

Clustering in Nuclei

from *ab initio* nuclear lattice simulations

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

CONTENTS

- Short introduction
- Basics of nuclear lattice simulations
- Results from nuclear lattice simulations
- Summary & outlook

2

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 🔹 🔍 🗢 🧹 🗸 🗸 🗸 🗁 🕨 鱼

Short introduction

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 \cdot O < \land \bigtriangledown \checkmark \triangleright

CLUSTERING in NUCLEI

• Introduced theoretically by Wheeler already in 1937:

John Archibald Wheeler, "Molecular Viewpoints in Nuclear Structure," Physical Review **52** (1937) 1083

Bijker, lachello (2014)

• many works since then...

Ikeda, Horiuchi, Freer, Schuck, Zhou, Khan, ...

 α -clusters

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 \cdot O \triangleleft C \wedge ∇ > D \bullet

 \Rightarrow can we understand this phenomenon from *ab initio* calculations?

Basics of nuclear lattice simulations

for an easy intro, see: UGM, Nucl. Phys. News 24 (2014) 11

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 \cdot O \triangleleft C \wedge ∇ > D \bullet

NUCLEAR LATTICE SIMULATIONS

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb
 - ightarrow Epelbaum's talk
- typical lattice parameters

$$\Lambda = rac{\pi}{a} \simeq 300 \, {
m MeV} \, [{
m UV} \, {
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

J. W. Chen, D. Lee and T. Schäfer, Phys. Rev. Lett. 93 (2004) 242302, T. Lähde et al., arXiv:1502.06787

• hybrid Monte Carlo & transfer matrix (similar to LQCD)

CONFIGURATIONS

 $\Rightarrow all possible configurations are sampled$ $\Rightarrow clustering emerges naturally$ $[NB: smearing neccessary <math>\rightarrow$ outlook]

NUCLEAR WAVE FUNCTIONS

• General wave function:

 $\psi_j(ec{n}) \ , \ \ j=1,\ldots,A$

• States with well-defined momentum (anti-symm.):

$$L^{-3/2} \sum_{\vec{m}} \psi_j(\vec{n} + \vec{m}) \exp(i \vec{P} \cdot \vec{m}) , \ \ j = 1, \dots, A$$

- Insert clusters of nucleons at initial/final states (spread over some time interval) \rightarrow allows for all type of wave functions (shell model, clusters, ...)
 - \rightarrow removes directional bias

shell-model type

 $egin{aligned} \psi_j(ec{n}) &= \exp[-cec{n}^2] \ \psi_j'(ec{n}) &= n_x \exp[-cec{n}^2] \ \psi_j''(ec{n}) &= n_y \exp[-cec{n}^2] \ \psi_j'''(ec{n}) &= n_z \exp[-cec{n}^2] \end{aligned}$

cluster type

$$egin{aligned} \psi_j(ec{n}) &= \exp[-c(ec{n}-ec{m})^2] \ \psi_j'(ec{n}) &= \exp[-c(ec{n}-ec{m}')^2] \ \psi_j''(ec{n}) &= \exp[-c(ec{n}-ec{m}'')^2] \ \psi_j'''(ec{n}) &= \exp[-c(ec{n}-ec{m}''')^2] \end{aligned}$$

ullet shell-model w.f.s do not have enough 4N correlations $\sim \langle (N^\dagger N)^2
angle$

COMPUTATIONAL EQUIPMENT

Lattice: new results

Epelbaum, Krebs, Lähde, Lee, Luu, UGM, Rupak + post-docs + students

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 \cdot O \triangleleft C \wedge ∇ > D \bullet

RESULTS from LATTICE NUCLEAR EFT

• Structure of the Hoyle state PRL 109 (2012)

• Spectrum of ¹⁶O

PRL 112 (2014)

• Going up the α -chain

• Rot. symmetry breaking PRD 90 (2014)

 ∇

GOING up the ALPHA CHAIN

- \bullet Consider the α ladder 12 C, 16 O, 20 Ne, 24 Mg, 28 Si as $t_{\rm CPU} \sim A^2$
- Improved "multi-state" technique to extract ground state energies
 - \Rightarrow higher A, better accuracy
 - \Rightarrow overbinding at LO beyond A = 12 persists up to NNLO

REMOVING the OVERBINDING

Lähde, Epelbaum, Krebs, Lee, UGM, Rupak, Phys. Lett. B 732 (2014) 110

• Overbinding is due to four α clusters in close proximity

 \Rightarrow remove this by an effective 4N operator [long term: N3LO]

$$egin{split} V^{(4\mathrm{N}_{\mathrm{eff}})} &= D^{(4\mathrm{N}_{\mathrm{eff}})} \sum_{1 \leq (ec{n}_i - ec{n}_j)^2 \leq 2}
ho(ec{n}_1)
ho(ec{n}_2)
ho(ec{n}_3)
ho(ec{n}_4) \ . \end{split}$$

• fix the coefficient $D^{(4N_{eff})}$ from the BE of ²⁴Mg

 \Rightarrow excellent description of the ground state energies

А	12	16	20	24	28
Th	-90.3(2)	-131.3(5)	-165.9(9)	-198(2)	-233(3)
Exp	-92.16	-127.62	-160.64	-198.26	-236.54

 \rightarrow ultimately, reduce lattice spacing [interaction more repulsive] & N³LO

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 · O < < / igtarrow > igcarrow

GROUND STATE ENERGIES

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 · O < < \land \bigtriangledown \lor > \triangleright •

STRUCTURE of ¹⁶O

• Mysterious nucleus, despite modern ab initio calcs

Hagen et al. (2010), Roth et al. (2011), Hergert et al. (2013)

- Alpha-cluster models since decades, some exp. evidence Wheeler (1937), Dennison (1954), Robson (1979), ..., Freer et al. (2005)
- Spectrum very close to tetrahedral symmetry group
- Relevant configurations in lattice simulations:

Tetrahedron (A)

Square (narrow (B) and wide (C))

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 \cdot O \triangleleft C \land \bigtriangledown > D

Bijker & lachello (2014)

15

DECODING the STRUCTURE of ¹⁶O

Epelbaum, Krebs, Lähde, Lee, UGM, Rupak, Phys. Rev. Lett. **112** (2014) 102501

- measure the 4N density, where each of the nucleons is placed at adjacent points
- $\Rightarrow 0_1^+$ ground state: mostly tetrahedral config
- $\Rightarrow 0_2^+$ excited state: mostly square configs
 - 2_1^+ excited state: rotational excitation of the 0_2^+

RESULTS for ¹⁶O

• Spectrum:

• LO EM properties:

	LO	NNLO(2N)	NNLO(3N)	$4N_{eff}$	Exp.
0^+_1	-147.3(5)	-121.4(5)	-138.8(5)	-131.3(5)	-127.62
0^+_2	-145(2)	-116(2)	-136(2)	-123(2)	-121.57
$\begin{vmatrix} 2_1^+ \end{vmatrix}$	-145(2)	-116(2)	-136(2)	-123(2)	-120.70

• LO charge radius: $r(0_1^+) = 2.3(1)$ fm Exp. $r(0_1^+) = 2.710(15)$ fm

 \Rightarrow compensate for this by rescaling with appropriate units of $r/r_{
m LO}$

	LO	LO(r-scaled)	Exp.
$Q(2^+_1)$ [e fm 2]	10(2)	15(3)	
$B(E2,2^+_1 ightarrow 0^+_2)$ [e 2 fm 4]	22(4)	46(8)	65(7)
$B(E2,2^+_1 ightarrow 0^+_1)$ [e 2 fm 4]	3.0(7)	6.2(1.6)	7.4(2)
$M(E0,0^+_2 ightarrow 0^+_2)$ [e fm²]	2.1(7)	3.0(1.4)	3.6(2)

 \Rightarrow gives credit to the interpretation of the 2_1^+ as rotational excitation

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 · O < < / \bigtriangledown > \triangleright •

SYMMETRY-SIGN EXTRAPOLATION METHOD

Epelbaum, Krebs, Lähde, Lee, Luu, UGM, Rupak, arXiv:1502.06787

 so far: nuclei with N = Z, and A = 4 × int as these have the least sign problem due to the approximate SU(4) symmetry

$$\langle \mathrm{sign}
angle = \langle \exp(i heta)
angle = rac{\mathrm{det}M(t_o,t_i,\ldots)}{|\mathrm{det}M(t_o,t_i,\ldots)|}$$

 $M(t_o, t_i, \ldots)$ is the transition matrix

Borasoy et al. (2007)

• Symmetry-sign extrapolation (SSE) method: control the sign oscillations

$$H_{d_h} = d_h \cdot H_{ ext{phys}} + (1 - d_h) \cdot H_{ ext{SU}(4)}$$

 $H_{{
m SU}(4)} = rac{1}{2} C_{{
m SU}(4)} \, (N^{\dagger} N)^2$

 \hookrightarrow family of solutions for different SU(4) couplings $C_{{
m SU}(4)}$ that converge on the physical value for $d_h=1$

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 \cdot O < \land \bigtriangledown \checkmark > \triangleright (

RESULTS for ¹²C

• generate a few more MC data at large N_t using SSE

- promising results \rightarrow no more exponential deterioration of the MC data
- results w/ small uncertainties for $d_h \geq 0.8$

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 · O < < \land \bigtriangledown > \triangleright •

<u>RESULTS for A = 6</u>

• Simulations for ⁶He and ⁶Be

 \Rightarrow methods works for nuclei with A
eq Z

 \Rightarrow neutron-rich nuclei can now be systematically explored (larger volumes)

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015 · O < < / abla > abla

SUMMARY & OUTLOOK

- Nuclear lattice simulations as a new quantum many-body approach
 - ightarrow clustering emerges naturally, lpha-cluster nuclei
 - \rightarrow symmetry-sign extrapolation method allows to go to the drip lines
 - \rightarrow holy grail of nuclear astrophysics (α +¹²C \rightarrow ¹⁶O+ γ) in reach
- Some on-going activities:
 - \rightarrow improving the forces (N3LO, sph. harmonics) \hookrightarrow Alarcon's talk
 - \rightarrow systematic studies of *a*-independence

 \hookrightarrow Klein, Lee, Liu, UGM, PLB747 (2015) 511

 \rightarrow finite size effects/averaging procedures

 \hookrightarrow Lu, Lähde, Lee, UGM, arXiv:1504.01685

- \rightarrow scattering cluster wave functions \hookrightarrow Rokash's talk
- \rightarrow ab initio alpha-alpha scattering \rightarrow Elhatisari's talk
- ightarrow and much more \ldots