Nuclear physics from QCD on lattice

Takashi Inoue @Nihon University for

HAL QCD Collaboration

S. Aoki T. Doi T. Hatsuda Y. Ikeda T. I. N. Ishii K. Murano H. Nemura K. Sasaki F. Etminan T. Miyamoto

YITP Kyoto Univ. **RIKEN** Nishina **RIKEN** Nishina **RIKEN** Nishina Nihon Univ. RCNP Osaka Univ. RCNP Osaka Univ. Univ. Tsukuba Univ. Tsukuba

- Univ. Birjand
- Univ. Tsukuba

* Nuclear physics

- Theories have been developed extensively from 1930's
 - Liquid-drop model and semi-empirical mass formula.
 - Shell models supported by mean-field theory and Brueckner theory.
 - Variational methods w/ advanced technique for light nuclei.
 - Several sophisticated theories for heavy nuclei in these days,
 - eg. the coupled cluster theory, self consistent greens function method etc.

* Nuclear physics

- Theories have been developed extensively from 1930's
 - Liquid-drop model and semi-empirical mass formula.
 - Shell models supported by mean-field theory and Brueckner theory.
 - Variational methods w/ advanced technique for light nuclei.
 - Several sophisticated theories for heavy nuclei in these days,
 - eg. the coupled cluster theory, self consistent greens function method etc.
- Properties of nuclei are explained and even predicted.
- But, we need input data from experiment.

* Nuclear physics

- Theories have been developed extensively from 1930's
 - Liquid-drop model and semi-empirical mass formula.
 - Shell models supported by mean-field theory and Brueckner theory.
 - Variational methods w/ advanced technique for light nuclei.
 - Several sophisticated theories for heavy nuclei in these days,
 - eg. the coupled cluster theory, self consistent greens function method etc.
- Properties of nuclei are explained and even predicted.
- But, we need input data from experiment.
- * Quantum Chromodynamics

• is the fundamental theory of the strong interaction,

• must explain everything, e.g. hadron spectrum, mass of nuclei.

* Nuclear physics

- Theories have been developed extensively from 1930's
 - Liquid-drop model and semi-empirical mass formula.
 - Shell models supported by mean-field theory and Brueckner theory.
 - Variational methods w/ advanced technique for light nuclei.
 - Several sophisticated theories for heavy nuclei in these days,
 - eg. the coupled cluster theory, self consistent greens function method etc.
- Properties of nuclei are explained and even predicted.
- But, we need input data from experiment.
- * Quantum Chromodynamics
 - is the fundamental theory of the strong interaction,
 - must explain everything, e.g. hadron spectrum, mass of nuclei.
 - But, that is difficult due to the non-perturbative nature of QCD.

Lattice QCD

$$L = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \bar{q} \gamma^{\mu} (i \partial_{\mu} - g t^a A^a_{\mu}) q - m \bar{q} q$$

Vacuum expectation value $\langle O(\overline{q},q,U) \rangle$ path integral $= \int dU d\bar{q} dq e^{-S(\bar{q},q,U)} O(\bar{q},q,U)$ $= \int dU \det D(U) e^{-S_U(U)} O(D^{-1}(U))$ $= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_i))$ quark propagator

{ U_i } : ensemble of gauge conf. U generated w/ probability det $D(U) e^{-S_U(U)}$

Well defined (reguralized) * Fully non-perturvative Manifest gauge invariance

★ Highly predictive

Lattice QCD

- LQCD simulations w/ the physical quark mass ware done.
 - PACS-CS, Phys. Rev. D81 (2010) 075403
 - BMW, JHEP 1108 (2011) 14

Summary by Kronfeld, arXive 1203.1204

• Mass of hadrons (ground state) are well reproduced!

Lattice QCD

- LQCD simulations w/ the physical quark mass ware done.
 - PACS-CS, Phys. Rev. D81 (2010) 075403
 - BMW, JHEP 1108 (2011) 14

Summary by Kronfeld, arXive 1203.1204

- Mass of hadrons (ground state) are well reproduced!
- What about atomic nuclei from QCD?

Most traditional. Many success.

Very popular today. Let's say chiral approach.

Very challenging. Let's say LQCD direct approach.

HAL QCD approach

Our approach. I focus on this one in this talk.

- Good points
 - Based on the fundamental theory QCD, hence provide information independent of experiments and models.
 - Feasible. ↔ Direct one must be very difficult for large nuclei.
 - Can utilize established nuclear theories at the 2nd stage.
 - Easy to extend to strange sector and heavy flavor sector.

- Good points
 - Based on the fundamental theory QCD, hence provide information independent of experiments and models.
 - Feasible. \leftrightarrow Direct one must be very difficult for large nuclei.
 - Can utilize established nuclear theories at the 2nd stage.
 - Easy to extend to strange sector and heavy flavor sector.
- Disappointing points at this moment
 - Demand long time and huge money at the 1st stage.
 - We had to deal with un-realistic QCD world so far.
 - Un-physically heavy u,d quark. Far from chiral symmetry.
 - Depend on method/approximation used at the 2nd stage.

- Good points
 - Based on the fundamental theory QCD, hence provide information independent of experiments and models.
 - Feasible. \leftrightarrow Direct one must be very difficult for large nuclei.
 - Can utilize established nuclear theories at the 2nd stage.
 - Easy to extend to strange sector and heavy flavor sector.
- Disappointing points at this moment

Only temporal. We can overcome.

- Demand long time and huge money at the 1st stage.
 - We had to deal with un-realistic QCD world so far.
 - Un-physically heavy u,d quark. Far from chiral symmetry.
- Depend on method/approximation used at the 2nd stage.
- Today, I want
 - to show some results of HALQCD approach to nuclei, and to demonstrate that this approach is promising.

Outline

1. Introduction

- 2. HAL QCD method (the 1st stage)
- 3. Simulation setup and *NN* potentials
- 4. Helium nucleus
- 5. Medium-heavy nuclei
- 6. Infinite nuclear matter
- 7. Summary and Outlook

HAL QCD method

- Direct : utilize energy eigenstates (eigenvalues)
 - Lüscher's finite volume method for a phase-shift
 - Infinite volume extrapolation for a bound state
- HAL : utilize a potential V(r) + ... of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): 4\text{-point function}$$

contains NBS w.f.

- Advantages
 - No need to separate E eigenstate. Just need to measure
 - Then, potential can be extracted.
 - Demand a minimal lattice volume.
 No need to extrapolate to V=∞.
 - Can output many observables.

- Direct : utilize energy eigenstates (eigenvalues)
 - Lüscher's finite volume method for a phase-shift
 - Infinite volume extrapolation for a bound state
- HAL : utilize a potential V(r) + ... of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B$$

$$\psi(\vec{r},t)$$
: 4-point function contains NBS w.f.

- Advantages
 - No need to separate E eigenstate. Just need to measure $\psi(\vec{r},t)$
 - Then, potential can be extracted.
 - Demand a minimal lattice volume.
 No need to extrapolate to V=∞.
 - Can output many observables.

- Direct : utilize energy eigenstates (eigenvalues)
 - Lüscher's finite volume method for a phase-shift
 - Infinite volume extrapolation for a bound state
- HAL : utilize a potential V(r) + ... of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): 4\text{-point function}$$

contains NBS w.f.

- Advantages
 - No need to separate E eigenstate. Just need to measure $\psi(\vec{r},t)$
 - Then, potential can be extracted.
 - Demand a minimal lattice volume.
 No need to extrapolate to V=∞.
 - Can output many observables.

- Direct : utilize energy eigenstates (eigenvalues)
 - Lüscher's finite volume method for a phase-shift
 - Infinite volume extrapolation for a bound state
- HAL : utilize a potential V(r) + ... of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): 4\text{-point function}$$

contains NBS w.f.

- Advantages
 - No need to separate E eigenstate. Just need to measure $\psi(\vec{r},t)$
 - Then, potential can be extracted.
 - Demand a minimal lattice volume.
 No need to extrapolate to V=∞.
 - Can output many observables.

- Direct : utilize energy eigenstates (eigenvalues)
 - Lüscher's finite volume method for a phase-shift
 - Infinite volume extrapolation for a bound state
- HAL : utilize a potential V(r) + ... of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): 4\text{-point function}$$

contains NBS w.f.

- Advantages
 - No need to separate E eigenstate. Just need to measure $\psi(\vec{r},t)$
 - Then, potential can be extracted.
 - Demand a minimal lattice volume.
 No need to extrapolate to V=∞.
 - Can output more observables.

- Direct : utilize energy eigenstates (eigenvalues)
 - Lüscher's finite volume method for a phase-shift
 - Infinite volume extrapolation for a bound state
- HAL : utilize a potential V(r) + ... of interaction

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B \qquad \psi(\vec{r},t): 4\text{-point function}$$

contains NBS w.f

- Advantages
 - No need to separate E eigenstate. Just need to measure $\psi(\vec{r},t)$
 - Then, potential can be extracted.
 - Demand a minimal lattice volume.
 No need to extrapolate to V=∞.
 - Can output more observables.
- We can attack large nuclei too!!

HAL method

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theo. Phys. 123 89 (2010) N. Ishii etal. [HAL QCD coll.] Phys. Lett. B712 , 437 (2012)

NBS wave function $\varphi_{\vec{k}}(\vec{r}) = \sum_{\vec{x}} \langle 0|B_i(\vec{x}+\vec{r},t)B_j(\vec{x},t)|B=2,\vec{k} \rangle$ Define a unique potential *U* for all *E* eigenstates by a "Schrödinger" eq.

$$\left[-\frac{\nabla^2}{2\mu}\right]\varphi_{\vec{k}}(\vec{r}) + \int d^3\vec{r}' U(\vec{r},\vec{r}')\varphi_{\vec{k}}(\vec{r}') = E_{\vec{k}}\varphi_{\vec{k}}(\vec{r})$$

Non-local but energy independent

Measure 4-point function in LQCD

$$\psi(\vec{r},t) = \sum_{\vec{x}} \langle 0|B_i(\vec{x}+\vec{r},t)B_j(\vec{x},t)J(t_0)|0\rangle = \sum_{\vec{k}} A_{\vec{k}}\varphi_{\vec{k}}(\vec{r})e^{-W_{\vec{k}}(t-t_0)} + \cdots$$
$$\left[2M_B - \frac{\nabla^2}{2\mu}\right]\psi(\vec{r},t) + \int d^3\vec{r}'U(\vec{r},\vec{r}')\psi(\vec{r}',t) = -\frac{\partial}{\partial t}\psi(\vec{r},t)$$

 $\begin{array}{l} \nabla \text{ expansion} \\ \& \text{ truncation} \end{array} \quad U(\vec{r},\vec{r}\,') = \delta(\vec{r}-\vec{r}\,')V(\vec{r}\,,\nabla) = \delta(\vec{r}-\vec{r}\,')[V(\vec{r}\,) + \nabla + \nabla^2 ...] \end{array}$

Therefor, in the leading

$$V(\vec{r}) = \frac{1}{2\mu} \frac{\nabla^2 \psi(\vec{r},t)}{\psi(\vec{r},t)} - \frac{\frac{\partial}{\partial t} \psi(\vec{r},t)}{\psi(\vec{r},t)} - 2M_B$$
²⁶

1. Does your potential depend on the choice of source?

2. Does your potential depend on choice of operator at sink?

3. Does your potential U(r,r') or V(r) depends on energy?

FAQ

- 1. Does your potential depend on the choice of source?
- No. Some sources may enhance excited states in 4-point func. However, it is no longer a problem in our new method.
- 2. Does your potential depend on choice of operator at sink?
- → Yes. It can be regarded as the "scheme" to define a potential. Note that a potential itself is not physical observable. We'll obtain unique result for physical observables irrespective to the choice, as long as the potential U(r,r') is deduced exactly.

FAQ

3. Does your potential U(r,r') or V(r) depends on energy?

→ By definition, U(r,r') is non-local but energy independent.
 While, determination and validity of its leading term V(r)
 depend on energy because of the truncation.

However, we know that the dependence in *NN* case is very small (thanks to our choice of sink operator = point) and negligible at least at *Elab.* = 0 - 90 MeV. We rely on this in our study.

If we find some dependence, we will determine the next leading term of the expansion from the dependence.

Lattice simulation setup and NN potentials from QCD

Simulation setup

- Physical-point gauge confs. of the PACS-CS/BMW studies, lattice volume ware small even for NN system. $L \simeq 2$ [fm]
- I've generated gauge confs. on relatively large volume.

size	β	Csw	<i>a</i> [fm]	<i>L</i> [fm]	Kuds	Mps [MeV]	Мв [MeV]	
32 ³ x 32	1.83	1.761	0.121(2)	3.87	0.13660	1170.9(7)	2274(2)	
• Iwasa	ki gau	ge & W	ilson qua	0.13710	1015.2(6)	2031(2)		
• Thank	s to P	ACS-C	S collabo	0.13760	836.8(5)	1749(1)		
for the	eir DDH	HMC/PI	HMC code	0.13800	672.3(6)	1484(2)		
• SU(3)	1161(2)							
	limitation							
$0 \land 0 = 27 + 05 + 1 + 10 + 10 + 0a$								

• We use these five sets of gauge conf. w/ $m_u = m_d = m_s$.

Simulation setup

- Physical-point gauge confs. of the PACS-CS/BMW studies, lattice volume ware small even for NN system. $L \simeq 2$ [fm]
- I've generated gauge confs. on relatively large volume.

size	β	Csw	<i>a</i> [fm]	<i>L</i> [fm]	Kuds	Mps [MeV]	Мв [MeV]	
32 ³ x 32	1.83	1.761	0.121(2)	3.87	0.13660	1170.9(7)	2274(2)	
• Iwasal	ki gau	ge & W	ilson qua	0.13710	1015.2(6)	2031(2)		
• Thank	s to P	ACS-C	S collaboi	0.13760	836.8(5)	1749(1)		
for the	ir DDI	HMC/PI	HMC code	0.13800	672.3(6)	1484(2)		
• SU(3)	1161(2)							
essen	limitation							
$8 \times 8 = 27 + 8s + 1 + 10^* + 10 + 8a$								

- We use these five sets of gauge conf. w/ $m_u = m_d = m_s$.
- BTW, gauge confs. on large volume (L > 8 [fm]) at an almost physical point are generated in 2014 at RIKEN AICS. We are doing simulation now. 32

NN potentials from QCD

- Left: NN potentials in partial waves at the lightest m_q .
 - Repulsive core & attractive pocket & strong tensor force.
 - Similar to phenomenological potentials qualitatively.
 e.g. AV18
 - Least χ^2 fit of data which give central value of observable.
 - Higher orders in velocity expansions are not available yet. We restrict us to these leading order potentials.

NN potentials from QCD

- Left: NN potentials in partial waves at the lightest m_q .
 - Repulsive core & attractive pocket & strong tensor force.
 - Similar to phenomenological potentials qualitatively.
 e.g. AV18
 - Least χ^2 fit of data which give central value of observable.
 - Higher orders in velocity expansions are not available yet. We restrict us to these leading order potentials.
- Right: Quark mass dependence of V(r) of NN ${}^{1}S_{0}$.
 - Potentials become stronger as m_q decrease.

Helium nucleus from QCD

⁴He nucleus

Schrodinger equation

$$[K + V] \Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3) = E \Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3)$$

Correlated Gaussian basis (*L*=0) $f_A(\vec{x}_1, \vec{x}_2, \vec{x}_3) = \exp\left[-\frac{1}{2}X \cdot AX^t\right]$ $w/X = (\vec{x}_1, \vec{x}_2, \vec{x}_3), A = 3 \times 3 \text{ matrix}$ $\Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3) = \sum_{i=1}^N C_i f_{A_i}(\vec{x}_1, \vec{x}_2, \vec{x}_3)$

• One can solve the eq. of 4*N* system exactly w/ some method.

⁴He nucleus

Schrodinger equation

 $[K + V] \Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3) = E \Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3)$

Correlated Gaussian basis (*L*=0) $f_A(\vec{x}_1, \vec{x}_2, \vec{x}_3) = \exp\left[-\frac{1}{2}X \cdot AX^t\right]$ $w/ X = (\vec{x}_1, \vec{x}_2, \vec{x}_3), A = 3 \times 3 \text{ matrix}$ $\Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3) = \sum_{i=1}^N C_i f_{A_i}(\vec{x}_1, \vec{x}_2, \vec{x}_3)$

- One can solve the eq. of 4N system exactly w/ some method.
- Here, we employ the Stochastic Variational Method.

K. Varga and Y. Suzuki, Comp. Phys. Comm. 106 (1997) 157-168

- By generating matrix A randomly, many function f_A are examined.
- Most efficient f_A is add to the basis set. = Competing selection.
- Number of basis gradually increases but remains small.
 No need to prepare a huge basis set. It is easy to solve the eq. 37

⁴He nucleus

Schrodinger equation

$$\begin{bmatrix} K + V \end{bmatrix} \Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3) = E \Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3)$$

HALQCD

Correlated Gaussian basis (L=0)

$$f_A(\vec{x}_1, \vec{x}_2, \vec{x}_3) = \exp\left[-\frac{1}{2}X \cdot AX^t\right]$$

w/ $X = (\vec{x}_1, \vec{x}_2, \vec{x}_3), A = 3 \times 3$ matrix $\Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3) = \sum_{i=1}^{N} C_i f_{A_i}(\vec{x}_1, \vec{x}_2, \vec{x}_3)$

- One can solve the eq. of 4N system exactly w/ some method.
- Here, we employ the Stochastic Variational Method.

K. Varga and Y. Suzuki, Comp. Phys. Comm. 106 (1997) 157-168

- By generating matrix A randomly, many function f_A are examined.
- Most efficient f_A is add to the basis set. = Competing selection.
- Number of basis gradually increases but remains small.
 No need to prepare a huge basis set. It is easy to solve the eq. 38

Ground state of ⁴He

- Number of basis v.s. energy of ⁴He g.s. at the lightest quark mass.
- We tested 4 approx for unknown odd parity force. But, no diff.

S-shell

Ground state of ⁴He

- Number of basis v.s. energy of ⁴He g.s. at the lightest quark mass.
- We tested 4 approx for unknown odd parity force. But, no diff.
 - S-shell
- There definitely exists ⁴He nucleus at Mps = 469 MeV!!

Ground state of ⁴He

- Number of basis v.s. energy of ⁴He g.s. at the lightest quark mass.
- We tested 4 approx for unknown odd parity force. But, no diff. 4He =
- There definitely exists ⁴He nucleus at Mps = 469 MeV!!
- No ⁴He nucleus at quark mass of $M_{PS} = 632, 837 \text{ MeV}.$
- No 2N, 3N nuclei at all our five values of quark mass. T. Inoue etal [HAL QCD Colla.] Nucl. Phys. A881 (2012) 28

in contrast to other groups

Medium-heavy nuclei from QCD

Mean field picture of nuclei

quasi-nucleon

- Schematic diagram of single particle levels in nuclei.
 - Similar to 3D-Harmonic-Oscillator at lower.

Mean field picture of nuclei

quasi-nucleon

- Schematic diagram of single particle levels in nuclei.
 - Similar to 3D-Harmonic-Oscillator at lower.
- Nuclei ¹⁶O and ⁴⁰Ca are called doubly closed nuclei,
 - where their ground state can be assumed safely as iso-symmetric, spin-saturated, and spherical.

Ideal for theoretical study.

- used as "core" in traditional shell-model calculations.
- Let us study ¹⁶O and ⁴⁰Ca in the HALQCD approach.

Brueckner-Hartree-Fock for nuclei

• Brueckner G-matrix in a single-particle-orbit base

$$G(\omega)_{ij,kl} = V_{ij,kl}^{LQCD} + \frac{1}{2} \sum_{m,n}^{\geq e_F} V_{ij,mn}^{LQCD} \frac{1}{\omega - e_m - e_n + i\epsilon} G(\omega)_{mn,kl}$$

- Hartree-Fock mean field $U_{ab} = \sum_{c,d} G(\tilde{\omega})_{ac,bd} \rho_{dc}$ iterate until converge
- New single-particle orbit $[K + U] \Psi^i = e_i \Psi^i$
- Hartree-Fock ground state energy

$$E_0 = \sum_{a,b} \left(K_{ab} + \frac{1}{2} U_{ab} \right) \rho_{ba} - K_{c.m.} \qquad \text{limitation of } V^{LQCD}$$

• p.w. decomposition and truncation ${}^{2S+1}L_J = {}^{1}S_0$, ${}^{3}S_1$, ${}^{3}D_1$, ${}^{1}P_1$, ${}^{3}P_J \cdots$

P. Ring and P. Schuck, "The Nuclear Many-Body Problems", Springer (1980) K.T.R. Davies, M. Baranger, R.M. Tarbutton T.T.S. Kuo, Phys. Rev. 177 1519 (1969)

- Ground state energy E_0 at the lightest quark (M_{PS} = 469 MeV)
- Harmonic-Oscillator basis set used to expand s.p. states.

$$R_{nl}(r) = \sqrt{\frac{2n!}{\Gamma(n+l+3/2)}} \left(\frac{r}{b}\right)^{l} e^{-\frac{1}{2}(r/b)^{2}} \sum_{m=0}^{n} C_{n-m}^{n+l+1/2} \frac{\left(-r^{2}/b^{2}\right)^{m}}{m!} , \quad n = 0, 1 \dots n_{dim} - 1$$

@SU(3)_F limit Mps = 469 MeV

- Ground state energy E_0 at the lightest quark (M_{PS} = 469 MeV)
- Harmonic-Oscillator basis set used to expand s.p. states.

$$R_{nl}(r) = \sqrt{\frac{2n!}{\Gamma(n+l+3/2)}} \left(\frac{r}{b}\right)^{l} e^{-\frac{1}{2}(r/b)^{2}} \sum_{m=0}^{n} C_{n-m}^{n+l+1/2} \frac{\left(-r^{2}/b^{2}\right)^{m}}{m!} , \quad n = 0, 1 \dots n_{dim} - 1$$

• There definitely exist ¹⁶O and ⁴⁰Ca nuclei at this quark mass!

@SU(3)_F limit Mps = 469 MeV

- Ground state energy E_0 at the lightest quark (M_{PS} = 469 MeV)
- Harmonic-Oscillator basis set used to expand s.p. states.

$$R_{nl}(r) = \sqrt{\frac{2n!}{\Gamma(n+l+3/2)}} \left(\frac{r}{b}\right)^{l} e^{-\frac{1}{2}(r/b)^{2}} \sum_{m=0}^{n} C_{n-m}^{n+l+1/2} \frac{\left(-r^{2}/b^{2}\right)^{m}}{m!} , \quad n = 0, 1 \dots n_{dim} - 1$$

- There definitely exist ¹⁶O and ⁴⁰Ca nuclei at this quark mass!
- We do not find any negative E_0 for the other 4 values of m_q . = No tightly bound nucleus at those m_q .

- Ground state energy E_0 at the lightest quark (M_{PS} = 469 MeV)
- Harmonic-Oscillator basis set used to expand s.p. states.

$$R_{nl}(r) = \sqrt{\frac{2n!}{\Gamma(n+l+3/2)}} \left(\frac{r}{b}\right)^{l} e^{-\frac{1}{2}(r/b)^{2}} \sum_{m=0}^{n} C_{n-m}^{n+l+1/2} \frac{\left(-r^{2}/b^{2}\right)^{m}}{m!} , \quad n = 0, 1 \dots n_{dim} - 1$$

- There definitely exist ¹⁶O and ⁴⁰Ca nuclei at this quark mass!
- We do not find any negative E_0 for the other 4 values of m_q . = No tightly bound nucleus at those m_q .

Structure of nuclei in LQCD

- Left: Single particle levels in the nuclei
 - Regular shell structure, which can be seen in experimental data such as a nucleon separation energy.
- Right: Nucleon number density in the nuclei
 - Distinct shell effect at short distance, which can be seen in data such as a charge distribution from electron scattering.

Properties of nuclei in LQCD

@SU(3)_F limit Mps = 469 MeV

• At the lightest quark ($M_{PS} = 469 \text{ MeV}$) with $n_{dim} = 9$ and b = 3.0 fm

	Sin	gle particle l	evels [Me\	Total bindin	g [MeV]	Radius [fm]	
^{16}O	E _{1S}	E_{1P}	E_{2S}	E_{1D}	Eo	Eo/A	√ <r²></r²>
Ŭ	-35.8	-13.8			-34.7	-2.17	2.35

	Sinç	gle particle l	evels [MeV	Total binding [MeV]			Radius [fm]	
40	E _{1S}	E _{1P}	E _{2S}	E_{1D}		Eo	E ₀ /A	√ <r²></r²>
	-59.0	-36.0	-14.7	-14.3		-112.7	-2.82	2.78

T. Inoue etal. [HAL QCD Colla.] PRC 91 (2015) 011001(R)

• Obtained binding energies are smaller than the expr. data

¹⁶O: $E_0^{\text{expr.}} = -127.6 \text{ MeV}$, ⁴⁰Ca: $E_0^{\text{expr.}} = -342.0 \text{ MeV}$ primarily due to the heavy u, d quark in our calculation. We expect more compatible results from the physical point LQCD.

Infinite nuclear matter from QCD

BHF for nuclear matter

Ground state energy in **BHF** framework ullet $E_{0} = \gamma \sum_{k}^{\kappa_{F}} \frac{k^{2}}{2M} + \frac{1}{2} \sum_{i}^{N_{ch}} \sum_{k,k'}^{k_{F}} \operatorname{Re} \langle G_{i} (e(k) + e(k')) \rangle_{A} + \left(\sum_{k,k'}^{N_{ch}} \sum_{k,k'}^{k_{F}} \operatorname{Re} \langle G_{i} (e(k) + e(k')) \rangle_{A} \right)$

K.A. Brueckner and J.L.Gammel Phys. Rev. 109 (1958) 1023

M.I. Haftel and F. Tabakin. Nucl. Phys. A158(1970) 1-42

Single particle spectrum & potential

- p.w. decomposition & truncation ${}^{2S+1}L_J = {}^{1}S_0 , {}^{3}S_1 , {}^{3}D_1 , {}^{1}P_1 , {}^{3}P_J \cdots$ Continuous choice w/ parabolic approximation, Angle averaged Q-operator 53

T. Inoue etal. PRL 11, 112503 (2013)

Matter EoS from QCD

- SNM is bound and the saturation occurs at $M_{PS} = 469$ MeV.
 - Saturation is very delicate against change of quark mass.
- PNM is unbound as normal.
 - PNM become stiff at high density as quark mass decrease.

Matter EoS from QCD

- "APR" curves are EoS of the matter for the physical world, obtained with a variational method and experimental data.
- HALQCD EoS largely deviate from the empirical ones, primarily due to the heavy u, d quark in our calculation.
 We expect more compatible results from the physical point LQCD.

Summary and Outlook

Mass number *A* dependence

• *Eo* of the nuclei with *n*_{dim} are extrapolated to $n_{dim} = \infty$ as $E_0(A; n_{dim}) = E_0(A; \infty) + c(A)/n_{dim}$

@SU(3)_F limit

Mps = 469 MeV

Eo /A of SNM was obtained in our BHF calculation
 T.I. etal. Phys. Rev. Lett. 111 (2013)

For the real world, the Bethe-Weizsacker mass formula

$$E_0(A) = a_V A + a_S A^{2/3} + \cdots \qquad \begin{array}{l} a_V = -15.7 \ [MeV] \\ a_S = 18.6 \ [MeV] \end{array}$$

• HALQCD E_0/A at the m_q has a reasonable A dependence which is well described by a BW type mass formula with $a_V = -5.46$ [MeV], $a_S = 6.56$ [MeV]

Mass number *A* dependence

• *E*₀ of the nuclei with *n*_{dim} are extrapolated to $n_{dim} = \infty$ as $E_0(A; n_{dim}) = E_0(A; \infty) + c(A)/n_{dim}$

@SU(3)_F limit

Mps = 469 MeV

• Eo/A of SNM was obtained in our BHF calculation

T.I. etal. Phys. Rev. Lett. 111 (2013)

For the real world, the Bethe-Weizsacker mass formula

$$E_0(A) = a_V A + a_S A^{2/3} + \cdots \qquad \begin{array}{l} a_V = -15.7 \ [MeV] \\ a_S = 18.6 \ [MeV] \end{array}$$

• HALQCD E_0/A at the m_q has a reasonable A dependence which is well described by a BW type mass formula with $a_V = -5.46$ [MeV], $a_S = 6.56$ [MeV]

Summary and Outlook

- We've introduced our purpose and strategy.
 - Explain properties of nuclei starting from QCD.
 - Extract *NN* potentials in lattice QCD numerical simulation.
 - Apply potentials to few-body technique or many-body theory.

Summary and Outlook

- * We've introduced our purpose and strategy.
 - Explain properties of nuclei starting from QCD.
 - Extract *NN* potentials in lattice QCD numerical simulation.
 - Apply potentials to few-body technique or many-body theory.
- * Results
 - We confirmed existence of nuclei in QCD at a large m_q .
 - We deduced mass and structure of 4 He, 16 O, and 40 Ca.
 - We derived a BW type *A* dependence of mass from QCD.

Summary and Outlook

- * We've introduced our purpose and strategy.
 - Explain properties of nuclei starting from QCD.
 - Extract *NN* potentials in lattice QCD numerical simulation.
 - Apply potentials to few-body technique or many-body theory.
- Results
 - We confirmed existence of nuclei in QCD at a large $m_{\rm q}$.
 - We deduced mass and structure of 4 He, 16 O, and 40 Ca.
 - We derived a BW type *A* dependence of mass from QCD.
- Outlook

almost

- LQCD simulation at the physical point for NN, YN, YY pot.
- Higher p.w. NN forces and NNN forces form LQCD.
- I believe, those studies will create new connection between QCD and nuclear physics in near future.

Thank you !!

Approximation for odd parity force

- Approx A: $V_W = V_{WM}$, $V_M = 0$, $V_B = 0$, $V_H = 0$ Wigner
 - Ignore V_{BH} . A spin-indep force act on both even and odd parity.
 - In this case, configuration of the 4N ground state is obvious.
 - We can drop spin and iso-spin space and treat nucleon as boson.

• Approx B:
$$V_W = \frac{V_{WM}}{2}$$
, $V_M = \frac{V_{WM}}{2}$, $V_B = 0$, $V_H = 0$ Serber

• Ignore VBH. For even parity, same as A. No force in odd parity.

• Approx C:
$$V_W = V_{WM}$$
, $V_M = 0$, $V_B = V_{BH}$, $V_H = 0$ "Wigner"

• Take VBH. A spin-dep force act on both even and odd parity.

• Approx D:
$$V_W = \frac{V_{WM}}{2}$$
, $V_M = \frac{V_{WM}}{2}$, $V_B = \frac{V_{BH}}{2}$, $V_H = \frac{V_{BH}}{2}$

• Take Vвн. For even parity, same as C. No force in odd parity.

• This is best for the moment and most honest at least.

"Serber"

NN central potential

Exchange nature $V_{C}(r) = V_{W}(r) + V_{M}(r)P^{r} + V_{B}(r)P^{\sigma} + V_{H}(r)P^{r}P^{\sigma}$ of nuclear force $= (V_{W}(r) + V_{M}(r)) + (V_{R}(r) + V_{H}(r))P^{\sigma}$ in even parity sector $\equiv V_{WM}(r) + V_{BH}(r)P^{\sigma}$ We define 2500 150 $V_{WM}(r)$ We determine $V_{WM}(r)$ and $V_{BH}(r)$ $V_{BH}(r)$ 2000 100 from data of V(r) in ¹S₀ and ³S₁ 1500 50 /(r) [MeV] $V_{WM}(r) = \frac{1}{2} \left(V_C({}^{1}S_0; r) + V_C({}^{3}S_1; r) \right)$ 1000 0 500 -50 0.0 0.5 1.0 1.5 2.0 2.5 3.0 $V_{BH}(r) = \frac{1}{2} \left[V_C({}^{3}S_1; r) - V_C({}^{1}S_0; r) \right]$ 0 K_{uds} =0.13840 (M_{PS} =469, M_B =1163 [MeV]) -500 0.5 0.0 1.0 1.5 2.0 2.5 3.0

• We use data at the lightest quark i.e. $M_{PS} = 469 \text{ MeV} \times K_{uds} = 0.13840$

r [fm]

- VBH is weak compared to VWM.
- We use the effective central for $V_{C}({}^{3}S_{1})$ so that include V_{T} partially.