Photopion Physics at MAMI Chiral Dynamics 2015

Haiyan Gao, Duke University David Hornidge, Mount Allison University

Università di Pisa INFN-Sezione di Pisa Pisa, Italia

29 June 2015

New Brunswick, CANADA

NOT New Jersey!

Neubraunschweig auf Deutsch...

New Brunswick, CANADA

One of the Atlantic Provinces

New Brunswick

Population: c. 750,000

Languages: English and

French

Area: 72,908 km²

Time Zone: Atlantic

(GMT-4)

<u>Sackville</u>

Population: c. 5,500

Latitude: 45° N

Mount Allison student enrollment: c. 2,500

"Mount" Allison elevation: c. 10 m above sea level (depending on tide...)

Hopewell Rocks, NB - Highest Tides in the World

Outline

- Motivation
- 2 Single-Polarization Measurement: $\vec{\gamma} p \to \pi^0 p$
- $oxed{3}$ Double-Polarization Measurement: $ec{\gamma} ec{p}
 ightarrow \pi^0 p$
- Unpolarized Production on ³He to extract $E_{0+}^{\pi^0 n}$

How do we test QCD in the non-perturbative regime?

High-precision measurements with polarization observables.

Near-Threshold π^0 Photoproduction

Can be used to test **Chiral Perturbation Theory (ChPT)**, an effective field-theory of the strong interaction based on the symmetries of QCD.

In its domain of validity, **ChPT** represents predictions of QCD *subject to* the errors imposed by uncertainties in the LECs and by neglect of higher order terms.

Any discrepancy that is significantly larger than the combined experimental and theoretical errors **MUST** be taken seriously!

Lattice QCD is another technique, and presently great strides are being made...

Partial-Wave Analysis and Multipoles

How can we compare experimental results to ChPT and other theoretical approaches?

Through partial-wave analysis by extracting multipoles.

- Multipoles are an instructive meeting ground between theory and experiment.
- A Model-Independent Partial-Wave Analysis can be used to obtain the multipoles from experiment.

Photoproduction Amplitudes

In the threshold region, S-, P- and even D-waves contribute:

$$egin{array}{lll} I=0 & E_{0^{+}} & S\mbox{-wave} \\ I=1 & E_{1^{+}}, \ M_{1^{+}}, \ M_{1^{-}}, & P\mbox{-waves} \\ I=2 & E_{2^{+}}, \ E_{2^{-}}, \ M_{2^{+}}, \ M_{2^{-}} & D\mbox{-waves} \\ \end{array}$$

Energy dependence of P-waves is not totally clear: $\sim q$, $\sim qk$ or something completely different?

The D-waves are small, but non-negligible.

Partial-Wave Analysis

A carefully chosen set of 8 independent observables is enough for a complete description of an experiment using photoproduction.

For a complete partial-wave analysis, one needs fewer observables, and with 4 one can obtain solutions with only discrete sign ambiguities.

Below the 2π threshold, we only need two observables and unitarity.

set	observables			
single	$d\sigma/d\Omega$	Σ	Т	Р
beam-target	G	Н	Ε	F
beam-recoil	Ox'	Oz'	Cx'	Cz'
target-recoil	Tx'	Tz'	Lx'	Lz'

Model-Independent Partial-Wave Analysis

With help from:

L. Tiator, M. Hilt, C. Fernández Ramírez, A.M. Bernstein

Complete PWA in π^0 photoproduction below 2π threshold.

Need only two observables, $d\sigma/d\Omega$, Σ , and unitarity.

How is it done?

- Use Empirical Single-Energy and Energy-Dependent Fits to $d\sigma/d\Omega$ and Σ .
- Extract coefficients and multipoles.
- Compare to ChPT and other theoretical approaches.

Empirical Single-Energy Fits to the Multipoles

S- and P-waves only

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{q}{k} \left(a_0 + a_1 \cos \theta + a_2 \cos^2 \theta \right)$$
$$\frac{d\sigma}{d\Omega}(\theta) \Sigma(\theta) = \frac{q}{k} \sin^2 \theta b_0$$

Coefficients

$$\begin{aligned} a_0 &= |E_{0^+}|^2 + P_{23}^2 \\ a_1 &= 2 \text{Re} E_{0^+} P_1 \\ a_2 &= P_1^2 - P_{23}^2 \end{aligned} \qquad \begin{aligned} P_1 &= 3 E_{1^+} + M_{1^+} - M_{1^-} \\ P_2 &= 3 E_{1^+} - M_{1^+} + M_{1^-} \\ P_3 &= 2 M_{1^+} + M_{1^-} \\ b_0 &= \frac{1}{2} \left(P_3^2 - P_2^2 \right) \end{aligned} \qquad \qquad \begin{aligned} P_2 &= \frac{1}{2} (P_2^2 + P_3^2) \end{aligned}$$

4 measured quantities, a_0 , a_1 , a_2 , b_0 , and 4 unknown real parameters, ReE_{0+} , P_1 , P_2 , P_3 .

Including the *D*-waves

S-, P-, and D-waves

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{q}{k} \left(a_0 + a_1 \cos \theta + a_2 \cos^2 \theta + a_3 \cos^3 \theta + a_4 \cos^4 \theta \right)$$
$$\frac{d\sigma}{d\Omega}(\theta) \Sigma(\theta) = \frac{q}{k} \sin^2 \theta \left(b_0 + b_1 \cos \theta + b_2 \cos^2 \theta \right)$$

8 coefficients.

Including the *D*-waves

S-, P-, and D-waves

$$a_{0} = |E_{0+}|^{2} + P_{23}^{2} + \operatorname{Re}E_{0+}D_{1} + \frac{1}{4}(D_{1}^{2} + 9D_{2}^{2})$$

$$a_{1} = 2\operatorname{Re}E_{0+}P_{1} - P_{1}D_{1} - 3P_{2}D_{2} + 3P_{3}D_{3}$$

$$a_{2} = P_{1}^{2} - P_{23}^{2} - \frac{3}{2}(D_{1}^{2} - 3D_{2}^{2} - 3D_{3}^{2} + 3D_{4}^{2}) + 3\operatorname{Re}E_{0+}D_{1}$$

$$a_{3} = 3(P_{1}D_{1} + P_{2}D_{2} - P_{3}D_{3})$$

$$a_{4} = \frac{9}{4}(D_{1}^{2} - 2D_{2}^{2} - 2D_{3}^{2} + D_{4}^{2})$$

$$b_{0} = \frac{1}{2}(P_{3}^{2} - P_{2}^{2} - 3D_{1}D_{4}) + 3\operatorname{Re}E_{0+}D_{4}$$

$$b_{1} = 3(P_{1}D_{4} + P_{2}D_{2} + P_{3}D_{3})$$

$$b_{2} = \frac{9}{2}(-D_{2}^{2} + D_{3}^{2} + D_{1}D_{4})$$

Including *D*-waves

Where:

$$D_1 = E_{2^-} - 3M_{2^-} + 6E_{2^+} + 3M_{2^+}$$

$$D_2 = E_{2^-} - M_{2^-} - 4E_{2^+} + M_{2^+}$$

$$D_3 = 2M_{2^-} + 3M_{2^+}$$

$$D_4 = E_{2^-} + M_{2^-} + E_{2^-} - M_{2^+}$$

It turns out they are pretty small and we add them by hand via the Born terms...

Empirical Energy-Dependent Fits to the Multipoles

Multipoles are expanded as a function of W

Fit the coefficients using the following ansatz:

S-wave:

$$E_{0^{+}}(W) = E_{0^{+}}^{(0)} + E_{0^{+}}^{(1)} \left[\frac{k_{\gamma}^{\text{lab}}(W) - k_{\gamma,\text{thr}}^{\text{lab}}}{m_{\pi^{+}}} \right] + i\beta \frac{q_{\pi^{+}}(W)}{m_{\pi^{+}}}$$

P-wave:

$$P_i(W) = rac{q_{\pi^0}(W)}{m_{\pi^+}} \left\{ P_i^{(0)} + P_i^{(1)} \left[rac{k_{\gamma}^{\mathrm{lab}}(W) - k_{\gamma,\mathrm{thr}}^{\mathrm{lab}}}{m_{\pi^+}}
ight]
ight\}$$

Superscripts (0),(1) denote intercept and slope, respectively.

Obtain smooth function of incident photon energy.

$$ec{\gamma} p o \pi^0 p$$

PRL 111, 062004 (2013). Analysis done by S. Prakhov (UCLA) and DH.

Theory support from L. Tiator, M. Hilt, S. Scherer, C. Fernández Ramírez, and A.M. Bernstein.

- Data taken in December 2008.
- CB-TAPS detector system.
- Big improvement over previous result (TAPS 2001, Schmidt et al.)

$\vec{\gamma} p \to \pi^0 p$ – Experimental Details

Equipment:

- A2 Hall.
- Glasgow-Mainz photon-tagging spectrometer.
- CB-TAPS.
- Cryogenic LH₂ "snout" target.

Run Parameters:

Electron Beam Energy	855 MeV	
Target	10 -cm LH_2	
Radiator	100 μ m Diamond	
Tagged Energy Range	100 - 800 MeV	
Channel Energy Resolution	2.4 MeV	
Polarization Edge	$\sim 190\;MeV$	
Degree of Polarization	40 - 70%	
Beam on Target	90 h Full $+$ 20 h Empty	

The Mainzer Mikrotron (MAMI)

The Mainzer Mikrotron (MAMI)

Incident Photon Beam - Glasgow-Mainz Photon Tagger

Detector System: CB-TAPS

GEANT4 View

CB: 672 Nal detectors

TAPS: 384 BaF₂ detectors with individual vetoes

24-scintillator PID barrel

96% of 4π sr!

Cylindrical Wire Chamber

Čerenkov Detector

Detector System: CB-TAPS

Comparison with TAPS 2001

Advantage CB-TAPS 2008

- Efficiency for π^0 detection: 90% vs. 10%.
- Target-empty data taken.
- Higher polarization.
- Smaller systematic errors.

Advantage TAPS 2001

- 40% less target-window material due to target and scattering-chamber design.
- Better incident photon energy resolution.

Disagreement for ∑ with TAPS 2001

Serious disagreement between CB-TAPS 2008 and TAPS 2001 for Σ

Source? ⇒ Target windows in TAPS 2001 measurement.

- 0⁺ nuclei (C and O) have $\Sigma=1$ and thus contribute *significantly* to the measured asymmetry.
- $d\sigma/d\Omega$ was corrected for target windows but Σ was NOT!

Erratum for TAPS 2001 has been published [PRL 110, 039903(E) (2013)].

Energy Dependence of $d\sigma/d\Omega$ and Σ at 90°

Excellent statistics in both $d\sigma/d\Omega$ and Σ , and for the first time, energy dependence of Σ .

Good agreement with HBChPT (black) and ChPT (blue). Empirical fit is also shown with statistical error band (green).

Sample Results at $E_{\gamma} = 163 \,\text{MeV}$

Good agreement with HBChPT (black) and ChPT (blue). Empirical fit is also shown with statistical error band (green).

Energy Dependence of the Multipoles

- Re E_{0+} , P_1/q , P_2/q , P_3/q .
- Single-energy fits (points) along with the empirical fits (green band).
- Theory curves are HBChPT (black) and ChPT (blue).
- Systematic uncertainties in the single-energy extraction are the grey-shaded bands.

Energy Region of Agreement

Covariant BChPT deviates at $\approx 167 \, \text{MeV}$ and HBChPT at $\approx 170 \, \text{MeV}$.

$\vec{\gamma} p \rightarrow \pi^0 p$ — Conclusions

- Target-window contributions are very important near threshold, even for the asymmetry.
- HBChPT and Relativistic ChPT are in agreement, with good χ^2/dof values up to around 167 MeV.
- Reasonable agreement with DMT and Lutz-Gasparyan predictions.
- Energy dependence is obviously a big improvement.

$$ec{\gamma}ec{p}
ightarrow\pi^0 p$$

Proposal A2-10/09

We measure two polarization observables simultaneously:

- Transverse target asymmetry T: sensitive to the πN phase shifts, and provides information for neutral charge states $(\pi^0 p, \pi^+ n)$ in a region of energies that are not accessible to conventional πN scattering experiments.
 - With this we hope to test strong isospin breaking due to $m_d m_u$.
- Beam-target asymmetry *F*: sensitive to *D*-wave multipoles, which have recently been shown to be important, albeit small, in the near-threshold region.

Complex Nature of Multipoles

Due to rescattering

there exists a **Unitarity Cusp** in the $E_{0+}^{\pi^0 p}$ amplitude:

$$E_{0^{+}}^{\pi^{0}p}=ReE_{0^{+}}^{\pi^{0}p}+ietarac{q_{\pi^{+}}}{m_{\pi^{+}}}$$

where β is the *cusp function*:

$$\beta = E_{0+}^{\pi^+ n} a_{ex} (\pi^+ n \to \pi^0 p)$$

Imaginary Part of $E_{0+}^{\pi^0 p}$

Target Asymmetry, T

- Use $T = ImE_{0+}^{\pi^0 p}(P_3 P_2)\sin\theta$ to make a direct determination of $ImE_{0+}^{\pi^0 p}$ above the $\pi^+ n$ threshold.
- Never before been done!
- Extract β .
- Use the known value of $E_{0+}^{\pi^+ n}$ to find $a_{ex}(\pi^+ n \to \pi^0 p)$
- Test strong isospin breaking since

$$a_{\rm ex}(\pi^+ n \to \pi^0 p) = a_{\rm ex}(\pi^- p \to \pi^0 n)$$

• 2% effect, so precise data with low systematic errors are necessary.

Measuring the Target Asymmetry, T

For a transversely polarized target and unpolarized beam, we have

$$\frac{d\sigma}{d\Omega} = \sigma_0 \left(1 + P_{\rm T} T \sin \varphi \right)$$

with the target asymmetry defined as

$$T = \frac{1}{P_{\rm T}\sin\varphi} \cdot \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$

where the +/- denote target polarization parallel/antiparallel to the normal to the scattering plane.

In principle, this can be measured as a counting-rate asymmetry

$$T = \frac{1}{P_{\mathrm{T}}\sin\varphi} \cdot \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

$\vec{\gamma}\vec{p} \rightarrow \pi^0 p$ – Experimental Details

Analysis done by S. Schumann (Mainz-MIT), P. Hall Barrientos (Edinburgh), and P.B. Otte (Mainz).

Polarized beam and target.

- Data taken in September 2010 and February 2011.
- CB-TAPS detector.
- Butanol Frozen-Spin Target.
- Circularly polarized photon beam.
- Measured target asymmetry, T, and beam-target asymmetry, F.

$\vec{\gamma} \vec{p} \rightarrow \pi^0 p$ – Experimental Details

Equipment:

- A2 Hall.
- Glasgow-Mainz photon-tagging spectrometer.
- CB-TAPS with MWPC and Čerenkov detector.
- Circularly polarized photons.
- Butanol frozen-spin target with transverse coil.

Run Parameters:

Electron Beam Energy	450 MeV	
Target	Butanol	
Radiator	Møller Foil	
Tagged Energy Range	100 – 400 MeV	
Channel Energy Resolution	1.2 MeV	
Target Polarization	≈80%	
Beam on Target	700 h C_4H_9OH and 100 h C	

Experimental Challenges

- Butanol target is made up of C₄H₉OH, and so there are lots of backgrounds. Essentially one heavy nucleus for every 2 protons.
- Swamped with π^0 s from C and O, both coherent and incoherent.
- C and O nuclei are not polarized, but they dilute the asymmetries.

$$A = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$$

$$= \frac{(\sigma_{p}^{+} + \sigma_{c}) - (\sigma_{p}^{-} - \sigma_{c})}{(\sigma_{p}^{+} + \sigma_{c}) + (\sigma_{p}^{-} + \sigma_{c})}$$

$$= \frac{\sigma_{p}^{+} - \sigma_{p}^{-}}{\sigma_{p}^{+} + \sigma_{p}^{-} + 2\sigma_{c}}$$

 Need to know the lineshapes very well, and we must be able to eliminate effect of unpolarized, heavy nuclei.

Heavy-Nucleus Backgrounds

Two main techniques for eliminating backgrounds:

- Background subtraction:
 - Measure heavy-nucleus lineshape with C target
 - Normalize and subtract contributions
 - Technique used by Ph.D. students P. Hall Barrientos (Edinburgh) and P.B. Otte (Mainz)
 - Very tricky in the threshold region due to huge coherent C cross section
- Calculate Polarized Cross Sections
 - Doesn't use C data
 - Technique pioneered by S. Schumann (Mainz-MIT)

Polarized Cross Section Technique

Sven Schumann

Product of unpolarized cross section and asymmetries:

$$\sigma_T \equiv \sigma_0 T = \frac{\sigma^+ - \sigma^-}{P_T \sin \phi} = \frac{1}{P_{\text{eff}}^y} \frac{N_{\text{but}}^+ - N_{\text{but}}^-}{\epsilon \Phi_\gamma \rho_p} \frac{1}{2\pi \sin \phi}$$

No unpolarized contributions in the difference of N^+ and N^- count rates:

$$N_{\text{but}}^+ - N_{\text{but}}^- = N_p^+ + N_C - N_p^- - N_C = N_p^+ - N_p^-$$

⇒ Can obtain polarized cross sections directly from butanol data, meaning no explicit background subtraction from carbon measurement.

Effective Polarization

In order to define the *effective* polarization, we define the following angle:

$$\phi \equiv \phi_{\pi^0} - \phi_T$$

where $\sin \phi > 0$ defines + and $\sin \phi < 0$ defines -.

Thus

$$P_{\rm eff}^y \equiv P_T |\sin \phi|$$

Note that we placed a cut ϕ to increase the effective polarization

$$|\sin \phi| > 0.35$$

This had the effect of limiting the angular coverage, but increasing the polarization for about 50% to 60%.

Missing Mass Distributions

Points	Data
Dashed curve	Simulated π^0 production on 12 C
Solid curve	Simulated π^0 production on p

Polarized Differential Cross Sections σ_T

Solid lines are predictions of the DMT model, dashed are Legendre polynomial fits, and dashed-dot are from the cross-check analysis of P.B. Otte.

Legendre Polynomial Coefficients, t_0 and t_1

To facilitate comparisons with theory, the following parametrization has been used:

$$\sigma_T = \frac{q}{k} \sin \theta \left[t_0 P_0(z) + t_1 P_1(z) \right]$$

where $P_0(z)$ and $P_1(z)$ are Legendre polynomials with $z = \cos \theta$.

DMT – Solid, Parametrization – short-dashed, Lutz-Gasparyan – long-dashed, and ChPT – dash-dotted. Systematic errors are the shaded grey bands.

Multipole Extraction from σ_T

Decomposition of σ_T , including the *D*-waves, is given by

$$\begin{split} \sigma_T &= \frac{q}{k} \sin \theta \left\{ 3 \text{Im} \left[E_{0+}^* (E_{1+} - M_{1+}) \right] + \\ & 3 \text{Im} \left[4 E_{0+}^* (E_{2+} - M_{2+}) - \\ & E_{0+}^* (E_{2-} - M_{2-}) \right] \cos \theta \right\} \end{split}$$

Real parts of the *S*- and *P*-waves were taken from our previous experiment that measured Σ and σ_0 .

Imaginary parts of the *P*-waves were assumed to vanish.

D-waves were included as fixed Born terms.

 \Rightarrow Im E_{0+} is then the only free parameter.

Imaginary Part of E_{0+}

Single-energy fits are the points, with statistical errors only. Systematic errors are shown by the grey-shaded band.

Lines are DMT (solid), parametrization (short dashed), Lutz-Gasparyan (long dashed), ChPT (dash dotted) and HBChPT (dotted).

Energy Dependence of β

Using the data and a two-parameter fit

$$\beta(\omega) = \beta_0(1 + \beta_1 \cdot k_{\pi^+})$$
 with $k_{\pi^+} = \frac{\omega - \omega_{\mathrm{thr}}}{m_{\pi^+}}$

we obtain

$$eta_0 = (2.2 \pm 0.2_{\rm stat} \pm 0.6_{\rm syst}) \cdot 10^{-3} / m_{\pi^+}$$

 $eta_1 = (0.5 \pm 0.5_{\rm stat} \pm 0.9_{\rm syst})$

Large uncertainties preclude us from making a reliable determination of the energy dependence. . .

$\vec{\gamma}\vec{p} \rightarrow \pi^0 p$ — Conclusions

- First measurements of σ_T in neutral pion photoproduction in the threshold region.
- First direct measurment of $Im E_{0+}$, confirming rapid rise above $n\pi^+$ threshold.
- Uncertainies still too large to determine a precise value of $\beta(\omega)$.
- A paper is written and has been submitted to PLB.
- More running with transverse coil to improve statistics and therefore even smaller uncertainty in σ_T .
- Continue work on an active, polarized target eliminate heavy-nucleus backgrounds altogether, improving measurement of σ_T .
- Test strong isospin breaking...

What about the Neutron?

The S-wave amplitude $E_{0+}^{\pi^0 n}$ represents a crucial test of ChPT.

Predicts $|E_{0+}^{\pi^0 n}| > |E_{0+}^{\pi^0 p}| \Rightarrow$ Faster rise in total cross section!

Convergence of $E_{0+}^{\pi^0 n}$ should be better, making the prediction more reliable.

Also, of the four photoproduction reactions on the nucleon:

$$\gamma p \rightarrow \pi^{0} p$$
 $\gamma p \rightarrow \pi^{+} n$

$$\gamma n \rightarrow \pi^{0} n$$

$$\gamma n \rightarrow \pi^{-} p$$

only the $\pi^0 n$ amplitude has never been measured! With an accurate enough extraction, one could test isospin breaking...

Status of $E_{0+}^{N\pi}$

Results (in units of $10^{-3}/m_{\pi^+}$):

Reaction	ChPT ¹	DR ²	LET	Expt
$\pi^0 p$	-1.16	-1.22	-2.47	-1.33 ± 0.08^3
π^+ n	28.2 ± 0.6	28.0 ± 0.2	27.6	28.1 ± 0.3^{4}
$\pi^0 n$	2.13	1.19	0.69	???
$\pi^- p$	-32.7 ± 0.6	-31.7 ± 0.2	-31.7	-31.5 ± 0.8^{5}

- 1. V. Bernard, N. Kaiser, and U.-G. Meißner, Z. Phys. C 70, 483 (1996)
- 2. O. Hanstein, D. Drechsel, and L. Tiator, Phys. Lett. B **399**, 13 (1997)
- 3. A. Schmidt et al., Phys. Rev. Lett. 87, 232501 (2001)
- 4. E. Korkmaz et al., Phys. Rev. Lett. 83, 3609 (1999)
- 5. M. Kovash *et al.*, πN Newsletter **12**, 51 (1997)

Coherent π^0 Production from Deuterium?

$$d(\gamma,\pi^0)d$$

Results for E_d :

Method	E_d	$E_{0^+}^{p\pi^0} + E_{0^+}^{n\pi^0}$
LET	_	-1.78
ChPT ¹	-1.8 ± 0.2	0.97
DR	_	-0.03
Expt ²	-1.45 ± 0.04	_

- 1. S.R. Beane et al., Nucl. Phys. A 618, 381 (1997)
- 2. J.C. Bergstrom et al., Phys. Rev. C 57, 3203 (1998)

Obviously FSI and MECs are important.

 \Rightarrow Not so easy to extract $E_{0+}^{n\pi^0}$!

Recent Theoretical Work: ³He Target

Lenkewitz et al., PLB **700**, 365 (2011) and EPJA **49**, 20 (2013). Calculation of ${}^{3}\text{He}(\gamma, \pi^{0}){}^{3}\text{He}$ to $\mathcal{O}(q^{4})$ in ChPT.

with
$$a_0 = \frac{|k|}{|q|} \frac{d\sigma}{d\Omega}\Big|_{a=0} = |\mathbf{E}_{0+}|^2$$
.

Note that here E_{0+} is for the *nucleus!*

Valid for q = 0 only, i.e. right at threshold.

Measure this reaction with CB-TAPS@MAMI

$E_{0+}^{\pi^0 n}$ – Outlook

Proposal:

- Theory group needs to extend calculation to higher energies.
- Proper rate calculations.
- Signal/background simulations with high-pressure, active He gas target. Especially coherent vs. break-up.
- Estimate expected sensitivity to $E_{0+}^{n\pi^0}$.

Experiment:

- Find a PhD student.
- Installation and commissioning of high-pressure, active He gas target.
- Set-up, run, analyze, publish.

Possibly run in parallel with Compton scattering for neutron polarizabilities...