{\sigma_{||}(s') - \sigma_{\perp}(s')}{s'^2 - s^2},$$

$$\sigma = (\sigma_0 + \sigma_2)/2 = (\sigma_{||} + \sigma_{\perp})/2$$

$$\Delta \sigma = \sigma_2 - \sigma_0$$
Light-by-light scattering sum rules

4) "LOW-ENERGY THEOREM": \[\mathcal{L}_{EH} = c_1 (F_{\mu\nu} F^{\mu\nu})^2 + c_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2, \]

\[f^{(\pm)}(s) = -2(c_1 + c_2) s^2 + O(s^4) \]

LOW-ENERGY EXPANSION

\[f^{(-)}(s) = O(s^5) \]

\[g(s) = -2(c_1 - c_2) s^2 + O(s^4) \]

\[O(s^1) : \quad 0 = \int_{0}^{s} \frac{ds}{s} \left[\sigma_2(s) - \sigma_0(s) \right] \]

GERASIMOV & MOULIN, NPB (1976)
BRODSKY & SCHMIDT, PLB (1995)

\[O(s^2) : \quad c_1 = \frac{1}{8\pi} \int_{0}^{\infty} \frac{ds}{s^2} \sigma_{||}(s), \]

\[c_2 = \frac{1}{8\pi} \int_{0}^{\infty} \frac{ds}{s^2} \sigma_{\perp}(s) \]

V. P. & VANDERHAEGHEN, PRL (2010)
Zero-range force in light of the LbL sum rule

PAUK, V.P. & VANDERHAEGHEN, PLB 2014

\[T = V + VGT \]

\[V = \lambda \]

\[G(s) = -i \int \frac{d^4 \ell}{(2\pi)^4} \frac{1}{[(p+\ell)^2 - m^2] (\ell^2 - m^2)} \]

Bubble-chain sum:

\[T(s) = \frac{1}{\lambda^{-1} - G(s)} \]

with \(p^2 = s \).
Zero-range force in light of the LbL sum rule

PAUK, V.P. & VANDERHAEGHEN, PLB 2014

\[T = V + VGT \]
\[V = \lambda \]

\[T(s) = \frac{1}{\lambda^{-1} - G(s)} \]

\[G(s) = -i \int \frac{d^4 \ell}{(2\pi)^4} \frac{1}{[(p + \ell)^2 - m^2](\ell^2 - m^2)} \]

\[\lambda > 0 : \text{no poles} \]
\[\lambda < 0 : \text{one pole and one K-matrix pole} \]

\[T(s) = \frac{1}{K^{-1}(s) - i} \]
Light-by-light sum rule as causality criterion

\[\int_{s_0}^{\infty} ds \frac{\Delta \sigma(s)}{s} = 0, \]

\[\mathcal{L} = (D^\mu \phi)^* D_\mu \phi - m^2 \phi^* \phi + \frac{\lambda}{4} (\phi^* \phi)^2 - \frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \]

\[S(\Delta \sigma(0))/s. \]
The results are discussed in Sect. 4, and an outlook is given in Sect. 5. We present a stringer causality criterion for relativistic scattering and bound state solutions.

Abstract

Alternating-sign, since

\[\int_{s_0}^{\infty} ds \frac{\Delta \sigma(s)}{s} = 0, \]

\[\mathcal{L} = (D^\mu \phi)^* D_\mu \phi - m^2 \phi^* \phi + \frac{\lambda}{4} (\phi^* \phi)^2 - \frac{1}{4} F^{\mu \nu} F_{\mu \nu}, \]

where

\[s \]

Keywords:

The bound state appearance, independently of whether it is a tachyon or not, is complemented in this

Though the sum of Eq. (20) is formally undetermined, we can still use a naive resummation at

The tree-level cross section weighted with 1

In going beyond one loop, and in fact beyond perturbation theory, one often relies on a linear

The tree-level cross section in scalar QED, the relative velocity

To cancel the integral one need to introduce the bound state as the asymptotic state i.e., new channel:

Fig. 5 that the sum rule is only valid for positive values of

By Eq. (15) in terms of the renormalized coupling of Eq. (12). In Fig. 5 we show the dependence

which corre-

are the colliding photon four-

which can be easily obtained by a formal resummation of the geometric series of corrections given

potential perturbatively. For example in

in our field-theoretic case we are to consider

is the tree-level cross section in scalar QED, the relative velocity

where

\[m \]

II

I

III

To cancel the integral one need to introduce the bound state as the asymptotic state i.e., new channel:

instability

bound state

no bound state no tachyon

To cancel the integral one need to introduce the bound state as the asymptotic state i.e., new channel:
Light-by-light sum rule as causality criterion

\[
\int_{s_0}^{\infty} ds \frac{\Delta \sigma(s)}{s} = 0.
\]

\[
\mathcal{L} = (D^\mu \phi)^* D_\mu \phi - m^2 \phi^* \phi + \frac{\lambda}{4} (\phi^* \phi)^2 - \frac{1}{4} F^{\mu \nu} F_{\mu \nu},
\]

\[
\text{Fig. 5: The amplitude of the bound state production.}
\]

To cancel the integral one need to introduce the bound state as the asymptotic state i.e., new channel:

but not the K-matrix pole...
Phase shifts

Levinson’s theorem:
\[\delta(0) = \pi N_{\text{bound states}} \]

Figure 7: Phase shift for different values of \(\tilde{\lambda} \).

The 90 degree crossing, i.e. the K-matrix pole does not correspond to any S-matrix pole in this case.
Wigner’s causality bound

\[r \leq 0 \]

effective range

WIGNER, PHYS REV (1955)

PHILLIPS & COHEN, PLB (1997);
HAMMER & D. LEE, ANN PHYS (2010); ...
Wigner’s causality bound

\[r \leq 0 \]

effective range

\[|k| \cot \delta(s) = -\frac{1}{a} + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} r_n |k|^{2n} \]

WIGNER, PHYS REV (1955)

PHILLIPS & COHEN, PLB (1997);
HAMMER & D. LEE, ANN PHYS (2010); ...

In the tachyon (acausal) regime at least one of the effective range parameters is negative.

Therefore our causality criterion yields:

\[r_n \geq 0 \]
Non-relativistic limit

\[T(s) = \frac{1}{\lambda^{-1} - (4\pi)^{-2} B(s)} \]

In non-rel. limi, K-matrix pole disappears and

\[r = 0 \]

in agreement with Wigner’s bound

Zero eff. range of 2-body force eventually leads to the problems with the 3-body force

[BEDAQUE, HAMMER, VAN KOLCK (1999)]
Conclusion and outlook
Conclusion and outlook
Conclusion and outlook

Light-by-light scattering sum rule used as
Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation
\(\text{Conclusion and outlook} \)

- **Light-by-light scattering sum rule** used as criterion for consistency of a QFT (with zero-range interaction) truncation
× Conclusion and outlook

Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation

Positive eff. range(s) emerge, Wigner’s bound violated/NA. :) will help in 3-body problem
Conclusion and outlook

- **Light-by-light scattering sum rule** used as criterion for consistency of a QFT (with zero-range interaction) truncation

- Positive eff. range(s) emerge, Wigner’s bound violated/NA. :) will help in 3-body problem
Conclusion and outlook

Light-by-light scattering sum rule used as criterion for consistency of a QFT (with zero-range interaction) truncation

Positive eff. range(s) emerge, Wigner’s bound violated/NA. :) will help in 3-body problem

Chiral EFT of NN and few-nucleon systems?
Conclusion and outlook

- **Light-by-light scattering sum rule** used as criterion for consistency of a QFT (with zero-range interaction) truncation

- Positive eff. range(s) emerge, Wigner’s bound violated/NA. :) will help in 3-body problem

- **Chiral EFT** of NN and few-nucleon systems?
\(\times\) Conclusion and outlook

- **Light-by-light scattering sum rule** used as criterion for consistency of a QFT (with zero-range interaction) truncation

- Positive eff. range(s) emerge, Wigner’s bound violated/NA. :) will help in 3-body problem

- **Chiral EFT** of NN and few-nucleon systems?