# Results from the PrimEx-II Experiment at JLab (Preliminary)

A. H. Gasparian NC A&T State University, Greensboro NC USA

(for the PrimEx-II Collaboration)

Chiral Dynamics 2015, Pisa Italy

#### Outline

- Review of the  $\pi^0 \rightarrow \gamma \gamma$  decay width (very short)
- Impact of the PrimEx-I experiment
- PrimEx-II experiment, the results (preliminary)
- Summary and outlook

## $\pi^0 \rightarrow \gamma \gamma$ Decay Width

 π<sup>0</sup> is the lightest hadron: m<sub>π</sub> = 134.9766±0.0006 MeV

(next talk by K. Kampf)

$$p^0 = (u\overline{u} - d\overline{d})/\sqrt{2}$$

•  $\pi^0$  is an unstable particle:

 $\pi^{0} \rightarrow \gamma\gamma$  B.R.( $\pi^{0} \rightarrow \gamma\gamma$ )=(98.798±0.032)%

- The lifetime and decay width:  $\tau = B.R.(\pi^0 \rightarrow \gamma \gamma)/\Gamma(\pi^0 \rightarrow \gamma \gamma) \approx 8.5 \times 10^{-17} \text{ second}$
- π<sup>0</sup> → γγ decay proceeds primarily via the chiral anomaly in QCD the chiral anomaly prediction is exact for massless quarks:

$$\Gamma\left(\pi^{0} \rightarrow \gamma\gamma\right) = \frac{\alpha^{2} N_{c}^{2} m_{\pi}^{3}}{576\pi^{3} F_{\pi}^{2}} = 7.725 \ eV$$



- a parameter free prediction, precise for the massless quarks limit

## $\pi^0 \rightarrow \gamma \gamma$ Decay Width (cont.)

Corrections to the chiral anomaly prediction:



PDG before 2014

 $\chi$ PT NLO,  $\pm 1\%$ 

5

6

Tomsk

Experiments

at low energies.

7

LO

### **Primakoff Method**



- Challenge of the method:
  - > measure the cross section at forward angles with high precision
  - > extract the Primakoff amplitude from diff. cross sections vs. angle

# PrimEx Experiments in Hall B at JLab

- Requirements of setup:
  - high angular resolution (~0.3 mrad)
    - ✓ high resolutions in calorimeter
    - small beam spot size (<1mm)</li>
  - Background:
    - ✓ tagging system needed
  - > Particle ID (for  $\gamma$  vs. charged part.)
    - ✓ veto detectors needed
- Performed in Hall B at JLab:
  - high resolution, high intensity Hall B photon tagging facility
  - new high resolution hybrid multi-channel EM calorimeter (HyCal)
  - new pair spectrometer for photon flux at high intensities



#### **Results from the PrimEx-I Experiment**



- ▶ Nuclear targets: <sup>12</sup>C and <sup>208</sup>Pb
- > 6 GeV Hall B tagged beam
- > experiment performed in 2004



(µbarn/rad)

### PrimEx-I Result and the PDG status Before 2014



# $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ , PDG Status Before and After the PrimEx-I Experiment



# Improvements for the PrimEx-II Experiment (2010, Hall B at JLab)

- Statistics:
  - ✓ double the target thickness (10% R.L.)
  - Increase DAQ speed to 5 kHz (factor of 5 gain)
  - accept twice more tagged photon energy interval



- Systematics:
  - Add more timing information in HyCal (~500 TDC channels)
  - Improve PID (add horizontal veto counters)
  - Improve photon beam line
  - Take more "empty target" data
  - Measure HyCal detection efficiency
  - ✓ take data for new <sup>28</sup>Si target.



## Experimental Data (<sup>28</sup>Si Target)

- PrimEx-II was performed in 2010 in Hall B at Jlab
- ✓ Reach data taken for two 10% R.L. targets: <sup>12</sup>C and <sup>28</sup>Si

Elasticity Vs. Reconstructed  $\gamma\gamma$  Invariant Mass, selected production angles, with additional cut





#### Extracted Differential Cross Sections and Fit Results (Preliminary)

 Results from the first group (ITEP Moscow/China)

 $(E\gamma = 5.0 \text{ GeV})$ 



# Estimated Systematic Uncertainties (preliminary)

| Contributions         | Uncertainty (%)                           |
|-----------------------|-------------------------------------------|
| Photon flux           | 0.7                                       |
| Beam parameters       | 0.4                                       |
| Accidentals           | 0.1                                       |
| Target parameters     | 0.2 <sup>12</sup> C; 0.4 <sup>28</sup> Si |
| Yield extraction      | 1.0                                       |
| Acceptance            | 0.3                                       |
| Trigger efficiency    | 0.3                                       |
| Detector resolution   | 0.28                                      |
| Model errors (theory) | 0.5                                       |
| Physics background    | 0.3                                       |
| Branching ratio (PDG) | 0.03                                      |
| Total                 | 1.6                                       |

## Results from the PrimEx-II Experiment (Preliminary)

 Results from the first group (ITEP Moscow/China) are presented (Preliminary).

 $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.74 \pm 0.06 (\text{stat.}) \pm 0.12 (\text{syst.}) \text{ eV}$ 1.7% total uncertainty

 Results from the second group (Duke University) are expected soon.



Experiments

# Summary and Outlook

- Percent level measurements of the  $\pi^0 \rightarrow \gamma\gamma$  decay width are needed to test the fundamental predictions of QCD at the low energy domain.
- The PrimEx collaboration at JLab developed a new high resolution experimental setup and performed two experiments using the Hall B tagging facility to address this quest.
- The PrimEx-I experiment achieved 2.8% total uncertainty in the  $\pi^0 \rightarrow \gamma \gamma$  decay width:
  - $\checkmark$  it significantly changed the "landscape" of PDG for the  $\pi^0$  sector
  - $\checkmark$  improved the decay width average by a factor of  ${\sim}2$

 The PrimEx-II currently reached to 1.7% level of total uncertainty in decay width (Preliminary). The final result is expected soon (possibly this year).

## The PrimEx Collaboration

