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• study of the                 system

❖ [BMWc, 2014] (EQ) — [to appear]

• update of quark masses and Dashen’s theorem using electro-
quenched simulations

❖ [Davoudi & Savage, 2014] — [PRD 90(5), p. 054503]

• finite-volume corrections to hadron masses in NREFTs
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What’s new ?
❖ [BMWc, 2015a] — [Science 347, pp. 1452–1455]

• new set of Nf = 1+1+1+1 full QCD+QED simulations

• extensive analytical/numerical study of finite-volume effects

• high precision computation of the hadron spectrum 
splittings (continuum, infinite volume and physical point 
extrapolation)

❖ [BMWc, 2015b] — [arXiv:1502.06921]

• further discussion of NREFT in finite volume

❖ possible summary of all that: [AP, 2015, arXiv:1505.07057]
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❖ [N. Carrasco et. al, 2015] — [arXiv:1502.00257]

• theoretical study of the QED corrections to hadronic 
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What’s new ?

❖ [N. Carrasco et. al, 2015] — [arXiv:1502.00257]

• theoretical study of the QED corrections to hadronic 
processes

• cf. plenary talk tomorrow by V. Lubicz

❖ Stay tuned: Lattice 2015 (Kobe, Japan) is in two weeks 
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❖ Motivations
❖ Lattice QCD+QED
❖ Update on electro-quenched results
❖ Isospin splittings in the hadron spectrum
❖ Summary & outlook
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Isospin symmetry breaking
❖ Isospin symmetric world: up and down quarks are 

particles with identical physical properties.
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Isospin symmetry breaking
❖ Isospin symmetric world: up and down quarks are 

particles with identical physical properties.

❖ Isospin symmetry is explicitly broken by:

• the up and down quark mass difference  
                              

• the up and down electric charge difference  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|mu �md|/⇤QCD ' 0.01

↵ ' 0.0073

up down

Mass (MeV)

Charge (e) 2/3 -1/3

2.3(+0.7
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�0.3) source: [PDG, 2013]



❖ Well known experimentally:  
 

Nucleon mass splitting
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❖ Well known experimentally:  
 

❖ needed for proton stability

❖ determines through  
   -decay the stable nuclide 
chart

❖ initial condition for  
Big-Bang nucleosynthesis

Nucleon mass splitting

8

�

source: [PDG, 2013]
Mn �Mp = 1.2933322(4) MeV



❖ In the SU(3) chiral limit [Dashen, 1969]:  
 

Dashen’s theorem

�QEDM
2
K = �QEDM

2
⇡ +O(↵ms)
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❖ In the SU(3) chiral limit [Dashen, 1969]:  
 

❖ How large are the corrections? FLAG parametrisation:  
 
 

❖    is important to determine light quark mass ratios

Dashen’s theorem

�QEDM
2
K = �QEDM

2
⇡ +O(↵ms)

" =
�QEDM2

K ��QEDM2
⇡

�M2
⇡

"
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Lattice QCD+QED
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Lattice QCD
❖ Lattice QCD simulation: Monte-Carlo estimation of 

discretised QCD functional integrals

❖ Discretised Yang-Mills action: [K. Wilson, 1974]

❖ Discretised Dirac action: chiral symmetry must be broken 
(Nielsen-Ninomiya theorem), many possible solutions

❖ Fermionic integrals can be performed analytically (Wick’s 
contractions)

❖ Gauge integrals are computed stochastically

❖ Extremely expensive, but ab-initio

11



Non-compact lattice QED

❖ Naively discretised Maxwell action: 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Non-compact lattice QED

❖ Naively discretised Maxwell action: 
 
 

❖ Pure gauge theory is free, it can be solved exactly

❖ Gauge invariance is preserved

❖ No mass gap: large finite volume effects expected
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Zero-mode subtraction
 
Finite volume: momentum quantisation
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Zero-mode subtraction
 
Finite volume: momentum quantisation

13

Possibly IR divergent, but 
not for physical quantities

Contains a straight 1/0 !
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Zero-mode subtraction

❖ This problem can be solved by removing zero modes 
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Zero-mode subtraction

❖ This problem can be solved by removing zero modes 

❖ Many possible schemes:  
modification of             on a set of measure 0

❖ Different schemes: different finite volume behaviours

❖ Some more interesting that others

Aµ(k)
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QEDTL zero-mode subtraction

❖ QEDTL:  
Mostly used in all simulations so far
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QEDTL zero-mode subtraction

❖ QEDTL:  
Mostly used in all simulations so far

❖ With QEDTL, the                ,                 limit can diverge: 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QEDTL zero-mode subtraction

❖ QEDTL:  
Mostly used in all simulations so far

❖ With QEDTL, the                ,                 limit can diverge: 
 
 

❖ QEDTL does not have reflection positivity
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QEDTL finite-volume effects
❖ Example — 1-loop QEDTL [BMWc, 2014]:  
 
 
 
 
 
up to exponential corrections, with
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QEDTL finite-volume effects
❖ Example — 1-loop QEDTL [BMWc, 2014]:  
 
 
 
 
 
up to exponential corrections, with

❖ Divergent finite volume effects with              , 

❖ Same behaviour independently discovered by MILC
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QEDL zero-mode subtraction

❖ QEDL:                           
inspired from [Hayakawa & Uno, 2008]
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QEDL zero-mode subtraction

❖ QEDL:                           
inspired from [Hayakawa & Uno, 2008]

❖ QEDL maintains reflection positivity [BMWc, 2015a]:

❖ QEDL finite volume effects:  
 
 
 
             inverse powers of L, independent of T
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Finite-volume effects
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Pure QED simulations (quenched) from [BMWc, 2015a] — [S3]=[Davoudi & Savage, 2014]
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Finite volume NRQED

19

❖ Anti-particles and particles do not decouple completely 
because of the missing photon modes

❖ The residual contribution generates a               finite 
volume correction to the self-energy

❖ This contribution is absent from [D & S, 2014], 
explaining the observed discrepancy

❖ More details in [BMWc, 2015b]
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❖ [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons

❖ [Davoudi & Savage, 2014]: NREFTs 
mesons, baryons, nuclei and HVP  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Finite-volume effects

❖ What about composite particles (QCD + QED)?

❖ [Hayakawa & Uno, 2008]: SU(3) PQChPT

❖ [RBC-UKQCD, 2010]: SU(2) PQChPT + heavy kaons

❖ [Davoudi & Savage, 2014]: NREFTs 
mesons, baryons, nuclei and HVP  
 

❖ [BMWc, 2015a]: Ward identities: NLO is universal
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Electro-quenched approximation

21

❖ Electro-quenched approximation: charged valence 
quarks, but neutral sea quarks

❖ Non-unitary theory (partially quenched)

❖ Greatly reduce the computational cost

❖ Missing contributions are large-      and SU(3) flavour 
suppressed: O(10%) of EM effects

❖ In agreement with PQChPT estimates 
[J. Bijnens & N. Danielsson, PRD 75(1), p. 014505, 2007]

Nc



Update on electro-quenched results



EQ results for "
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EQ results for light quark masses

mu/md
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Isospin splittings  
in the hadron spectrum



[BMWc, 2015a]: mass splitting calculation
❖ many smeared sources per configurations (O(100))
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[BMWc, 2015a]: mass splitting calculation
❖ many smeared sources per configurations (O(100))

❖ electric charge renormalisation using Wilson flow

❖ small extrapolation to the physical point  
(similar to [BMWc, 2013])

❖ Systematic error based on BMW's histogram method. 
Weights are based on the goodness of the fits, flat and 
Akaike’s information criterion (overfitting is penalised)

❖ O(500) analyses per mass splitting
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[BMWc, 2015a]: finite-volume study
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[BMWc, 2015a]: result summary
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❖ We now have a good understanding of QCD+QED on a 
finite lattice

❖ Finite-size effects on masses are now well controlled

❖ [BMWc, 2015a]: full simulations of the low-energy SM 
with a potential precision of 

❖ The isospin splittings in the hadron spectrum are 
determined with a high accuracy and full control of 
uncertainties

❖ The nucleon mass splitting is determined as a           effect> 5�

O[(Ncm
2
b)

�1,↵2] ⇠ 10�4
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❖ Unquenched computations of the light quark masses 
and Dashen’s theorem corrections

❖ QCD+QED decay constants are gauge variant and IR 
divergent. How to deal with that? 
First lattice attempt: [plenary talk by V. Lubicz]

❖ Compute corrections to matrix elements  
(       ,                 ,…)

❖ QCD+QED to compute hadronic corrections to 
anomalous magnetic moments.

K ! ⇡⇡K`3



Thank you!
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RBC-UKQCD PACS-CS QCDSF-UKQCD BMWc

arXiv 1006.1311 1205.2961 1311.4554 
and Lat. 2014 1406.4088

fermions DWF clover clover clover

2+1 1+1+1 1+1+1 1+1+1+1

method reweighting reweighting RHMC RHMC

min(      ) (MeV) 420 135 250 195

a (fm) 0.11 0.09 0.08 0.06 — 0.10

#a 1 1 1 4

L (fm) 1.8 2.9 1.9 — 2.6 2.1 — 8.3

#L 1 1 2 11

M⇡

Nf



[BMWc, 2015a]: QED simulations
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[BMWc, 2015a]: charge renormalisation
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[BMWc, 2015a]: charm discretisation effects
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