Improved description of the nucleon polarizabilities with relativistic Chiral Effective Field Theory

Jose Manuel Alarcón

Helmholtz-Institut für Strahlen- und Kernphysik
University of Bonn

In collaboration with Vadim Lensky and Vladimir Pascalutsa
Introduction
Introduction

• Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
Introduction

• Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
• Many experimental (past and ongoing) programs aim to measure them in order to test our understanding of the hadron structure.
Introduction

- Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
- Many experimental (past and ongoing) programs aim to measure them in order to test our understanding of the hadron structure.
- Crucial quantities in an accurate estimation of proton-structure corrections to the Lamb shift ($O(\alpha_{em}^5)$).
Introduction

• Nucleon Polarizabilities encode the response of the nucleon under electromagnetic probes.
• Many experimental (past and ongoing) programs aim to measure them in order to test our understanding of the hadron structure.
• Crucial quantities in an accurate estimation of proton-structure corrections to the Lamb shift ($\mathcal{O}(\alpha_{em}^5)$).

They have the potential to solve the “Proton radius Puzzle”.

\[
\begin{align*}
\mu & \quad \mu \\
\mu H & \quad \mu H \\
p & \quad p
\end{align*}
\]
Introduction

- VVCS in the forward region:

![Diagram](attachment:diagram.png)
Introduction

- VVCS in the forward region:

\[
T(\nu, Q^2) = f_L(\nu, Q^2) + (\tilde{e}'^* \cdot \tilde{e}) f_T(\nu, Q^2) + i\tilde{\sigma} \cdot (\tilde{e}'^* \times \tilde{e}) g_{TT}(\nu, Q^2) - i\tilde{\sigma} \cdot [(\tilde{e}'^* - \tilde{e}) \times \hat{q}] g_{LT}(\nu, Q^2)
\]
Introduction

- **VWCS in the forward region:**

 \[
 T(\nu, Q^2) = f_L(\nu, Q^2) + (\epsilon'^* \cdot \bar{\epsilon}) f_T(\nu, Q^2) + i\sigma \cdot (\epsilon'^* \times \bar{\epsilon}) g_{TT}(\nu, Q^2) - i\sigma \cdot [(\epsilon'^* - \bar{\epsilon}) \times \hat{q}] g_{LT}(\nu, Q^2)
 \]

- **One can write a LEX for the amplitudes** \(f_L, f_T, g_{TT} \) and \(g_{LT} \):
• VVCS in the forward region:

\[T(\nu, Q^2) = f_L(\nu, Q^2) + (\bar{\epsilon'}^* \cdot \bar{\epsilon}) f_T(\nu, Q^2) + i\bar{\sigma} \cdot (\bar{\epsilon'}^* \times \bar{\epsilon}) g_{TT}(\nu, Q^2) - i\bar{\sigma} \cdot [(\bar{\epsilon'}^* - \bar{\epsilon}) \times \hat{q}] g_{LT}(\nu, Q^2) \]

• One can write a LEX for the amplitudes \(f_L, f_T, g_{TT} \) and \(g_{LT} \):

\[
\begin{align*}
 f_T(\nu, Q^2) &= f_T^{(B)}(\nu, Q^2) + 4\pi Q^2 \beta_{M1} + 4\pi (\alpha_{E1} + \beta_{M1})\nu^2 + \ldots \\
 f_L(\nu, Q^2) &= f_L^{(B)}(\nu, Q^2) + 4\pi \alpha_L \nu^2 Q^2 + \ldots \\
 g_{TT}(\nu, Q^2) &= g_{TT}^{(B)}(\nu, Q^2) + 4\pi \gamma_0 \nu^3 + \ldots \\
 g_{LT}(\nu, Q^2) &= g_{LT}^{(B)}(\nu, Q^2) + 4\pi \delta_{LT} \nu^2 Q + \ldots
\end{align*}
\]
VWCS in the forward region:

\[T(\nu, Q^2) = f_L(\nu, Q^2) + (\vec{e}'^* \cdot \vec{e}) f_T(\nu, Q^2) + i\vec{\sigma} \cdot (\vec{e}'^* \times \vec{e}) g_{TT}(\nu, Q^2) - i\vec{\sigma} \cdot [(\vec{e}'^* - \vec{e}) \times \hat{q}] g_{LT}(\nu, Q^2) \]

One can write a LEX for the amplitudes \(f_L, f_T, g_{TT} \) and \(g_{LT} \):

\[
f_T(\nu, Q^2) = f_T^{(B)}(\nu, Q^2) + 4\pi Q^2 \beta_{M1} + 4\pi (\alpha_{E1} + \beta_{M1}) \nu^2 + \ldots
\]
\[
f_L(\nu, Q^2) = f_L^{(B)}(\nu, Q^2) + 4\pi \alpha_L \nu^2 Q^2 + \ldots
\]
\[
g_{TT}(\nu, Q^2) = g_{TT}^{(B)}(\nu, Q^2) + 4\pi \gamma_0 \nu^3 + \ldots
\]
\[
g_{LT}(\nu, Q^2) = g_{LT}^{(B)}(\nu, Q^2) + 4\pi \delta_{LT} \nu^2 Q + \ldots
\]
• VVCS in the forward region:

\[
T(\nu, Q^2) = f_L(\nu, Q^2) + (\bar{\epsilon'}^* \cdot \bar{\epsilon}) f_T(\nu, Q^2) + i\bar{\sigma} \cdot (\bar{\epsilon'}^* \times \bar{\epsilon}) g_{TT}(\nu, Q^2) - i\bar{\sigma} \cdot [\bar{\epsilon'}^* - \bar{\epsilon}] \times \hat{q} g_{LT}(\nu, Q^2)
\]

• One can write a LEX for the amplitudes \(f_L, f_T, g_{TT} \) and \(g_{LT} \):

\[
f_T(\nu, Q^2) = f_T^{(B)}(\nu, Q^2) + 4\pi Q^2 \beta_{M1} + 4\pi(\alpha_{E1} + \beta_{M1})\nu^2 + \ldots
\]

\[
f_L(\nu, Q^2) = f_L^{(B)}(\nu, Q^2) + 4\pi\alpha_L \nu^2 Q^2 + \ldots
\]

\[
g_{TT}(\nu, Q^2) = g_{TT}^{(B)}(\nu, Q^2) + 4\pi\gamma_0 \nu^3 + \ldots
\]

\[
g_{LT}(\nu, Q^2) = g_{LT}^{(B)}(\nu, Q^2) + 4\pi\delta_{LT} \nu^2 Q + \ldots
\]

\[
H_{\text{eff}}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{E1} \bar{E}^2 + \frac{1}{2} \beta_{M1} \bar{B}^2 \right]
\]
Introduction

- VVCS in the forward region:

\[T(\nu, Q^2) = f_L(\nu, Q^2) + (\vec{\epsilon}'^* \cdot \vec{e}) \mathcal{F}_T(\nu, Q^2) + i\vec{\sigma} \cdot (\vec{\epsilon}'^* \times \vec{e}) g_{TT}(\nu, Q^2) - i\vec{\sigma} \cdot [(\vec{\epsilon}'^* - \vec{e}) \times \hat{q}] g_{LT}(\nu, Q^2) \]

- One can write a LEX for the amplitudes \(f_L, f_T, g_{TT} \) and \(g_{LT} \):

\[
\begin{align*}
 f_T(\nu, Q^2) &= f_T^{(B)}(\nu, Q^2) + 4\pi Q^2 \beta_{M1} + 4\pi (\alpha_{E1} + \beta_{M1}) \nu^2 + \ldots \\
 f_L(\nu, Q^2) &= f_L^{(B)}(\nu, Q^2) + 4\pi \alpha_L \nu^2 Q^2 + \ldots \\
 g_{TT}(\nu, Q^2) &= g_{TT}^{(B)}(\nu, Q^2) + 4\pi \gamma_0 \nu^3 + \ldots \\
 g_{LT}(\nu, Q^2) &= g_{LT}^{(B)}(\nu, Q^2) + 4\pi \delta_{LT} \nu^2 Q + \ldots
\end{align*}
\]
• Chiral EFT has made some important progresses in the last years.
Introduction

- Chiral EFT has made some important progresses in the last years.
- The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.
Introduction

• Chiral EFT has made some important progresses in the last years.
• The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.

\[\pi N \quad [\text{Alarcón, Martín Camalich and Oller, PRD 85 (2012); AOP 336 (2013)}] \]
Introduction

• Chiral EFT has made some important progresses in the last years.
• The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.
 • \(\pi N \) [Alarcón, Martín Camalich and Oller, PRD 85 (2012); AOP 336 (2013)]:
 • Correct extraction of the phenomenology at low energies.
Introduction

- Chiral EFT has made some important progresses in the last years.
- The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.

\[
\pi N \quad [\text{Alarcón, Martín Camalich and Oller, PRD 85 (2012); AOP 336 (2013)}]
\]

- Correct extraction of the phenomenology at low energies.
- Extraction of \(\sigma_{\pi N} \) from modern PWAs + \(\pi \)-atoms scattering lengths:
Introduction

• Chiral EFT has made some important progresses in the last years.
• The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.
 • πN [Alarcón, Martín Camalich and Oller, PRD 85 (2012); AOP 336 (2013)] :
 • Correct extraction of the phenomenology at low energies.
 • Extraction of $\sigma_{\pi N}$ from modern PWAs + $\pi\pi$-atoms scattering lengths:
 $$\sigma_{\pi N} = 59(7) \text{ MeV}$$
Introduction

• Chiral EFT has made some important progresses in the last years.
• The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.

- \[\pi N \] [Alarcón, Martín Camalich and Oller, PRD 85 (2012); AOP 336 (2013)] :
 • Correct extraction of the phenomenology at low energies.
 • Extraction of \[\sigma_{\pi N} \] from modern PWAs + \[\pi \pi \]-atoms scattering lengths:

 \[\sigma_{\pi N} = 59(7) \text{ MeV} \]

• Confirmed by Roy-Steiner analysis.
Introduction

• Chiral EFT has made some important progresses in the last years.
• The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.

 • \(\pi N \) \cite{Alarcon:2012, MartinCamalich:2013}:
 • Correct extraction of the phenomenology at low energies.
 • Extraction of \(\sigma_{\pi N} \) from modern PWAs + \(\pi\pi \)-atoms scattering lengths:

\[
\sigma_{\pi N} = 59(7) \text{ MeV}
\]

• Confirmed by Roy-Steiner analysis.
• They argue the same reasons as the Chiral EFT analysis.
Introduction

- Chiral EFT has made some important progresses in the last years.
- The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.
 - \(\pi N \) [Alarcón, Martín Camalich and Oller, PRD 85 (2012); AOP 336 (2013)]:
 - Correct extraction of the phenomenology at low energies.
 - Extraction of \(\sigma_{\pi N} \) from modern PWAs + \(\pi \pi \)-atoms scattering lengths:
 \[
 \sigma_{\pi N} = 59(7) \text{ MeV}
 \]
 - Confirmed by Roy-Steiner analysis.
 - They argue the same reasons as the Chiral EFT analysis.
 - Compton scattering [Lensky and Pascalutsa, EPC 65, 195 (2010)]:
Introduction

• Chiral EFT has made some important progresses in the last years.
• The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.

 • πN [Alarcón, Martín Camalich and Oller, PRD 85 (2012); AOP 336 (2013)] :
 • Correct extraction of the phenomenology at low energies.
 • Extraction of $\sigma_{\pi N}$ from modern PWAs + $\pi\pi$-atoms scattering lengths:
 $$\sigma_{\pi N} = 59(7) \text{ MeV}$$
 • Confirmed by Roy-Steiner analysis.
 • They argue the same reasons as the Chiral EFT analysis.

• Compton scattering [Lensky and Pascalutsa, EPC 65, 195 (2010)] :
 • Prediction of α_{E1}^P, β_{M1}^P
Introduction

- Chiral EFT has made some important progresses in the last years.
- The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.

 - πN \cite{Alarcon:2012, MartinCamalich:2013}
 - Correct extraction of the phenomenology at low energies.
 - Extraction of $\sigma_{\pi N}$ from modern PWAs + $\pi\pi$-atoms scattering lengths:
 \[
 \sigma_{\pi N} = 59(7) \text{ MeV}
 \]
 - Confirmed by Roy-Steiner analysis.
 - They argue the same reasons as the Chiral EFT analysis.

- Compton scattering \cite{Lensky:2010, Pascalutsa:2010}
 - Prediction of α_{E1}^p, β_{M1}^p \(\rightarrow\) Agrees with PDG
Introduction

- Chiral EFT has made some important progresses in the last years.
- The relativistic formulation of chiral EFT with baryons, including Delta degrees of freedom provided determinant results in our understanding of the structure of the nucleon.
 - πN [Alarcón, Martín Camalich and Oller, PRD 85 (2012); AOP 336 (2013)]:
 - Correct extraction of the phenomenology at low energies.
 - Extraction of $\sigma_{\pi N}$ from modern PWAs + $\pi\pi$-atoms scattering lengths:
 $$\sigma_{\pi N} = 59(7) \text{ MeV}$$
 - Confirmed by Roy-Steiner analysis.
 - They argue the same reasons as the Chiral EFT analysis.

- Compton scattering [Lensky and Pascalutsa, EPC 65, 195 (2010)]:
 - Prediction of α_{E1}^P, β_{M1}^P Agrees with PDG

- Relativistic corrections are very important for some polarizabilities [Bernard, Kaiser and Meißner, PRL 67 (1991)], [Kao, Spitzenberg and Vanderhaeghen, PRD 67 (2003)].
We calculate the Compton scattering with relativistic Chiral EFT including the $\Delta(1232)$ up to $O(p^4/\Delta)$ in the δ-counting.
We calculate the Compton scattering with relativistic Chiral EFT including the $\Delta(1232)$ up to $O(p^4/\Delta)$ in the δ-counting.

Up to this order, the EFT calculation is a prediction.
Theoretical Approach

• We calculate the Compton scattering with relativistic Chiral EFT including the $\Delta(1232)$ up to $O(p^4/\Delta)$ in the δ-counting.

• Up to this order, the EFT calculation is a prediction.

• We include a dipole form factor in g_M:

$$g_M \to \frac{g_M}{(1 + Q^2/0.71)^2}$$

[Source: Pascalutsa and Vanderhaeghen, PRD 73 (2006)]
We include a dipole form factor in g_M:

$$g_M \rightarrow \frac{g_M}{(1 + Q^2/0.71)^2}$$

We decompose the Compton amplitude in the relativistic form:

$$T(\nu, Q^2) = \epsilon^{\mu*}_\nu \epsilon_\nu \left\{ \left(-g^{\mu\nu} + \frac{q_{\mu} q_{\nu}}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{m_N^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu, Q^2) \right. $$

$$\left. + \frac{i}{m_N} \epsilon^{\mu\nu\alpha\beta} q_\alpha s_\beta S_1(\nu, Q^2) + \frac{i}{m_N^3} \epsilon^{\mu\nu\alpha\beta} q_\alpha (p \cdot q s_\beta - s \cdot q p_\beta) S_2(\nu, Q^2) \right\}$$

We calculate the Compton scattering with relativistic Chiral EFT including the $\Delta(1232)$ up to $\mathcal{O}(p^4/\Delta)$ in the δ-counting.

Up to this order, the EFT calculation is a prediction.

We include a dipole form factor in g_M:

$$g_M \rightarrow \frac{g_M}{(1 + Q^2/0.71)^2}$$

[Pascalutsa and Vanderhaeghen, PRD 73 (2006)]
Theoretical Approach

- We calculate the Compton scattering with relativistic Chiral EFT including the $\Delta(1232)$ up to $\mathcal{O}(p^4/\Delta)$ in the δ-counting.
- Up to this order, the EFT calculation is a prediction.
- We include a dipole form factor in g_M:
 \[g_M \rightarrow \frac{g_M}{(1 + Q^2/0.71)^2} \]
 \[\text{[Pascalutsa and Vanderhaeghen, PRD 73 (2006)]} \]
- We decompose the Compton amplitude in the relativistic form:
 \[T(\nu, Q^2) = \epsilon_\nu^* \epsilon_\nu \left\{ \left(- g^{\mu\nu} + \frac{q^\mu q^\nu}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{m_N^2} \left(p^\mu - \frac{p \cdot q}{q^2} q^\mu \right) \left(p^\nu - \frac{p \cdot q}{q^2} q^\nu \right) T_2(\nu, Q^2) \right\} \]
 \[+ \frac{i}{m_N} \epsilon^{\mu\nu\alpha\beta} q_\alpha s_\beta S_1(\nu, Q^2) + \frac{i}{m_N^3} \epsilon^{\mu\nu\alpha\beta} q_\alpha (p \cdot q s_\beta - s \cdot q p_\beta) S_2(\nu, Q^2) \]
- In order to extract the polarizabilities, we relate T_1, T_2, S_1 and S_2 to f_T, f_L, g_{TT}, g_{LT}.
 \[f_T(\nu, Q^2) = T_1(\nu, Q^2) \]
 \[f_L(\nu, Q^2) = -T_1(\nu, Q^2) + \frac{\nu^2 + Q^2}{Q^2} T_2(\nu, Q^2) \]
 \[g_{TT}(\nu, Q^2) = \frac{\nu}{m_N} \left(S_1(\nu, Q^2) - \frac{Q^2}{m_N \nu} S_2(\nu, Q^2) \right) \]
 \[g_{LT}(\nu, Q^2) = \frac{Q}{m_N} \left(S_1(\nu, Q^2) + \frac{\nu}{m_N} S_2(\nu, Q^2) \right) \]
Results
Results

For the Scalar Polarizabilities:

<table>
<thead>
<tr>
<th>Proton</th>
<th>Neutron</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_{E1} + \beta_{M1}$</td>
<td>α_{L}</td>
</tr>
<tr>
<td>This work</td>
<td>This work</td>
</tr>
<tr>
<td>$15.12(82)$</td>
<td>$18.30(99)$</td>
</tr>
<tr>
<td>$13.8(4)$</td>
<td>$14.40(66)$</td>
</tr>
<tr>
<td>MAID</td>
<td>MAID</td>
</tr>
</tbody>
</table>

References:

[4] MAID
Results

For the Spin Polarizabilities:

- For the Proton:
 - This work: \(\gamma_0 = -0.93(5) \) fm\(^4\)
 - Empirical: \(\gamma_0 = -1.00(8)(12) \) fm\(^4\)
 - This work: \(\delta_{LT} = 1.35(7) \) fm\(^4\)
 - Empirical: \(\delta_{LT} = 1.34 \) fm\(^4\)

- For the Neutron:
 - This work: \(\gamma_0 = 0.05(1) \)
 - Empirical: \(\gamma_0 = -0.005 \)
 - This work: \(\delta_{LT} = 2.20(12) \)
 - Empirical: \(\delta_{LT} = 2.03 \)

\[\text{[1] Lensky, Alarcón and Pascalutsa, PRC 90 (2014).} \]
\[\text{[2] Dutz, et al., PRL 91 (2003).} \]
\[\text{[3] MAID.} \]
Results

For the Spin Polarizabilities:

- **Proton**
 - γ_0 (10^{-4} fm4)
 - This work: $-0.93(5)$
 - Empirical: $-1.00(8)(12)$
 - δ_{LT} (10^{-4} fm4)
 - This work: $1.35(7)$
 - Empirical: 1.34 [3]

- **Neutron**
 - γ_0 (10^{-4} fm4)
 - This work: $0.05(1)$
 - Empirical: -0.005 [3]
 - δ_{LT} (10^{-4} fm4)
 - This work: $2.20(12)$
 - Empirical: 2.03 [3]

References

[3] MAID.
Results

- For the Spin Polarizabilities:

<table>
<thead>
<tr>
<th>Proton</th>
<th>Neutron</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>Empirical</td>
</tr>
<tr>
<td>γ_0 (10$^{-4}$ fm4)</td>
<td>$-0.93(5)$</td>
</tr>
<tr>
<td>δ_{LT} (10$^{-4}$ fm4)</td>
<td>$1.35(7)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3] MAID.</td>
</tr>
</tbody>
</table>

(O) Prok et al., PLB 672 (2009)
(Proton) Prok et al., PLB 672 (2009)
(Proton) Prok et al., PRL 93 (2004)
(Proton) Prok et al., PRL 93 (2004)
(Proton) Prok et al., PRL 93 (2004)

Lamb shift
Lamb shift

- Intervene in the theoretical prediction \(\mathcal{O}(\alpha_{em}^5) \) of the proton radius through the Lamb shift \(\Delta E_{2P-2S} \).
Lamb shift

• Intervene in the theoretical prediction \(\mathcal{O}(\alpha_{em}^5) \) of the proton radius through the Lamb shift \(\Delta E_{2P-2S} \).

• They have the potential to solve “Proton Radius Puzzle”:

\[
\Delta E_{2P-2S}^{exp} - \Delta E_{2P-2S}^{th}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \mu\text{eV}
\]
Lamb shift

- Intervene in the theoretical prediction \(\mathcal{O}(\alpha_{em}^5) \) of the proton radius through the Lamb shift \(\Delta E_{2P-2S} \).
- They have the potential to solve “Proton Radius Puzzle”:
 \[
 \Delta E_{2P-2S}^{\text{exp}} - \Delta E_{2P-2S}^{\text{th}}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \mu\text{eV}
 \]
- The polarizabilities contribution starts with the \(2\gamma \) exchange.

\[
T^{\mu\nu}(P, q) = -\left(g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu^2, Q^2) + \frac{1}{M_p^2} \left(P^\mu - \frac{P \cdot q}{q^2} q^\mu \right) \left(P^{\nu} - \frac{P \cdot q}{q^2} q^{\nu} \right) T_2(\nu^2, Q^2)
\]

\[
\Delta E_{2S}^{(pol)} \approx \frac{\alpha_{em}}{\pi} \phi_{n=2}^2 \int_0^\infty \frac{dQ}{Q^2} w(\tau_\ell) \left[T_1^{(NB)}(0, Q^2) - T_2^{(NB)}(0, Q^2) \right] \quad T_1^{(NB)} = 4\pi Q^2 \beta_{M1}(Q^2) + \ldots
\]

\[
T_2^{(NB)} = 4\pi Q^2 [\alpha_{E1}(Q^2) + \beta_{M1}(Q^2)] + \ldots
\]
Lamb shift

- Intervene in the theoretical prediction \(\mathcal{O}(\alpha_{\text{em}}^5) \) of the proton radius through the Lamb shift \(\Delta E_{2P-2S} \).
- They have the potential to solve “Proton Radius Puzzle”:
 \[
 \Delta E_{2P-2S}^{\text{exp}} = \Delta E_{2P-2S}^{\text{th}}(r_E^{\text{CODATA}}) = 0.31 \text{ meV} = 310 \mu\text{eV}
 \]
- The polarizabilities contribution starts with the \(2\gamma \) exchange.

\[
\begin{align*}
T^{\mu\nu}(P,q) &= -\left(g^{\mu\nu} + \frac{q^\mu q^\nu}{q^2}\right)T_1(\nu^2, Q^2) + \frac{1}{M_p^2}\left(P^\mu - \frac{P\cdot q}{q^2}q^\mu\right)\left(P^\nu - \frac{P\cdot q}{q^2}q^\nu\right)T_2(\nu^2, Q^2) \\
\Delta E_{2S}^{(\text{pol})} &\approx \frac{\alpha_{\text{em}}}{\pi} \phi_{n=2}^2 \int_0^{\infty} \frac{dQ}{Q^2} w(\tau_e) \left[T_1^{(\text{NB})}(0, Q^2) - T_2^{(\text{NB})}(0, Q^2)\right] \\
T_1^{(\text{NB})} &= 4\pi Q^2 \beta_{M1}(Q^2) + \ldots \\
T_2^{(\text{NB})} &= 4\pi Q^2 [\alpha_{E1}(Q^2) + \beta_{M1}(Q^2)] + \ldots
\end{align*}
\]

- Chiral EFT provides predictions of the leading contribution.
Lamb shift

- The main contribution to the polarizabilities comes from the low Q^2 region → Chiral EFT
Lamb shift

- The main contribution to the polarizabilities comes from the low \(Q^2 \) region — Chiral EFT
- Important to reduce contributions from \(Q^2 > \Lambda_{\chi SB}^2 \).

\[
\Delta E_{2S}^{(pol)} \approx \frac{\alpha_{em}}{\pi} \sum_{n=2}^\infty \frac{dQ}{Q^2} w(\tau_{\ell}) \left[T_{1}^{(NB)}(0,Q^2) - T_{2}^{(NB)}(0,Q^2) \right]
\]

\[
w(\tau_{\ell}) = \sqrt{1 + \tau_{\ell}} - \sqrt{\tau_{\ell}}
\]

\[
\tau_{\ell} = \frac{Q^2}{4m_{\ell}^2}
\]

\[\Delta E_{2S}^{(pol)} \text{ (\(\mu\)eV)}\]

\[Q^2_{\text{max}} \text{ (GeV}^2)\]

[Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014).]
Lamb shift

- The main contribution to the polarizabilities comes from the low Q^2 region \rightarrow Chiral EFT
- Important to reduce contributions from $Q^2 > \Lambda_{\chi SB}^2$.

\[
\Delta E_{2S}^{(pol)}(\mu eV) \approx \frac{\alpha_{em}}{\pi} \phi_n^2 \int_0^{Q_{max}} \frac{dQ}{Q^2} w(\tau) \left[T_1^{(NB)}(0, Q^2) - T_2^{(NB)}(0, Q^2) \right]
\]

\[
\tau = \frac{Q^2}{4m^2_{\ell}}
\]

\[
w(\tau) = \sqrt{1 + \tau - \sqrt{\tau}}
\]

\[
\Delta E_{2S}^{(pol)} (\mu eV)
\]

\[
\begin{align*}
0 & \quad 0.2 & \quad 0.4 & \quad 0.6 & \quad 0.8 & \quad 1 \\
\text{B\chiPT} & & & & \\
\text{HB\chiPT} & & & & \\
-5 & & & & \\
-10 & & & & \\
-15 & & & &
\end{align*}
\]

$\approx 10\%$ Within the uncertainty of the calculation

[Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014).]
The main contribution to the polarizabilities comes from the low Q^2 region \rightarrow Chiral EFT

Important to reduce contributions from $Q^2 > \Lambda_{\chi SB}^2$.

$$\Delta E^{(pol)}_{2S} \approx \frac{\alpha_{em}}{\pi} \phi_{n=2}^2 \int_0^{Q_{max}} \frac{dQ}{Q^2} w(\tau_\ell) \left[T_{1}^{(NB)}(0, Q^2) - T_{2}^{(NB)}(0, Q^2) \right]$$

$w(\tau_\ell) = \sqrt{1 + \tau_\ell} - \sqrt{\tau_\ell}$

$\tau_\ell = \frac{Q^2}{4m_\ell^2}$

$\int dQ Q_{max} (\text{GeV}^2)$

$\Delta E^{(pol)}_{2S} (\mu\text{eV})$

$Q_{max}^2 (\text{GeV}^2)$

\bullet Within the uncertainty of the calculation

\bullet Too large contribution from $Q^2 > \Lambda_{\chi SB}^2$

$\approx 10\%$

$\approx 20\%$

[Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014).]
Lamb shift

- The relativistic structure is important to agree with phenomenological determinations of $\Delta E^{(pol)}_{2S}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E^{(pol)}_{2S}$</td>
<td>-12(2)</td>
<td>-11.5</td>
<td>-18.5</td>
<td>-7.4(2.4)</td>
<td>-8.5(1.1)</td>
<td>-15.3(5.6)</td>
<td>-8.2 $^{+2.0}_{-2.5}$</td>
<td>-26.5</td>
</tr>
</tbody>
</table>

- Chiral EFT calculations
- Phenomenological determinations (dispersion relations+data)

Lamb shift

- The relativistic structure is important to agree with phenomenological determinations of $\Delta E^{(pol)}_{2S}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E^{(pol)}_{2S}$</td>
<td>-12(2)</td>
<td>-11.5</td>
<td>-18.5</td>
<td>-7.4(2.4)</td>
<td>-8.5(1.1)</td>
<td>-15.3(5.6)</td>
<td>-8.2 $^{+2.0}_{-2.5}$</td>
<td>-26.5</td>
</tr>
</tbody>
</table>

Chiral EFT calculations

Phenomenological determinations (dispersion relations+data)

Lamb shift

- The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(pol)}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E_{2S}^{(pol)}$</td>
<td>-12(2)</td>
<td>-11.5</td>
<td>-18.5</td>
<td>-7.4(2.4)</td>
<td>-8.5(1.1)</td>
<td>-15.3(5.6)</td>
<td>-8.2 $^{+2.0}_{-2.5}$</td>
<td>-26.5</td>
</tr>
</tbody>
</table>

- Chiral EFT calculations
- Phenomenological determinations (dispersion relations+data)

Lamb shift

- The relativistic structure is important to agree with phenomenological determinations of $\Delta E_{2S}^{(\text{pol})}$.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta E_{2S}^{(\text{pol})}$</td>
<td>-12(2)</td>
<td>-11.5</td>
<td>-18.5</td>
<td>-7.4(2.4)</td>
<td>-8.5(1.1)</td>
<td>-15.3(5.6)</td>
<td>-8.2 +2.0 -2.5</td>
<td>-26.5</td>
</tr>
</tbody>
</table>

Chiral EFT calculations

Phenomenological determinations (dispersion relations+data)

- Relativistic chiral EFT agrees with dispersive determinations!
Summary and Conclusions
Summary and Conclusions

• We calculate the VVCS amplitude in covariant BChPT + Δ up to \(O(p^4/\Delta) \) in the \(\delta \)-counting.
• We included a dipole structure to the magnetic coupling of the \(\Delta(1232) \) Important to reproduce electroproduction data.
• The calculation is predictive.
• Our predictions are in good agreement with experimental data and the MAID model.
• We improve the Chiral EFT results for the polarizabilities, specially the in spin-dependent case.
• The Compton amplitude can be employed to calculate the leading proton-structure corrections to the \(\mu \)H Lamb shift.
• Our prediction agrees with dispersive calculations:

<table>
<thead>
<tr>
<th>(\Delta E_{2s}^{(pol)})</th>
<th>Alarcón, Lensky & Pascalutsa</th>
<th>Birse & McGovern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-8.2^{+2.0}_{-2.5})</td>
<td>(-8.5(1.1))</td>
</tr>
</tbody>
</table>
FIN
Spares
Dependence on the dipole form factor
Dependence on the dipole form factor

For the Scalar Polarizabilities

\[\alpha_{E1}^p + \beta_{M1}^p (10^{-4} \text{ fm}^3) \]

\[\alpha_{E1}^n + \beta_{M1}^n (10^{-4} \text{ fm}^3) \]

With Dipole

Without dipole

LO HB

FIG. 6: Comparison of the full result without dipole (red solid line) with the rest of the available ChPT calculations for +. The blue solid line and its band is our total result with dipole and the blue dashed line is the leading order result of [47]. The data are the same as in Fig 4.

FIG. 7: Longitudinal polarizabilities, \(L(\mathbf{Q}^2) \), for the proton and neutron as a function of \(\mathbf{Q}^2 \). The legend is the same as in Fig. 4 except for the black dotted line that corresponds to the MAID estimate using only the \(\pi^- \) channel, as in Ref. [17].
Dependence on the dipole form factor

- For the Spin Polarizabilities

![Graphs showing the dependence on the dipole form factor](image)

- With Dipole
- Without dipole
- LO HB
- BChPT+Δ^*

J. M. Alarcón (HISKP Bonn)
Chiral Dynamics 2015
Some other interesting moments
For some interesting moments:

\[
d_2(Q^2) = \int_0^{x_0} dx x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)]
\]

\[
I_A(Q^2) = \frac{2M_N^2}{Q^2} \int_0^{x_0} dx g_{TT}(x, Q^2)
\]

Results

- Structure corrections to HFS
- GDH Sum Rule

Proton

- \(d_2(Q^2)\) for different moments and models.
- \(I_A(Q^2)\) for different moments and models.

Neutron

- \(d_2(Q^2)\) for different moments and models.
- \(I_A(Q^2)\) for different moments and models.

Models:

- BChPT + \(\Delta\)
- LO BChPT
- LO HB
- MAID
- BChPT + \(\Delta^*\)

[Ref. \[Kao et al., PRD 67 (2003)\]]

References:

- (1) Amarian et al. PRL 89 (2002)
- (1) Amarian et al. PRL 89 (2002)
- (d2) Amarian et al. PRL 92 (2004)