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Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.
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Hyperfine splitting
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�Eth
HFS [meV] = 22.9763(15)� 0.1621(10) hriZ [fm] +�Epol

HFS



Hyperfine splitting

Fermi energy +
radiative and 

recoil corrections
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Hyperfine splitting

Fermi energy +
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recoil corrections
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Predictive orders (no new LECs) 

LO 
ImGE and ImGM

the contour can always be closed in the half-plane
which does not have a pole. In the graphs where both
the nucleon propagators enter with a pion propaga-
tor, e.g.,

S!ðkÞSNðpÞ #
1

k2 $m2
!

6pþMN

p2 $M2
N

(4)

the nucleon propagator is replaced as follows:

SNðpÞ !
6pþMN

p2 $M2
N $ S$1

! ðkÞ

¼ SNðpÞ
!
1þ 1

S!ðkÞðp2 $M2
NÞ

"
: (5)

In any one-loop graph containing N! pion
propagators,

S!ðk1Þ ' ' ' S!ðkN!
Þ; (6)

each nucleon propagator changes as follows:

SNðpÞ ! SNðpÞ
!
1$ ð$1ÞN!

YN!

n¼1

1

S!ðknÞðp2 $M2
NÞ

"
:

(7)

This formulation is more convenient to check Ward-
Takahashi identities since the normal propagator preserve
gauge invariance and the additional part vanishes upon
closing the loop integration contour in the half-plane which
is free of poles. It is not difficult to see that the ‘‘modified’’
IR procedure [41], introduced to define IR beyond one
loop, does not satisfy the e.m. gauge symmetry exactly,
but only to a given order in the chiral expansion. The
violating terms are of higher order from the viewpoint of
heavy-baryon expansion, but not in a covariant framework.

One apparent drawback of IR is that it changes the
analytic structure of the loop integrals such that unphysical
cuts appear. The unphysical cuts lie far outside the region
of "PT interest, but they still have an effect on that region
as can be seen, for example, through a dispersive repre-
sentation. Namely, if the quantity in question obeys a
dispersion relation, let say in energy s,

GðsÞ ¼ 1

!

Z 1

s0

ds0
ImGðs0Þ
s0 $ s

; (8)

then in the IR scheme it would take the form:

GðIRÞðsÞ ¼ 1

!

Z 1

s0

ds0
ImGðs0Þ
s0 $ s

þ 1

!

Z f0

$1
ds0

ImGðIRÞðs0Þ
s0 $ s

;

(9)

such that, even if f0 is far away from the region of interest
(i.e., f0 ( s and s ) s0), an unphysical contribution is
generated and its smallness is hard to assess a priory.
The imaginary part over the physical cut is the same in
IR, EOMS, or any other relativistic scheme. In fact, the
whole difference between the IR and EOMS is the unphys-
ical cut contribution.
A common problem of Lorentz-covariant schemes is

that the superficial index of divergence ! may exceed
the chiral power-counting index n, and thus an UV-
divergence may appear !$ n orders lower than the LEC
which renormalizes it. This problem is often viewed as an
inconsistency of the covariant approach, but in fact it only
means one needs to specify the renormalization scheme for
all LECs from the outset. In HB"PT, ! ¼ n, because the
time-derivatives of the heavy (nucleon) field are elimi-
nated. On the other hand, the HB"PT results can readily
be reproduced from covariant ones by expanding the latter
in the inverse baryon masses.
Since the nucleon is easily excited into the

!ð1232Þ-resonance, the excitation energy # ¼ M! $
MN ( 4!f!, the "PTwith nucleons is not complete with-
out the !-isobar degrees of freedom. The power-counting
for the!-isobar contributions depends on how the two light
scalesm! and# compare to each other.m! * # leads to the
‘‘small-scale-expansion’’ (SSE) [42], while m! ( # leads
to the ‘‘$-expansion’’ [43,44]. In the absence of one-
particle-reducible graphs, as is in the case of form factors,
the two power-countings yield very similar results. In the
$-expansion, where a one-particle-irreducible graph withL
loops, N! pion propagators, NN nucleon propagators, N!

FIG. 1 (color online). Order-p3 corrections to the nucleon form factors. Single-lines denote the nucleon, double-lines the !-isobar,
and dashed lines the pion propagators. The photon coupling is denoted by the blue square and the N! or !! vertices
by dots.
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Leading order (p^3):
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Predictive orders (no new LECs) 
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loop, does not satisfy the e.m. gauge symmetry exactly,
but only to a given order in the chiral expansion. The
violating terms are of higher order from the viewpoint of
heavy-baryon expansion, but not in a covariant framework.

One apparent drawback of IR is that it changes the
analytic structure of the loop integrals such that unphysical
cuts appear. The unphysical cuts lie far outside the region
of "PT interest, but they still have an effect on that region
as can be seen, for example, through a dispersive repre-
sentation. Namely, if the quantity in question obeys a
dispersion relation, let say in energy s,
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then in the IR scheme it would take the form:
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such that, even if f0 is far away from the region of interest
(i.e., f0 ( s and s ) s0), an unphysical contribution is
generated and its smallness is hard to assess a priory.
The imaginary part over the physical cut is the same in
IR, EOMS, or any other relativistic scheme. In fact, the
whole difference between the IR and EOMS is the unphys-
ical cut contribution.
A common problem of Lorentz-covariant schemes is

that the superficial index of divergence ! may exceed
the chiral power-counting index n, and thus an UV-
divergence may appear !$ n orders lower than the LEC
which renormalizes it. This problem is often viewed as an
inconsistency of the covariant approach, but in fact it only
means one needs to specify the renormalization scheme for
all LECs from the outset. In HB"PT, ! ¼ n, because the
time-derivatives of the heavy (nucleon) field are elimi-
nated. On the other hand, the HB"PT results can readily
be reproduced from covariant ones by expanding the latter
in the inverse baryon masses.
Since the nucleon is easily excited into the

!ð1232Þ-resonance, the excitation energy # ¼ M! $
MN ( 4!f!, the "PTwith nucleons is not complete with-
out the !-isobar degrees of freedom. The power-counting
for the!-isobar contributions depends on how the two light
scalesm! and# compare to each other.m! * # leads to the
‘‘small-scale-expansion’’ (SSE) [42], while m! ( # leads
to the ‘‘$-expansion’’ [43,44]. In the absence of one-
particle-reducible graphs, as is in the case of form factors,
the two power-countings yield very similar results. In the
$-expansion, where a one-particle-irreducible graph withL
loops, N! pion propagators, NN nucleon propagators, N!

FIG. 1 (color online). Order-p3 corrections to the nucleon form factors. Single-lines denote the nucleon, double-lines the !-isobar,
and dashed lines the pion propagators. The photon coupling is denoted by the blue square and the N! or !! vertices
by dots.

NUCLEON AND !ð1232Þ FORM FACTORS AT LOW . . . PHYSICAL REVIEW D 85, 034013 (2012)

034013-3

the contour can always be closed in the half-plane
which does not have a pole. In the graphs where both
the nucleon propagators enter with a pion propaga-
tor, e.g.,

S!ðkÞSNðpÞ #
1

k2 $m2
!

6pþMN

p2 $M2
N

(4)

the nucleon propagator is replaced as follows:

SNðpÞ !
6pþMN

p2 $M2
N $ S$1

! ðkÞ

¼ SNðpÞ
!
1þ 1

S!ðkÞðp2 $M2
NÞ

"
: (5)

In any one-loop graph containing N! pion
propagators,

S!ðk1Þ ' ' ' S!ðkN!
Þ; (6)

each nucleon propagator changes as follows:

SNðpÞ ! SNðpÞ
!
1$ ð$1ÞN!

YN!

n¼1

1

S!ðknÞðp2 $M2
NÞ

"
:

(7)

This formulation is more convenient to check Ward-
Takahashi identities since the normal propagator preserve
gauge invariance and the additional part vanishes upon
closing the loop integration contour in the half-plane which
is free of poles. It is not difficult to see that the ‘‘modified’’
IR procedure [41], introduced to define IR beyond one
loop, does not satisfy the e.m. gauge symmetry exactly,
but only to a given order in the chiral expansion. The
violating terms are of higher order from the viewpoint of
heavy-baryon expansion, but not in a covariant framework.

One apparent drawback of IR is that it changes the
analytic structure of the loop integrals such that unphysical
cuts appear. The unphysical cuts lie far outside the region
of "PT interest, but they still have an effect on that region
as can be seen, for example, through a dispersive repre-
sentation. Namely, if the quantity in question obeys a
dispersion relation, let say in energy s,

GðsÞ ¼ 1

!

Z 1

s0

ds0
ImGðs0Þ
s0 $ s

; (8)

then in the IR scheme it would take the form:

GðIRÞðsÞ ¼ 1

!

Z 1

s0

ds0
ImGðs0Þ
s0 $ s

þ 1

!

Z f0

$1
ds0

ImGðIRÞðs0Þ
s0 $ s

;

(9)

such that, even if f0 is far away from the region of interest
(i.e., f0 ( s and s ) s0), an unphysical contribution is
generated and its smallness is hard to assess a priory.
The imaginary part over the physical cut is the same in
IR, EOMS, or any other relativistic scheme. In fact, the
whole difference between the IR and EOMS is the unphys-
ical cut contribution.
A common problem of Lorentz-covariant schemes is

that the superficial index of divergence ! may exceed
the chiral power-counting index n, and thus an UV-
divergence may appear !$ n orders lower than the LEC
which renormalizes it. This problem is often viewed as an
inconsistency of the covariant approach, but in fact it only
means one needs to specify the renormalization scheme for
all LECs from the outset. In HB"PT, ! ¼ n, because the
time-derivatives of the heavy (nucleon) field are elimi-
nated. On the other hand, the HB"PT results can readily
be reproduced from covariant ones by expanding the latter
in the inverse baryon masses.
Since the nucleon is easily excited into the

!ð1232Þ-resonance, the excitation energy # ¼ M! $
MN ( 4!f!, the "PTwith nucleons is not complete with-
out the !-isobar degrees of freedom. The power-counting
for the!-isobar contributions depends on how the two light
scalesm! and# compare to each other.m! * # leads to the
‘‘small-scale-expansion’’ (SSE) [42], while m! ( # leads
to the ‘‘$-expansion’’ [43,44]. In the absence of one-
particle-reducible graphs, as is in the case of form factors,
the two power-countings yield very similar results. In the
$-expansion, where a one-particle-irreducible graph withL
loops, N! pion propagators, NN nucleon propagators, N!

FIG. 1 (color online). Order-p3 corrections to the nucleon form factors. Single-lines denote the nucleon, double-lines the !-isobar,
and dashed lines the pion propagators. The photon coupling is denoted by the blue square and the N! or !! vertices
by dots.

NUCLEON AND !ð1232Þ FORM FACTORS AT LOW . . . PHYSICAL REVIEW D 85, 034013 (2012)

034013-3

At order O(p^4/   ):�

NLO
ImGE and ImGM

LO 
ImGE and ImGM

the contour can always be closed in the half-plane
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whole difference between the IR and EOMS is the unphys-
ical cut contribution.
A common problem of Lorentz-covariant schemes is

that the superficial index of divergence ! may exceed
the chiral power-counting index n, and thus an UV-
divergence may appear !$ n orders lower than the LEC
which renormalizes it. This problem is often viewed as an
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This formulation is more convenient to check Ward-
Takahashi identities since the normal propagator preserve
gauge invariance and the additional part vanishes upon
closing the loop integration contour in the half-plane which
is free of poles. It is not difficult to see that the ‘‘modified’’
IR procedure [41], introduced to define IR beyond one
loop, does not satisfy the e.m. gauge symmetry exactly,
but only to a given order in the chiral expansion. The
violating terms are of higher order from the viewpoint of
heavy-baryon expansion, but not in a covariant framework.

One apparent drawback of IR is that it changes the
analytic structure of the loop integrals such that unphysical
cuts appear. The unphysical cuts lie far outside the region
of "PT interest, but they still have an effect on that region
as can be seen, for example, through a dispersive repre-
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(i.e., f0 ( s and s ) s0), an unphysical contribution is
generated and its smallness is hard to assess a priory.
The imaginary part over the physical cut is the same in
IR, EOMS, or any other relativistic scheme. In fact, the
whole difference between the IR and EOMS is the unphys-
ical cut contribution.
A common problem of Lorentz-covariant schemes is

that the superficial index of divergence ! may exceed
the chiral power-counting index n, and thus an UV-
divergence may appear !$ n orders lower than the LEC
which renormalizes it. This problem is often viewed as an
inconsistency of the covariant approach, but in fact it only
means one needs to specify the renormalization scheme for
all LECs from the outset. In HB"PT, ! ¼ n, because the
time-derivatives of the heavy (nucleon) field are elimi-
nated. On the other hand, the HB"PT results can readily
be reproduced from covariant ones by expanding the latter
in the inverse baryon masses.
Since the nucleon is easily excited into the
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MN ( 4!f!, the "PTwith nucleons is not complete with-
out the !-isobar degrees of freedom. The power-counting
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‘‘small-scale-expansion’’ (SSE) [42], while m! ( # leads
to the ‘‘$-expansion’’ [43,44]. In the absence of one-
particle-reducible graphs, as is in the case of form factors,
the two power-countings yield very similar results. In the
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the contour can always be closed in the half-plane
which does not have a pole. In the graphs where both
the nucleon propagators enter with a pion propaga-
tor, e.g.,
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In any one-loop graph containing N! pion
propagators,
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each nucleon propagator changes as follows:
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This formulation is more convenient to check Ward-
Takahashi identities since the normal propagator preserve
gauge invariance and the additional part vanishes upon
closing the loop integration contour in the half-plane which
is free of poles. It is not difficult to see that the ‘‘modified’’
IR procedure [41], introduced to define IR beyond one
loop, does not satisfy the e.m. gauge symmetry exactly,
but only to a given order in the chiral expansion. The
violating terms are of higher order from the viewpoint of
heavy-baryon expansion, but not in a covariant framework.

One apparent drawback of IR is that it changes the
analytic structure of the loop integrals such that unphysical
cuts appear. The unphysical cuts lie far outside the region
of "PT interest, but they still have an effect on that region
as can be seen, for example, through a dispersive repre-
sentation. Namely, if the quantity in question obeys a
dispersion relation, let say in energy s,

GðsÞ ¼ 1
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such that, even if f0 is far away from the region of interest
(i.e., f0 ( s and s ) s0), an unphysical contribution is
generated and its smallness is hard to assess a priory.
The imaginary part over the physical cut is the same in
IR, EOMS, or any other relativistic scheme. In fact, the
whole difference between the IR and EOMS is the unphys-
ical cut contribution.
A common problem of Lorentz-covariant schemes is

that the superficial index of divergence ! may exceed
the chiral power-counting index n, and thus an UV-
divergence may appear !$ n orders lower than the LEC
which renormalizes it. This problem is often viewed as an
inconsistency of the covariant approach, but in fact it only
means one needs to specify the renormalization scheme for
all LECs from the outset. In HB"PT, ! ¼ n, because the
time-derivatives of the heavy (nucleon) field are elimi-
nated. On the other hand, the HB"PT results can readily
be reproduced from covariant ones by expanding the latter
in the inverse baryon masses.
Since the nucleon is easily excited into the

!ð1232Þ-resonance, the excitation energy # ¼ M! $
MN ( 4!f!, the "PTwith nucleons is not complete with-
out the !-isobar degrees of freedom. The power-counting
for the!-isobar contributions depends on how the two light
scalesm! and# compare to each other.m! * # leads to the
‘‘small-scale-expansion’’ (SSE) [42], while m! ( # leads
to the ‘‘$-expansion’’ [43,44]. In the absence of one-
particle-reducible graphs, as is in the case of form factors,
the two power-countings yield very similar results. In the
$-expansion, where a one-particle-irreducible graph withL
loops, N! pion propagators, NN nucleon propagators, N!

FIG. 1 (color online). Order-p3 corrections to the nucleon form factors. Single-lines denote the nucleon, double-lines the !-isobar,
and dashed lines the pion propagators. The photon coupling is denoted by the blue square and the N! or !! vertices
by dots.
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Takahashi identities since the normal propagator preserve
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Leading order (p^3):

Preliminary 
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Summary of the results
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Odd 
moment p^3 p^4/    p^3+p^4/ Empirical 

value
0.276 0.109 0.385 1.16(4)

0.554 0.218 0.772 2.85(8)

1.537 1.439 2.976 1.045(4)

hR3iE(2)

hR3iE

� �

hriZ

Possible explanations:

i) ChTP does not work, new physics needs to be implemented

ii) Empirical values are wrong

iii) ...



Summary

(i) Calculation of the 3rd Zemach moment allows us to extract 
the proton radius independently on the elastic ep-scattering 
data.

(ii) The 3rd Zemach moment and Zemach radius can be 
predicted by ChPT (no new LECs).

(iii) We present the results of the leading and next-to-leading 
order contributions, O(p^3) and O(p^4/   ), to the third moment 
of the charge distribution, the 3rd Zemach moment, and 
Zemach radius.

(iv) More work is required to reproduce the empirical values.

�
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