SCALING OF TETRAMER PROPERTIES CLOSE TO THE UNITARY LIMIT

Tobias Frederico
Instituto Tecnológico de Aeronáutica
São José dos Campos – Brazil
tobias@ita.br

The 8th International Workshop on Chiral Dynamics 2015, Pisa, June 29

Four-bosons in 3D with zero-range interaction

Yamashita, Tomio, Delfino & Frederico Four-boson scale near a Feshbach resonance. Europhys. Lett.75 (2006) 555

- •Tetramer ground state moves as a short-range scale collapses to zero with the trimer is fixed!
- •coupling between a closed and open channels \rightarrow many-body forces in the open channel?
- •Tetramer is fixed by the trimer information:

Platter, Hammer, & Meissner, Four-boson system with short-range interactions. Phys. Rev. A 70, 52101 (2004).

Stecher, D'Incao & Greene,

Signatures of universal four-body phenomena and their relation to the Efimov physics Nat. Phys. 5(09)417

Deltuva

Efimov physics in bosonic atom-trimer scattering, Phys. Rev. A 82, 040701(R) (2010)

Gattobigio, Kievsky, Viviani, Birse, Hiyama...

Short range 4-body forces?

Four-bosons

Subtracted Green's Functions: $G_0^{(N)} = \frac{1}{E-H_0} - \frac{1}{-\mu_N^2 - H_0}$ with μ_3 (RED): 3B scale & μ_4 (BLUE): 4B scale

Yamashita, Tomio, Delfino, TF, EPL 75 (2006) 555.

Sliding scales: 3 and 4-body systems

Sliding 3-body scale

Sliding 4-body scale

 $B_2 = 0$ 10^{-2} N=010 N=110⁻⁶ (a) 10^{-6} 10^{-4} 10^{-2} $B_3^{(0)}\,/\,\mu_4^2$

Correlation between observables: Scaling functions

Trajectory of four-boson bound states: one scenario...

tetramer resonance in the cut of $\mathsf{E}_3^{(0)}$

Relevance of the H component for the 4-body scale dependence

 u_3 and v_2 associated with 4-body scale dependence

Problem: Position of four-atom resonant recombination

- ▶ Positions of four-atom recombination peaks (a < 0) where two successive tetramers become unbound (blue-solid line). Cesium atoms wide Feshbach resonances.
- (First point from the left corresponds to $B_4 \simeq 64\,B_3$ at the unitary limit.)

Hadizadeh, et al PRL107, 135304 (2011)

RANGE CORRECTION TO THE POSITION OF 4-ATOM RESONANCE

Private communications:

Von Stecher (Gaussian local) Deltuva (separable) Hiyama (LM2M2)

$$0.38 \text{ vs.} \sim 0.37$$

 $0.33 \text{ vs.} \sim 0.29$
 $0.286 \text{ vs.} \sim 0.28$

Evidence 4-B scale!

r_0 from the shift of the peaks of the four-atom losses

Ref.	$a_{1,1}^{T}/a_{1}^{-}$	$a_{1,2}^{T}/a_{1}^{-}$	$a_{1}^{-}[R_{VdW}]$	$r_0 [R_{\text{VdW}}]$
Ferlaino et al PRL'09	0.47	0.84	-8.7(1)	> 5
Berniger et al PRL'11	0.465(34)	0.903(31)	-9.54(28)	2.5 ± 1.7
Ferlaino et al FBS'11	0.47(1)	0.87(1)	-8.71	4.8 ± 1.0
Ferlaino et al FBS'11	0.46(2)	0.91(3)	-9.64	2 ± 2

- $Arr R_{vdW}^{Cs_2} = 101.0 a_0 \text{ [Chin et al RMP82(2010)]}$
- $ar{a}^{Cs_2} \simeq 0.955978 \, R_{VdW}^{Cs_2} = 96.5 \, a_0.$
- ightharpoonup 3.5 < r_0 < 4.3 R_{VdW}
- ▶ Weighted average for the fitted r_0 values: 3.9±0.8 R_{vdW}

$$r_0 \simeq 2.9179 \, \bar{a} \, \left[\left(\frac{\bar{a}}{a} \right)^2 + \left(\frac{\bar{a}}{a} - 1 \right)^2 \right]$$

Gribakin and Flambaum PRA48 (1993)

Universal range correction

$$a_{N3,N+1}^T = a_{N_3}^{-} \mathcal{A}\left(\frac{a_{N3,N}^T}{a_{N_3}^{-}}, \frac{r_0}{a_{N_3}^{-}}\right) \approx a_{N_3}^{-} \mathcal{A}\left(\frac{a_{N3,N}^T}{a_{N_3}^{-}} + \Gamma, \frac{r_0}{a_{N_3}^{-}} = 0\right)$$

$$\Gamma \sim C \, \frac{r_0}{a_{N_3}^-}$$

Suggestion from Kievsky & Gattobigio Phys. Rev. A 87, 052719 (2013)

Summary

- Zero-range model 3B and 4B systems in 3d:
 H configuration sensintive to 4-body scale
 Scaling functions & limit cycles & correlation between observables
- → 4B scaling function and position of the resonance evidence of 4B scale & universal range correction
 - Collaborators
 - ➤ Mohammadreza Hadizadeh Ohio University
 - ➤ Marcelo T. Yamashita IFT-Unesp/São Paulo
 - ➤ Lauro Tomio UFABC& IFT-Unesp/São Paulo
 - ➤ Antonio Delfino UFF/Niterói

THANK YOU!