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INTRODUCTION

The renormalization group program followed bg K. Wilson and collaborators is of Particular
interest as it allows one to Parameterize

o the Phgsics of the high momentum states and work with effective degrees of freedom.
The main idea is to use an effective renormalized Hamiltonian that, in the interaction
between low-momentum states, includes the couPIing with high momentum states.

o  The renormalized Hamiltonian carries the Phgsical information contained in the quantum
sgstcm in states of high momentum.
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e Asan examl:)le, in the nuclear Phgsics context, the use of effective interactions
containing sin ularities at short distances is motivated 139 the clevelopment of a chira”y
symmetric nuc%eonmucleon interaction, which contains contact interactions (Dirac-
delta and its higher order derivatives)

o Singular contact interactions have also been considered in speciﬁc treatments of scaling
limits and correlations between |ow~energg observables of three- and Four—-boclg
systems (atomic and nuclear)

(See, for example, Amorim et al [PRC56(1997)R2378; PRAGO (1999)R9] and Hadizadeh et al
[PRL]O7(ZOH) 1%5%04; PRAS85(2012) 023610]).



Renormalized iixed~|:>oint Hamiltonians

Renormalized ﬁ'xed-l:)oint Hamiltonians are formulated for
sgstems described by interactions that ori ina”g contamn
Point~|ii<e singularities (as Dirac-delta an Jor its derivatives).

We consider a renormalization scheme for few-nucleon
interactions, relging on a subtracted T-matrix ecluation.

The iixeci—-l:)oint Hamiltonian, which is Hermitian, contains the
renormalized coeficients/ operators that carry the Ph sical
informations of the quantum mechanical system, as wc—:?l as all
the necessary counterterms that make finite the scattering
amplitude.

It is also behind the renormalization group invariance of
quantum mechanics.

Renormalization group techniques, Ca”an-nganzik equation)
scale invariance and universaiitg are discussed in this context.



Nucleon-nucleon (NN) system ~ Conventional aPProaches

Standard high~|:>recision NN Potentials:
Bonn 2000, CD Bonn, AVI8, Nﬁm LI, ...

Common Features:

* Long-range Part due to Onc~Pion~exchange
. Short—-range Pieces, modeled Phenomenologica"g,

Describe the existing NN data
* Have tgPicallg 40-50 Parametcrs



Efective Field Tneorg

-

. lclcnti{:g the relevant clegrces of freedom and sgmmctjes

e Construct the most gcncral Lagrangian consistent with

« Do standard cluantum field thcory with this Lagrangian.

S. Weinberg, Physica A96 (79) 327
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Effective NN Interaction

We consider the following effective NN interaction:
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Viis : Regular part of OPEP + Vj
V5 : Dirac-0 Contact Interaction

Vs @ Derivative Contact Interactions

How to treat the singular interaction?



Subtractive Renormalization Method

From the original T-matrix equation

T(E)

We simply need to:

V + VG (EYT(E)

1-vaei(E) v

— replace V by T'(—p?) and

— multiply the free propagator by a p-dependent

function such that

T(E) = T(—p?) +T(—p*)GF(E; —p*)T(E)

where

GUI(E; —p?)

Gy (E) — Go(—p?)

(1° + E)

(1n? + Ho)

Gy (E)




Partial Wave Decomposition of OPEP

The one-pion-exchange potential is given by:

(P |V P) = gu 7o W —P) G2 (P — D)

We normalize our basis for the partial wave
decomposition expressing the plane-wave as

Py sms: I) = \[ Z P ls; jmg)|T) [ '"’(p)] |s125)

lsjm;

The partial wave decomposition of OPEP in the 'S,
state iIs
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with a regular part
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Subtracted Equations with onlg Vw 4§

Singlet 'S

T, g -?)
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’S, Phase shifts with onlg Vi .s
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Features oF I/n +8

. Reasonable agreement for the couplecl channel, where
the Pion dominates.

o Onlg one subtraction is enougl’l to obtain a finite
T-matrix.

e Poor clescription of the singlet state. Need next order in
NN interaction. More subtractions required.
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Renormalized Hamiltonian

e The renormalized Hamiltonian is the sum of the free
Hamiltonian with the renormalized interaction:

Hg=Ho + Vi

TR(E) = Vi+V G, (E) TR (E)
Go® (E) = (E+ig—Hg)"

Vg = T (U2 [-Go(-ud) Tr(-ud) "
= T (-uD) [1+Gg (~u2) Ty (-ud)]
={(1/[1+ TR ~u?) Go (-u?) ]} T (-u?)



Subtracted T-matrix Equations

The n — th order subtracted equation is given by:

T(E) =V (—p? E) + V" (—p?* E)GLP(E: —p*)T(E)

(n) — |19 ¢ _,,2  g\yn—1ly/(n—=1),mys 2 ! (rn—1)
v = [1— (—p? = By VONGH(—p?)| v
GP) = [(—p? — E)Go(—p?)]" G (E)

Since we need 3 subtractions, we have
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Subtracted T-matrix Equations

The integral equations for Vn(;lls are

(n) (n—1)
V7r+5_ T+04
9 o0 ‘ 9 I<:2 7r— 1 V("—l) .
| / daq” (M2+ 2) 7r2-|-6 2V7r(¥25
m Jo n? + q —u2 —gq

The T-matrix of the OPE plus the 6 potential is
obtained using Distorted Wave Theory:

Tris(E) = To(E)+ [1 + TW(E)G(()“(E)]
x  Ts(E) [1 + G(()+)(E)T7r(E)]

with the singular T-matrix being solution of
Ts(E) = Vs + VsGD(E)Ts(E)
The Green's function for the regular part of OPE is

GCNE) = GSP(E) + Gy (B)T-(E)GSY(E)



Subtracted T-matrix Equations

Renormalization is also required to obtain 7T5(F). But
in this case only 1 subtraction is enough

Ts(E) = Ts(—p?)
+ Ts(—?) |GE(E) — Ga(—p?) | T5(E)

The renormalized strength of the 0 interaction defines
T5(F') at the subtraction point

15 ( —/.1.2) = AR00

The result is

TP, 0 —1%) = Tz (0, ps —11%)
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Renormalization Group Invariance

— Observables are invariant under the change of the
subtracion energy scale ;.°

— The driving term V") has to be modified in order
to keep 7' invariant

The rule to modify V") appears in the form of a
non-relativistic Callan-Symanzik equation:

oV 9G]

(1
8u2 b3, ”’2 v ‘

which is derived from

OT'(FE)
~— =0
o2




Model results with OPE. NLO and NNLO

Vipe (P, p)) + A(pp)Sp 1811

+O0a(p?+ ) + )»3(P2P/2))5L,05Lf,0
+ Aa(p*81.281.0 + P/25Lf,25L,o) , |

L - 71-T2 \ L(g)
Vi (P, p) = — ( ) {4M§ (5¢% —4g; — 1)

VNLO(p9 p/) —

3842 f2 ) (2m)?
48g% M?
2 4 2 Ay
23¢g, — 10g5 — 1) 4
3gi - - - -
— (64ﬂ2f$) L(g){(o1-q)(o2-q)
—q° 61 - G2}

For the NNLO chiral Po‘cential, we adop a momentum space form, which
s exPIicitly given bg Epelbaum in Prog.Part.Nucl.Phgs.‘)’ﬂ?_OOé) 654 .
See also in PRC 83(201N 064-005.




Numerical Results

For each set of Az 19, Ar11 and i, we fit the singlet
scattering length a, = —23.739 fm through the value
of Azon. With g = 214 MeV, the two parameters left
are adjusted to reproduce the Nijgemen data up to the
center of mass momentum of & — 300 MeV /c .

First, as a straightforward check of our method,
we obtain the singlet S-wave phase shifts for V. ;
obtained by solving the three-fold equation with
Az10 = Ar11 — 0. The present calculation reproduces
the results obtained with the one-subtracted equation.

w=214MeV w=214MeV
“}\ROO — —8 8395 UA 500 = —0-1465
3
A =0 WA =4.7124
RO1 N ) RO1
Ap11=0 W Ao = 5.0265
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Contributions to the 1 S() Phase shifts
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Results for NN Phase-shifts and Mixing Parameters
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Results for NN Phase-shifts and Mixing Parameters

Phase Shifts (degrees)
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Results for NN Phase-shifts and Mixing Parameters

Phase Shift (degrees)
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Results for NN Phase-shifts and Mixing Parameters
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Results for NN Phase-shifts and Mixing Parameters
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Hamiltonian for Subtracted 35 equa tions

n-subtracted T-matrix equation (for Dirac-delta n=1)

T(E) = VV(E, —p?) + (=1)"(E + 1*)"V?(E, —1*)Gy " (E)Gy(—p*)T (E)

Invariance of T-matrix by dislocations of the A _ _ym Gy (E; —p?) v

subtraction point: d 2 I

Renormalized Hamiltonian: |Hf = Hp + V&

Va = [14+ VU667 E) (1= (—1)"(W* + E)"Gh(—p*)] 'V

Vg 0H g

— 0 and =0
d 2

Subtracted-Faddeev equations 3B:

q2
Ty (E) = tg (E -3 k

M k
(3B) (2B) (3B)
Ha' =) Vag +Va -
(1)
Frederico, Delfino, Tomio, Yamashita PPNP 67, 939 (2012)

) [1+ (GSP(E) — Go(—ud)) (T{(E) + T;(E))]
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Final Remarks

The scheme works very well, with a T-matrix and Hamiltonian

formalism, which doesn’ t clepencl on the subtraction point H?

Vévis the comPonent of the efHective interaction which dominates in

thelSO channel.

Next orders are included in the effective interaction (more

subtractions may be required).

The calculations can be extended to higher Partial waves.

The singllet and triplet scattering eng‘chs are gi\/en to fix the
renormalized strengths of the contact interactions.

Ver? goocl agreement with neutron~Proton clata, Particularlg for the
triplet. Mixing parameter for?5,-2Dis shown to be the most
sensible observable related to the renormalization scale.

Rule to moclhcg the clriving term follows a non-relativistic Callan-
nganzik ecluation (Grou[:) invariance).
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Parameters L O and NLO

TABLE 1. Strengths of the LO contact interactions, which
1
reproduce the scattering lengths for the § waves. The values of AOSO

and AZSI, in units of fm, are given at the energy scale —/i°, with
i =30 fm~! (i? = 41.47 x 900 MeV).

Strengths 1S 38,

Ao (fm) —0.0203 —0.24142

TABLE II. Strengths of the contact interactions for the fits with
the LO potential plus the NLO contact interactions. The values of

1 3
)\OSO and )\051 are given at the same energy scale as in Table I (—i* =

—41.47 x 900 MeV); with ,% and A-° at —pu? = —50 MeV. The
other strengths are given at —u? = —100 MeV.

Strengths 1S() 3P() 351 1P1 3P1 3P2 €]

Ao (fm)  —0.0165 - —0.2480 - — _ _
A1 (fm?) — 0.25 — 0.04 0.007 —-0.07 -
Ly (fm’)  2.2660 — 0.1 — — — _

A (Fmd)  2.0047  — _ _ _ _
A4 (fm3) _ _ _ - ~ 0.001




TABLE III. Strengths of the contact interactions for the fits with

the full NLO potential. The values of the A’s are given for i and u?
as 1n Table II.

Strengths 1S() 3P() 351 1P1 3P1 3P2 €1
Ao —0.0190 - —-0.1602 - — — —
A1 (fm?) — 0.37 — 0.063 —0.078 —-0.04 -
Lo (fm?) 22660  — 0.1 — — — —

A (Fmd)  2.0047  — _ _ _ L
Ay (Fm?) _ _ _ _ _ ~ 017




