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•Neutrino detection.

•Heavy Ion collisions (FAIR).
•Nuclear interactions can be treated within the chiral EFT formalism   
[S. Weinberg NPB 363 (1991)].

•Interaction based on fundamental symmetries (ab initio).
•Systematically improvable (including 3NF, 4NF, etc …).
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nx = mod(r,L)

ny = mod(r-nx/L,L)

nz = mod((r-ny*L-nx)/L^2,L)

Since each of the getspectrum files uses the same smearing function, I moved its the calculation
to the main program (the one that gives the phase shifts in terms of the LECs and smearing
parameter) so that now, this function is calculated once for a given value of b. The result is then
given to the di↵erent getspectrum functions as a variable.

Also, another important modification was done in the getspectrum files to optimize the fits.
Since the potential files are fixed for a given L and a, I made the fitting routine to read this files
before starting the fit so it is done only once. The data goes to the main program as a variable and
enters into the getspectrum functions as variables as well. This reduces also the computational
time for the fits, and it is more noticeable for large L. The same thing is done also for the Nijmegen
phase shifts contained in the txt file and that used by the main program.

Finally, it is important to stress that I checked that all these modifications give the same results
as the original code for the same set of values of (C1S0 , C3S1 , b

4

).

A.3 Modification of the scattering plot.m file

In order to run a fitting routine, it is convenient to use the scattering plot.m code as a function
which input parameters are the couplings and smearing parameters that we want to fit, and which
output is the di↵erence between the target and the extracted energies, or the predicted binding
energies, or both. With this output one can write a simple fitting routine that minimizes the �2

constructed at will. For example, if one wants to fit the C3S1 coupling with the binding energies

one can use �2 =
(Ephys

B

�E
B

)

2

(�Ephys

B

)

2
. Where Ephys

B and �Ephys
B is the physical binding energy and its

uncertainty, and EB is the binding energy predicted with a specific value of C3S1 .
As we show in Sec. 1.3, for the fits we will use di↵erent definitions of �2 mainly because of the

lack of error bands in the Nijmegen phase shifts.

B Errors of the phase shifts

We consider the error of the phase shifts as in Refs.[4, 5], where ↵ is the channel considered,
�NijmI
↵ , �NijmII

↵ , �Reid93
↵ are the phase shifts obtained with the NijmI, NijmII and Reid93 potentials,

respectively, and �NPWA
↵ is the error for the channel ↵ given in Ref.[6].

�↵ = max
⇣
�NPWA

↵ , |�NijmI
↵ � �NPWA

↵ |, |�NijmII
↵ � �NPWA

↵ |, |�Reid93
↵ � �NPWA

↵ |
⌘

(66)

Since the energy where the phase shift is obtained depends on the energy level, and the energy
level depends on the couplings, we need to cover the whole range of energies considered in the fit.
Since Eq. (66) only covers a discrete set of values, we use an spline interpolator to evaluate the
intermediate points and to extrapolate the the error function to the threshold. The results for the
1S

0

and 3S
1

channels are shown in Fig. 68.

71

[Epelbaum, Krebs and 
Meißner, EPJ A 51 (2015)]
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-4.109 ⇥10�5 -5.953 ⇥10�5 7.315⇥10�2 6.75 ⇥10�2 -0.172 -3.82⇥10�2 9.46⇥10�2 -0.171 0.170 7.59⇥10�2 6.12⇥10�2 1.18⇥10�2 3.93⇥10�3 0.380 -0.380

LO NLO Exp.
EB -2.223544 -2.224434 -2.224575(9)

a (fm) at (fm) C1S0 C3S1 b4 EB

(in 10�5 MeV�2) (in 10�5 MeV�2) (MeV)
1.97 1.32 �4.018 �5.865 0.0772 �2.224575
1.80 1.32 �3.206 �4.673 0.1064 �2.224575
1.80 1.09 �3.357 �4.868 0.0986 �2.224575
1.60 1.06 �2.532 �3.625 0.1413 �2.224575
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•We use the Transfer matrix formalism.
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•Keeping fixed LO, we fit NLO [Contact] up to                       
•For S-waves:

J. M. Alarcón (HISKP Bonn)

Phase shifts

•LO provides a good description of the S-waves 
and threshold parameters.

(a = 1.97 fm and L = 32)
C1S0 C3S1 b4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

( MeV�2) ( MeV�2)
-4.109 ⇥10�5 -5.953 ⇥10�5 7.315⇥10�2 6.75 ⇥10�2 -0.172 -3.82⇥10�2 9.46⇥10�2 -0.171 0.170 7.59⇥10�2 6.12⇥10�2 1.18⇥10�2 3.93⇥10�3 0.380 -0.380

LO NLO Exp.
EB -2.223544 -2.224434 -2.224575(9)

a (fm) at (fm) C1S0 C3S1 b4 EB

(in 10�5 MeV�2) (in 10�5 MeV�2) (MeV)
1.97 1.32 �4.018 �5.865 0.0772 �2.224575
1.80 1.32 �3.206 �4.673 0.1064 �2.224575
1.80 1.09 �3.357 �4.868 0.0986 �2.224575
1.60 1.06 �2.532 �3.625 0.1413 �2.224575
1.60 0.86 �2.648 �3.776 0.1320 �2.224575
1.40 0.93 �1.873 �2.600 0.2005 �2.224575
1.40 0.66 �1.975 �2.737 0.1863 �2.224575

Threshold parameters
LO NLO Exp.

a1S0 (fm) �23.31 �23.79 �23.76
r1S0 (fm) 2.38 2.57 2.75
a3S1 (fm) 5.26 5.23 5.42
r3S1 (fm) 2.05 2.04 1.76

Threshold parameters
LO NLO Exp.

a1P1 (fm3) 3.79 2.89 2.81⇤⇤

r1P1 (fm�1) �12.95 �6.28 �7.20⇤⇤

a3P0 (fm3) �3.14 �2.78 �2.56⇤⇤

r3P0 (fm�1) 6.56 5.36 4.43⇤⇤

a3P1 (fm3) 1.99 1.63 1.54⇤⇤

r3P1 (fm�1) �13.57 �9.71 �8.54⇤⇤

a3P2 (fm3) �0.003 �0.35 �0.29⇤⇤

r3P2 (fm�1) �6764.52 19.03 �0.40⇤⇤

1

(a = 1.97 fm and L = 32)
C1S0 C3S1 b4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

( MeV�2) ( MeV�2)
-4.109 ⇥10�5 -5.953 ⇥10�5 7.315⇥10�2 6.75 ⇥10�2 -0.172 -3.82⇥10�2 9.46⇥10�2 -0.171 0.170 7.59⇥10�2 6.12⇥10�2 1.18⇥10�2 3.93⇥10�3 0.380 -0.380

LO NLO Exp.
EB -2.223544 -2.224574 -2.224575(9)

a (fm) at (fm) C1S0 C3S1 b4 EB

(in 10�5 MeV�2) (in 10�5 MeV�2) (MeV)
1.97 1.32 �4.018 �5.865 0.0772 �2.224575
1.80 1.32 �3.206 �4.673 0.1064 �2.224575
1.80 1.09 �3.357 �4.868 0.0986 �2.224575
1.60 1.06 �2.532 �3.625 0.1413 �2.224575
1.60 0.86 �2.648 �3.776 0.1320 �2.224575
1.40 0.93 �1.873 �2.600 0.2005 �2.224575
1.40 0.66 �1.975 �2.737 0.1863 �2.224575

Threshold parameters
LO NLO Exp.

a1S0 (fm) �23.31 �23.79 �23.76
r1S0 (fm) 2.38 2.57 2.75
a3S1 (fm) 5.26 5.23 5.42
r3S1 (fm) 2.05 2.04 1.76

Threshold parameters
LO NLO Exp.

a1P1 (fm3) 3.79 2.89 2.81⇤⇤

r1P1 (fm�1) �12.95 �6.28 �7.20⇤⇤

a3P0 (fm3) �3.14 �2.78 �2.56⇤⇤

r3P0 (fm�1) 6.56 5.36 4.43⇤⇤

a3P1 (fm3) 1.99 1.63 1.54⇤⇤

r3P1 (fm�1) �13.57 �9.71 �8.54⇤⇤

a3P2 (fm3) �0.003 �0.35 �0.29⇤⇤

r3P2 (fm�1) �6764.52 19.03 �0.40⇤⇤

1

pCM = (30� 60) MeV
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•We use the Transfer matrix formalism.
•We fit LO [Contact (smeared) + OPE] with S-waves,  up to                      

•Keeping fixed LO, we fit NLO [Contact] up to                       
•For S-waves:

J. M. Alarcón (HISKP Bonn)

Phase shifts

•LO provides a good description of the S-waves 
and threshold parameters.
•NLO corrects slightly the LO in the right 
direction.

(a = 1.97 fm and L = 32)
C1S0 C3S1 b4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

( MeV�2) ( MeV�2)
-4.109 ⇥10�5 -5.953 ⇥10�5 7.315⇥10�2 6.75 ⇥10�2 -0.172 -3.82⇥10�2 9.46⇥10�2 -0.171 0.170 7.59⇥10�2 6.12⇥10�2 1.18⇥10�2 3.93⇥10�3 0.380 -0.380

LO NLO Exp.
EB -2.223544 -2.224434 -2.224575(9)

a (fm) at (fm) C1S0 C3S1 b4 EB

(in 10�5 MeV�2) (in 10�5 MeV�2) (MeV)
1.97 1.32 �4.018 �5.865 0.0772 �2.224575
1.80 1.32 �3.206 �4.673 0.1064 �2.224575
1.80 1.09 �3.357 �4.868 0.0986 �2.224575
1.60 1.06 �2.532 �3.625 0.1413 �2.224575
1.60 0.86 �2.648 �3.776 0.1320 �2.224575
1.40 0.93 �1.873 �2.600 0.2005 �2.224575
1.40 0.66 �1.975 �2.737 0.1863 �2.224575

Threshold parameters
LO NLO Exp.

a1S0 (fm) �23.31 �23.79 �23.76
r1S0 (fm) 2.38 2.57 2.75
a3S1 (fm) 5.26 5.23 5.42
r3S1 (fm) 2.05 2.04 1.76

Threshold parameters
LO NLO Exp.

a1P1 (fm3) 3.79 2.89 2.81⇤⇤

r1P1 (fm�1) �12.95 �6.28 �7.20⇤⇤

a3P0 (fm3) �3.14 �2.78 �2.56⇤⇤

r3P0 (fm�1) 6.56 5.36 4.43⇤⇤

a3P1 (fm3) 1.99 1.63 1.54⇤⇤

r3P1 (fm�1) �13.57 �9.71 �8.54⇤⇤

a3P2 (fm3) �0.003 �0.35 �0.29⇤⇤

r3P2 (fm�1) �6764.52 19.03 �0.40⇤⇤

1

(a = 1.97 fm and L = 32)
C1S0 C3S1 b4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

( MeV�2) ( MeV�2)
-4.109 ⇥10�5 -5.953 ⇥10�5 7.315⇥10�2 6.75 ⇥10�2 -0.172 -3.82⇥10�2 9.46⇥10�2 -0.171 0.170 7.59⇥10�2 6.12⇥10�2 1.18⇥10�2 3.93⇥10�3 0.380 -0.380

LO NLO Exp.
EB -2.223544 -2.224574 -2.224575(9)

a (fm) at (fm) C1S0 C3S1 b4 EB

(in 10�5 MeV�2) (in 10�5 MeV�2) (MeV)
1.97 1.32 �4.018 �5.865 0.0772 �2.224575
1.80 1.32 �3.206 �4.673 0.1064 �2.224575
1.80 1.09 �3.357 �4.868 0.0986 �2.224575
1.60 1.06 �2.532 �3.625 0.1413 �2.224575
1.60 0.86 �2.648 �3.776 0.1320 �2.224575
1.40 0.93 �1.873 �2.600 0.2005 �2.224575
1.40 0.66 �1.975 �2.737 0.1863 �2.224575

Threshold parameters
LO NLO Exp.

a1S0 (fm) �23.31 �23.79 �23.76
r1S0 (fm) 2.38 2.57 2.75
a3S1 (fm) 5.26 5.23 5.42
r3S1 (fm) 2.05 2.04 1.76

Threshold parameters
LO NLO Exp.

a1P1 (fm3) 3.79 2.89 2.81⇤⇤

r1P1 (fm�1) �12.95 �6.28 �7.20⇤⇤

a3P0 (fm3) �3.14 �2.78 �2.56⇤⇤

r3P0 (fm�1) 6.56 5.36 4.43⇤⇤

a3P1 (fm3) 1.99 1.63 1.54⇤⇤

r3P1 (fm�1) �13.57 �9.71 �8.54⇤⇤

a3P2 (fm3) �0.003 �0.35 �0.29⇤⇤

r3P2 (fm�1) �6764.52 19.03 �0.40⇤⇤

1

pCM = (30� 60) MeV

pCM = (70� 100) MeV
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•For P-waves:

J. M. Alarcón (HISKP Bonn)

Phase shifts
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•For P-waves:

J. M. Alarcón (HISKP Bonn)

** Obtained from an ERE fit to NPWA

Phase shifts
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(a = 1.97 fm and L = 32)
C1S0 C3S1 b4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

( MeV�2) ( MeV�2)
-4.109 ⇥10�5 -5.953 ⇥10�5 7.315⇥10�2 6.75 ⇥10�2 -0.172 -3.82⇥10�2 9.46⇥10�2 -0.171 0.170 7.59⇥10�2 6.12⇥10�2 1.18⇥10�2 3.93⇥10�3 0.380 -0.380

LO NLO Exp.
EB -2.223544 -2.224574 -2.224575(9)

a (fm) at (fm) C1S0 C3S1 b4 EB

(in 10�5 MeV�2) (in 10�5 MeV�2) (MeV)
1.97 1.32 �4.018 �5.865 0.0772 �2.224575
1.80 1.32 �3.206 �4.673 0.1064 �2.224575
1.80 1.09 �3.357 �4.868 0.0986 �2.224575
1.60 1.06 �2.532 �3.625 0.1413 �2.224575
1.60 0.86 �2.648 �3.776 0.1320 �2.224575
1.40 0.93 �1.873 �2.600 0.2005 �2.224575
1.40 0.66 �1.975 �2.737 0.1863 �2.224575

Threshold parameters
LO NLO Exp.

a1S0 (fm) �23.31 �23.79 �23.76
r1S0 (fm) 2.38 2.57 2.75
a3S1 (fm) 5.26 5.23 5.42
r3S1 (fm) 2.05 2.04 1.76

Threshold parameters
LO NLO Exp.

a1P1 (fm3) 3.79 2.89 2.81⇤⇤

r1P1 (fm�1) �12.95 �6.28 �7.20⇤⇤

a3P0 (fm3) �3.14 �2.78 �2.56⇤⇤

r3P0 (fm�1) 6.56 5.36 4.43⇤⇤

a3P1 (fm3) 1.99 1.63 1.54⇤⇤

r3P1 (fm�1) �13.57 �9.71 �8.54⇤⇤

a3P2 (fm3) �0.003 �0.33 �0.29⇤⇤

r3P2 (fm�1) �1823 16.78 �3.34⇤⇤

1



•For P-waves:

J. M. Alarcón (HISKP Bonn)

•Convergent pattern in the description of the observables.

** Obtained from an ERE fit to NPWA

Phase shifts
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(a = 1.97 fm and L = 32)
C1S0 C3S1 b4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

( MeV�2) ( MeV�2)
-4.109 ⇥10�5 -5.953 ⇥10�5 7.315⇥10�2 6.75 ⇥10�2 -0.172 -3.82⇥10�2 9.46⇥10�2 -0.171 0.170 7.59⇥10�2 6.12⇥10�2 1.18⇥10�2 3.93⇥10�3 0.380 -0.380

LO NLO Exp.
EB -2.223544 -2.224574 -2.224575(9)

a (fm) at (fm) C1S0 C3S1 b4 EB

(in 10�5 MeV�2) (in 10�5 MeV�2) (MeV)
1.97 1.32 �4.018 �5.865 0.0772 �2.224575
1.80 1.32 �3.206 �4.673 0.1064 �2.224575
1.80 1.09 �3.357 �4.868 0.0986 �2.224575
1.60 1.06 �2.532 �3.625 0.1413 �2.224575
1.60 0.86 �2.648 �3.776 0.1320 �2.224575
1.40 0.93 �1.873 �2.600 0.2005 �2.224575
1.40 0.66 �1.975 �2.737 0.1863 �2.224575

Threshold parameters
LO NLO Exp.

a1S0 (fm) �23.31 �23.79 �23.76
r1S0 (fm) 2.38 2.57 2.75
a3S1 (fm) 5.26 5.23 5.42
r3S1 (fm) 2.05 2.04 1.76

Threshold parameters
LO NLO Exp.

a1P1 (fm3) 3.79 2.89 2.81⇤⇤

r1P1 (fm�1) �12.95 �6.28 �7.20⇤⇤

a3P0 (fm3) �3.14 �2.78 �2.56⇤⇤

r3P0 (fm�1) 6.56 5.36 4.43⇤⇤

a3P1 (fm3) 1.99 1.63 1.54⇤⇤

r3P1 (fm�1) �13.57 �9.71 �8.54⇤⇤

a3P2 (fm3) �0.003 �0.33 �0.29⇤⇤

r3P2 (fm�1) �1823 16.78 �3.34⇤⇤

1



•For P-waves:

J. M. Alarcón (HISKP Bonn)

•Convergent pattern in the description of the observables.

** Obtained from an ERE fit to NPWA

Phase shifts

Fulfils the expectations of an EFT approach
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(a = 1.97 fm and L = 32)
C1S0 C3S1 b4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

( MeV�2) ( MeV�2)
-4.109 ⇥10�5 -5.953 ⇥10�5 7.315⇥10�2 6.75 ⇥10�2 -0.172 -3.82⇥10�2 9.46⇥10�2 -0.171 0.170 7.59⇥10�2 6.12⇥10�2 1.18⇥10�2 3.93⇥10�3 0.380 -0.380

LO NLO Exp.
EB -2.223544 -2.224574 -2.224575(9)

a (fm) at (fm) C1S0 C3S1 b4 EB

(in 10�5 MeV�2) (in 10�5 MeV�2) (MeV)
1.97 1.32 �4.018 �5.865 0.0772 �2.224575
1.80 1.32 �3.206 �4.673 0.1064 �2.224575
1.80 1.09 �3.357 �4.868 0.0986 �2.224575
1.60 1.06 �2.532 �3.625 0.1413 �2.224575
1.60 0.86 �2.648 �3.776 0.1320 �2.224575
1.40 0.93 �1.873 �2.600 0.2005 �2.224575
1.40 0.66 �1.975 �2.737 0.1863 �2.224575

Threshold parameters
LO NLO Exp.

a1S0 (fm) �23.31 �23.79 �23.76
r1S0 (fm) 2.38 2.57 2.75
a3S1 (fm) 5.26 5.23 5.42
r3S1 (fm) 2.05 2.04 1.76

Threshold parameters
LO NLO Exp.

a1P1 (fm3) 3.79 2.89 2.81⇤⇤

r1P1 (fm�1) �12.95 �6.28 �7.20⇤⇤

a3P0 (fm3) �3.14 �2.78 �2.56⇤⇤

r3P0 (fm�1) 6.56 5.36 4.43⇤⇤

a3P1 (fm3) 1.99 1.63 1.54⇤⇤

r3P1 (fm�1) �13.57 �9.71 �8.54⇤⇤

a3P2 (fm3) �0.003 �0.33 �0.29⇤⇤

r3P2 (fm�1) �1823 16.78 �3.34⇤⇤
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•Radial Transfer Matrix formalism + auxiliary complex potential. 
[Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]      

•We work with Hamiltonian projected into a channel with specific 
quantum numbers.
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Radial Transfer Matrix
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ρ ρ

Figure 1. (Color online) Two dimensional schematic picture for grouping
the mesh points. The lattice spacing is denoted by a.

for coupled S= 1 channels. Note that for coupled channels there are
two independent components and the orbital angular momentum L
in Eq. (3) becomes a 2× 2 diagonal matrix with diagonal elements
L= J±1. In the continuum, the phase shifts and mixing angles can
be obtained by solving Eqs. (4) and (5) with appropriate boundary
conditions.
Let us now consider Eq. (1) on the lattice with PBC. Since ro-

tational symmetry is broken by the lattice discretization itself as
well as the PBC, the resulting energy eigenstates belong to the ir-
reducible representations (irreps) A1, A2, E , T1 and T2 of the cubic
group SO(3,Z) instead of that of the full SO(3) rotational group
[5, 22, 23].
The violation of rotational symmetry complicates the identifica-

tion of high angular momentum states as well as the extraction of
scattering parameters. Following Ref. [5], we impose a hard spher-
ical wall with radius RW , given by

V →V +Λθ (r−RW ), (6)

in order to remove the effects of periodic copies due to PBC and
the associated rotational symmetry breaking effects. Here, θ is the
Heaviside step function and Λ is a large positive number.
Angular momentum decomposition.− Let |⃗r⟩ ⊗ |Sz⟩ denote the

two-body quantum state with separation vector r⃗ and z-component
of total intrinsic spin Sz. We define radial coordinates on the lat-
tice by grouping together lattice mesh points with the same radial
distance ρ as shown in Fig. 1. We then project onto states which
correspond to total angular states J,Jz in the continuum limit. For
this projection we use spherical harmonicsYL,Lz with orbital angular
momentum L,Lz and Clebsch-Gordan coefficientsCJ,JzL,Lz,S,Sz ,

|ρ⟩J,JzL = ∑
r⃗,Lz,Sz

CJ,JzL,Lz,S,SzYL,Lz(r̂)δρ ,|⃗r| |⃗r⟩⊗ |Sz⟩. (7)

On the lattice the states |ρ⟩J,JzL form a complete but non-orthonormal
basis. In order to deal with the non-orthonormality, we calculate the
norm matrix for these states and then solve the generalized eigen-
value equation to determine eigenstates of the lattice Hamiltonian.
The appearance of non-zero matrix elements mixing together dif-

ferent total angular momenta J and J′ are a sign of rotational sym-
metry breaking. This mixture can only happen between SO(3,Z)
irreps of the same type. For higher angular momentum states this
unphysical mixture is inevitable, resulting in a number of non-zero

Table I. Energy levels calculated with (w/) and without (w/o) J-mixing ma-
trix elements. ∆ denotes the energy difference. Units are MeV.

Even parity Odd parity
state g w/ w/o ∆ state g w/ w/o ∆
13S(D)1 T1 0.037 0.038 0.001 13P1 T1 0.917 0.918 0.001
13D2 E 2.764 2.766 0.002 13P(F)2 E 1.795 1.796 0.001
13D(G)3 T1 3.347 3.351 0.004 13P0 A1 3.048 3.053 0.005
13G4 A1 6.562 6.567 0.005 13F3 A2 4.616 4.620 0.004
13G4 T1 6.624 6.637 0.013 13F(H)4 A1 4.998 5.003 0.005

mixing angles when we deal with a scattering problem. As these
mixtures are purely unphysical artifacts, it would actually be prefer-
able to remove them from the final results. For this reason, we sim-
ply drop all the unphysical couplings between channels with differ-
ent total angular momenta.
In order to study the effect of this projection to a single value of J,

we calculate the energy eigenvalues for our benchmark interacting
system at a lattice spacing a= 100MeV−1. The spherical wall is set
to RW = 10.02a. In Table I we show the lowest few energy levels.
The columns denoted by “w/” and “w/o” represent the results with
and without these J-mixingmatrix elements, respectively. Their dif-
ferences are denoted by “∆”. Clearly the differences are numerically
very small.
Auxiliary potential.−We first show the lattice method for the un-

coupled S= 1 channels. Suppose that the interactionV is negligible
beyond some radius RI . We now introduce another distance param-
eter RO lying in between RI and RW . Then the radial space can be
divided into three regions, as shown in Fig. 2. The effective poten-
tial corresponding to Eq. (4) is confined in region I with r ≤ RI and
the radial wave functions in region II with RI ≤ r ≤ RO are linear
combinations of spherical Bessel functions. So we can solve the
generalized eigenvalue equation and determine the phase shifts with
the spherical hard wall constraint. Nevertheless, with this method
we can only obtain phase shifts at certain discrete energy eigenval-
ues. In particular, we need a very large spherical box size to obtain
the information at low energies. In order to study the whole en-
ergy region of interest, we add a Gaussian auxiliary potential to the
Hamiltonian in region III with RO ≤ r ≤ RW ,

Vaux(r)≡V0 exp
(

−(r−RW )2/a2
)

, RO ≤ r ≤ RW , (8)

where V0 is a constant and a is the lattice spacing. This potential
vanishes in regions I and II, thus does not affect the behavior of wave
functions inside the sphere r=RO. However, the energy eigenvalues
can be shifted continuously with different values of V0. In Fig. 2 we
show the effective potential with V0 =−25 MeV.
In order to extract phase shifts in the presence of an auxiliary po-

tential, we express the eigenfunctions in region II as a linear combi-
nation of the spherical Bessel functions h+J (kr) and h

−
J (kr), where

k =
√
2µE is the scattering momentum. Let us denote the wave

function by ψ(r) and write

ψ(r)∼= Ah−J (kr)−Bh+J (kr), RI ≤ r ≤ RO, (9)

where A and B are constants to be determined with least square fit-
ting. Then the resulting coefficients A, B satisfy the simple linear

H(x, y, z) H(⇢)
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Figure 1. (Color online) Two dimensional schematic picture for grouping
the mesh points. The lattice spacing is denoted by a.

for coupled S= 1 channels. Note that for coupled channels there are
two independent components and the orbital angular momentum L
in Eq. (3) becomes a 2× 2 diagonal matrix with diagonal elements
L= J±1. In the continuum, the phase shifts and mixing angles can
be obtained by solving Eqs. (4) and (5) with appropriate boundary
conditions.
Let us now consider Eq. (1) on the lattice with PBC. Since ro-

tational symmetry is broken by the lattice discretization itself as
well as the PBC, the resulting energy eigenstates belong to the ir-
reducible representations (irreps) A1, A2, E , T1 and T2 of the cubic
group SO(3,Z) instead of that of the full SO(3) rotational group
[5, 22, 23].
The violation of rotational symmetry complicates the identifica-

tion of high angular momentum states as well as the extraction of
scattering parameters. Following Ref. [5], we impose a hard spher-
ical wall with radius RW , given by

V →V +Λθ (r−RW ), (6)

in order to remove the effects of periodic copies due to PBC and
the associated rotational symmetry breaking effects. Here, θ is the
Heaviside step function and Λ is a large positive number.
Angular momentum decomposition.− Let |⃗r⟩ ⊗ |Sz⟩ denote the

two-body quantum state with separation vector r⃗ and z-component
of total intrinsic spin Sz. We define radial coordinates on the lat-
tice by grouping together lattice mesh points with the same radial
distance ρ as shown in Fig. 1. We then project onto states which
correspond to total angular states J,Jz in the continuum limit. For
this projection we use spherical harmonicsYL,Lz with orbital angular
momentum L,Lz and Clebsch-Gordan coefficientsCJ,JzL,Lz,S,Sz ,

|ρ⟩J,JzL = ∑
r⃗,Lz,Sz

CJ,JzL,Lz,S,SzYL,Lz(r̂)δρ ,|⃗r| |⃗r⟩⊗ |Sz⟩. (7)

On the lattice the states |ρ⟩J,JzL form a complete but non-orthonormal
basis. In order to deal with the non-orthonormality, we calculate the
norm matrix for these states and then solve the generalized eigen-
value equation to determine eigenstates of the lattice Hamiltonian.
The appearance of non-zero matrix elements mixing together dif-

ferent total angular momenta J and J′ are a sign of rotational sym-
metry breaking. This mixture can only happen between SO(3,Z)
irreps of the same type. For higher angular momentum states this
unphysical mixture is inevitable, resulting in a number of non-zero

Table I. Energy levels calculated with (w/) and without (w/o) J-mixing ma-
trix elements. ∆ denotes the energy difference. Units are MeV.

Even parity Odd parity
state g w/ w/o ∆ state g w/ w/o ∆
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13G4 T1 6.624 6.637 0.013 13F(H)4 A1 4.998 5.003 0.005

mixing angles when we deal with a scattering problem. As these
mixtures are purely unphysical artifacts, it would actually be prefer-
able to remove them from the final results. For this reason, we sim-
ply drop all the unphysical couplings between channels with differ-
ent total angular momenta.
In order to study the effect of this projection to a single value of J,

we calculate the energy eigenvalues for our benchmark interacting
system at a lattice spacing a= 100MeV−1. The spherical wall is set
to RW = 10.02a. In Table I we show the lowest few energy levels.
The columns denoted by “w/” and “w/o” represent the results with
and without these J-mixingmatrix elements, respectively. Their dif-
ferences are denoted by “∆”. Clearly the differences are numerically
very small.
Auxiliary potential.−We first show the lattice method for the un-

coupled S= 1 channels. Suppose that the interactionV is negligible
beyond some radius RI . We now introduce another distance param-
eter RO lying in between RI and RW . Then the radial space can be
divided into three regions, as shown in Fig. 2. The effective poten-
tial corresponding to Eq. (4) is confined in region I with r ≤ RI and
the radial wave functions in region II with RI ≤ r ≤ RO are linear
combinations of spherical Bessel functions. So we can solve the
generalized eigenvalue equation and determine the phase shifts with
the spherical hard wall constraint. Nevertheless, with this method
we can only obtain phase shifts at certain discrete energy eigenval-
ues. In particular, we need a very large spherical box size to obtain
the information at low energies. In order to study the whole en-
ergy region of interest, we add a Gaussian auxiliary potential to the
Hamiltonian in region III with RO ≤ r ≤ RW ,

Vaux(r)≡V0 exp
(

−(r−RW )2/a2
)

, RO ≤ r ≤ RW , (8)

where V0 is a constant and a is the lattice spacing. This potential
vanishes in regions I and II, thus does not affect the behavior of wave
functions inside the sphere r=RO. However, the energy eigenvalues
can be shifted continuously with different values of V0. In Fig. 2 we
show the effective potential with V0 =−25 MeV.
In order to extract phase shifts in the presence of an auxiliary po-

tential, we express the eigenfunctions in region II as a linear combi-
nation of the spherical Bessel functions h+J (kr) and h

−
J (kr), where

k =
√
2µE is the scattering momentum. Let us denote the wave

function by ψ(r) and write

ψ(r)∼= Ah−J (kr)−Bh+J (kr), RI ≤ r ≤ RO, (9)

where A and B are constants to be determined with least square fit-
ting. Then the resulting coefficients A, B satisfy the simple linear
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for coupled S= 1 channels. Note that for coupled channels there are
two independent components and the orbital angular momentum L
in Eq. (3) becomes a 2× 2 diagonal matrix with diagonal elements
L= J±1. In the continuum, the phase shifts and mixing angles can
be obtained by solving Eqs. (4) and (5) with appropriate boundary
conditions.
Let us now consider Eq. (1) on the lattice with PBC. Since ro-

tational symmetry is broken by the lattice discretization itself as
well as the PBC, the resulting energy eigenstates belong to the ir-
reducible representations (irreps) A1, A2, E , T1 and T2 of the cubic
group SO(3,Z) instead of that of the full SO(3) rotational group
[5, 22, 23].
The violation of rotational symmetry complicates the identifica-

tion of high angular momentum states as well as the extraction of
scattering parameters. Following Ref. [5], we impose a hard spher-
ical wall with radius RW , given by

V →V +Λθ (r−RW ), (6)

in order to remove the effects of periodic copies due to PBC and
the associated rotational symmetry breaking effects. Here, θ is the
Heaviside step function and Λ is a large positive number.
Angular momentum decomposition.− Let |⃗r⟩ ⊗ |Sz⟩ denote the

two-body quantum state with separation vector r⃗ and z-component
of total intrinsic spin Sz. We define radial coordinates on the lat-
tice by grouping together lattice mesh points with the same radial
distance ρ as shown in Fig. 1. We then project onto states which
correspond to total angular states J,Jz in the continuum limit. For
this projection we use spherical harmonicsYL,Lz with orbital angular
momentum L,Lz and Clebsch-Gordan coefficientsCJ,JzL,Lz,S,Sz ,

|ρ⟩J,JzL = ∑
r⃗,Lz,Sz

CJ,JzL,Lz,S,SzYL,Lz(r̂)δρ ,|⃗r| |⃗r⟩⊗ |Sz⟩. (7)

On the lattice the states |ρ⟩J,JzL form a complete but non-orthonormal
basis. In order to deal with the non-orthonormality, we calculate the
norm matrix for these states and then solve the generalized eigen-
value equation to determine eigenstates of the lattice Hamiltonian.
The appearance of non-zero matrix elements mixing together dif-

ferent total angular momenta J and J′ are a sign of rotational sym-
metry breaking. This mixture can only happen between SO(3,Z)
irreps of the same type. For higher angular momentum states this
unphysical mixture is inevitable, resulting in a number of non-zero

Table I. Energy levels calculated with (w/) and without (w/o) J-mixing ma-
trix elements. ∆ denotes the energy difference. Units are MeV.

Even parity Odd parity
state g w/ w/o ∆ state g w/ w/o ∆
13S(D)1 T1 0.037 0.038 0.001 13P1 T1 0.917 0.918 0.001
13D2 E 2.764 2.766 0.002 13P(F)2 E 1.795 1.796 0.001
13D(G)3 T1 3.347 3.351 0.004 13P0 A1 3.048 3.053 0.005
13G4 A1 6.562 6.567 0.005 13F3 A2 4.616 4.620 0.004
13G4 T1 6.624 6.637 0.013 13F(H)4 A1 4.998 5.003 0.005

mixing angles when we deal with a scattering problem. As these
mixtures are purely unphysical artifacts, it would actually be prefer-
able to remove them from the final results. For this reason, we sim-
ply drop all the unphysical couplings between channels with differ-
ent total angular momenta.
In order to study the effect of this projection to a single value of J,

we calculate the energy eigenvalues for our benchmark interacting
system at a lattice spacing a= 100MeV−1. The spherical wall is set
to RW = 10.02a. In Table I we show the lowest few energy levels.
The columns denoted by “w/” and “w/o” represent the results with
and without these J-mixingmatrix elements, respectively. Their dif-
ferences are denoted by “∆”. Clearly the differences are numerically
very small.
Auxiliary potential.−We first show the lattice method for the un-

coupled S= 1 channels. Suppose that the interactionV is negligible
beyond some radius RI . We now introduce another distance param-
eter RO lying in between RI and RW . Then the radial space can be
divided into three regions, as shown in Fig. 2. The effective poten-
tial corresponding to Eq. (4) is confined in region I with r ≤ RI and
the radial wave functions in region II with RI ≤ r ≤ RO are linear
combinations of spherical Bessel functions. So we can solve the
generalized eigenvalue equation and determine the phase shifts with
the spherical hard wall constraint. Nevertheless, with this method
we can only obtain phase shifts at certain discrete energy eigenval-
ues. In particular, we need a very large spherical box size to obtain
the information at low energies. In order to study the whole en-
ergy region of interest, we add a Gaussian auxiliary potential to the
Hamiltonian in region III with RO ≤ r ≤ RW ,

Vaux(r)≡V0 exp
(

−(r−RW )2/a2
)

, RO ≤ r ≤ RW , (8)

where V0 is a constant and a is the lattice spacing. This potential
vanishes in regions I and II, thus does not affect the behavior of wave
functions inside the sphere r=RO. However, the energy eigenvalues
can be shifted continuously with different values of V0. In Fig. 2 we
show the effective potential with V0 =−25 MeV.
In order to extract phase shifts in the presence of an auxiliary po-

tential, we express the eigenfunctions in region II as a linear combi-
nation of the spherical Bessel functions h+J (kr) and h

−
J (kr), where

k =
√
2µE is the scattering momentum. Let us denote the wave

function by ψ(r) and write
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where A and B are constants to be determined with least square fit-
ting. Then the resulting coefficients A, B satisfy the simple linear
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for coupled S= 1 channels. Note that for coupled channels there are
two independent components and the orbital angular momentum L
in Eq. (3) becomes a 2× 2 diagonal matrix with diagonal elements
L= J±1. In the continuum, the phase shifts and mixing angles can
be obtained by solving Eqs. (4) and (5) with appropriate boundary
conditions.
Let us now consider Eq. (1) on the lattice with PBC. Since ro-

tational symmetry is broken by the lattice discretization itself as
well as the PBC, the resulting energy eigenstates belong to the ir-
reducible representations (irreps) A1, A2, E , T1 and T2 of the cubic
group SO(3,Z) instead of that of the full SO(3) rotational group
[5, 22, 23].
The violation of rotational symmetry complicates the identifica-

tion of high angular momentum states as well as the extraction of
scattering parameters. Following Ref. [5], we impose a hard spher-
ical wall with radius RW , given by

V →V +Λθ (r−RW ), (6)

in order to remove the effects of periodic copies due to PBC and
the associated rotational symmetry breaking effects. Here, θ is the
Heaviside step function and Λ is a large positive number.
Angular momentum decomposition.− Let |⃗r⟩ ⊗ |Sz⟩ denote the

two-body quantum state with separation vector r⃗ and z-component
of total intrinsic spin Sz. We define radial coordinates on the lat-
tice by grouping together lattice mesh points with the same radial
distance ρ as shown in Fig. 1. We then project onto states which
correspond to total angular states J,Jz in the continuum limit. For
this projection we use spherical harmonicsYL,Lz with orbital angular
momentum L,Lz and Clebsch-Gordan coefficientsCJ,JzL,Lz,S,Sz ,

|ρ⟩J,JzL = ∑
r⃗,Lz,Sz

CJ,JzL,Lz,S,SzYL,Lz(r̂)δρ ,|⃗r| |⃗r⟩⊗ |Sz⟩. (7)

On the lattice the states |ρ⟩J,JzL form a complete but non-orthonormal
basis. In order to deal with the non-orthonormality, we calculate the
norm matrix for these states and then solve the generalized eigen-
value equation to determine eigenstates of the lattice Hamiltonian.
The appearance of non-zero matrix elements mixing together dif-

ferent total angular momenta J and J′ are a sign of rotational sym-
metry breaking. This mixture can only happen between SO(3,Z)
irreps of the same type. For higher angular momentum states this
unphysical mixture is inevitable, resulting in a number of non-zero

Table I. Energy levels calculated with (w/) and without (w/o) J-mixing ma-
trix elements. ∆ denotes the energy difference. Units are MeV.

Even parity Odd parity
state g w/ w/o ∆ state g w/ w/o ∆
13S(D)1 T1 0.037 0.038 0.001 13P1 T1 0.917 0.918 0.001
13D2 E 2.764 2.766 0.002 13P(F)2 E 1.795 1.796 0.001
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13G4 A1 6.562 6.567 0.005 13F3 A2 4.616 4.620 0.004
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mixing angles when we deal with a scattering problem. As these
mixtures are purely unphysical artifacts, it would actually be prefer-
able to remove them from the final results. For this reason, we sim-
ply drop all the unphysical couplings between channels with differ-
ent total angular momenta.
In order to study the effect of this projection to a single value of J,

we calculate the energy eigenvalues for our benchmark interacting
system at a lattice spacing a= 100MeV−1. The spherical wall is set
to RW = 10.02a. In Table I we show the lowest few energy levels.
The columns denoted by “w/” and “w/o” represent the results with
and without these J-mixingmatrix elements, respectively. Their dif-
ferences are denoted by “∆”. Clearly the differences are numerically
very small.
Auxiliary potential.−We first show the lattice method for the un-

coupled S= 1 channels. Suppose that the interactionV is negligible
beyond some radius RI . We now introduce another distance param-
eter RO lying in between RI and RW . Then the radial space can be
divided into three regions, as shown in Fig. 2. The effective poten-
tial corresponding to Eq. (4) is confined in region I with r ≤ RI and
the radial wave functions in region II with RI ≤ r ≤ RO are linear
combinations of spherical Bessel functions. So we can solve the
generalized eigenvalue equation and determine the phase shifts with
the spherical hard wall constraint. Nevertheless, with this method
we can only obtain phase shifts at certain discrete energy eigenval-
ues. In particular, we need a very large spherical box size to obtain
the information at low energies. In order to study the whole en-
ergy region of interest, we add a Gaussian auxiliary potential to the
Hamiltonian in region III with RO ≤ r ≤ RW ,

Vaux(r)≡V0 exp
(

−(r−RW )2/a2
)

, RO ≤ r ≤ RW , (8)

where V0 is a constant and a is the lattice spacing. This potential
vanishes in regions I and II, thus does not affect the behavior of wave
functions inside the sphere r=RO. However, the energy eigenvalues
can be shifted continuously with different values of V0. In Fig. 2 we
show the effective potential with V0 =−25 MeV.
In order to extract phase shifts in the presence of an auxiliary po-

tential, we express the eigenfunctions in region II as a linear combi-
nation of the spherical Bessel functions h+J (kr) and h

−
J (kr), where

k =
√
2µE is the scattering momentum. Let us denote the wave

function by ψ(r) and write

ψ(r)∼= Ah−J (kr)−Bh+J (kr), RI ≤ r ≤ RO, (9)

where A and B are constants to be determined with least square fit-
ting. Then the resulting coefficients A, B satisfy the simple linear
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for coupled S= 1 channels. Note that for coupled channels there are
two independent components and the orbital angular momentum L
in Eq. (3) becomes a 2× 2 diagonal matrix with diagonal elements
L= J±1. In the continuum, the phase shifts and mixing angles can
be obtained by solving Eqs. (4) and (5) with appropriate boundary
conditions.
Let us now consider Eq. (1) on the lattice with PBC. Since ro-

tational symmetry is broken by the lattice discretization itself as
well as the PBC, the resulting energy eigenstates belong to the ir-
reducible representations (irreps) A1, A2, E , T1 and T2 of the cubic
group SO(3,Z) instead of that of the full SO(3) rotational group
[5, 22, 23].
The violation of rotational symmetry complicates the identifica-

tion of high angular momentum states as well as the extraction of
scattering parameters. Following Ref. [5], we impose a hard spher-
ical wall with radius RW , given by

V →V +Λθ (r−RW ), (6)

in order to remove the effects of periodic copies due to PBC and
the associated rotational symmetry breaking effects. Here, θ is the
Heaviside step function and Λ is a large positive number.
Angular momentum decomposition.− Let |⃗r⟩ ⊗ |Sz⟩ denote the

two-body quantum state with separation vector r⃗ and z-component
of total intrinsic spin Sz. We define radial coordinates on the lat-
tice by grouping together lattice mesh points with the same radial
distance ρ as shown in Fig. 1. We then project onto states which
correspond to total angular states J,Jz in the continuum limit. For
this projection we use spherical harmonicsYL,Lz with orbital angular
momentum L,Lz and Clebsch-Gordan coefficientsCJ,JzL,Lz,S,Sz ,

|ρ⟩J,JzL = ∑
r⃗,Lz,Sz

CJ,JzL,Lz,S,SzYL,Lz(r̂)δρ ,|⃗r| |⃗r⟩⊗ |Sz⟩. (7)

On the lattice the states |ρ⟩J,JzL form a complete but non-orthonormal
basis. In order to deal with the non-orthonormality, we calculate the
norm matrix for these states and then solve the generalized eigen-
value equation to determine eigenstates of the lattice Hamiltonian.
The appearance of non-zero matrix elements mixing together dif-

ferent total angular momenta J and J′ are a sign of rotational sym-
metry breaking. This mixture can only happen between SO(3,Z)
irreps of the same type. For higher angular momentum states this
unphysical mixture is inevitable, resulting in a number of non-zero

Table I. Energy levels calculated with (w/) and without (w/o) J-mixing ma-
trix elements. ∆ denotes the energy difference. Units are MeV.

Even parity Odd parity
state g w/ w/o ∆ state g w/ w/o ∆
13S(D)1 T1 0.037 0.038 0.001 13P1 T1 0.917 0.918 0.001
13D2 E 2.764 2.766 0.002 13P(F)2 E 1.795 1.796 0.001
13D(G)3 T1 3.347 3.351 0.004 13P0 A1 3.048 3.053 0.005
13G4 A1 6.562 6.567 0.005 13F3 A2 4.616 4.620 0.004
13G4 T1 6.624 6.637 0.013 13F(H)4 A1 4.998 5.003 0.005

mixing angles when we deal with a scattering problem. As these
mixtures are purely unphysical artifacts, it would actually be prefer-
able to remove them from the final results. For this reason, we sim-
ply drop all the unphysical couplings between channels with differ-
ent total angular momenta.
In order to study the effect of this projection to a single value of J,

we calculate the energy eigenvalues for our benchmark interacting
system at a lattice spacing a= 100MeV−1. The spherical wall is set
to RW = 10.02a. In Table I we show the lowest few energy levels.
The columns denoted by “w/” and “w/o” represent the results with
and without these J-mixingmatrix elements, respectively. Their dif-
ferences are denoted by “∆”. Clearly the differences are numerically
very small.
Auxiliary potential.−We first show the lattice method for the un-

coupled S= 1 channels. Suppose that the interactionV is negligible
beyond some radius RI . We now introduce another distance param-
eter RO lying in between RI and RW . Then the radial space can be
divided into three regions, as shown in Fig. 2. The effective poten-
tial corresponding to Eq. (4) is confined in region I with r ≤ RI and
the radial wave functions in region II with RI ≤ r ≤ RO are linear
combinations of spherical Bessel functions. So we can solve the
generalized eigenvalue equation and determine the phase shifts with
the spherical hard wall constraint. Nevertheless, with this method
we can only obtain phase shifts at certain discrete energy eigenval-
ues. In particular, we need a very large spherical box size to obtain
the information at low energies. In order to study the whole en-
ergy region of interest, we add a Gaussian auxiliary potential to the
Hamiltonian in region III with RO ≤ r ≤ RW ,

Vaux(r)≡V0 exp
(

−(r−RW )2/a2
)

, RO ≤ r ≤ RW , (8)

where V0 is a constant and a is the lattice spacing. This potential
vanishes in regions I and II, thus does not affect the behavior of wave
functions inside the sphere r=RO. However, the energy eigenvalues
can be shifted continuously with different values of V0. In Fig. 2 we
show the effective potential with V0 =−25 MeV.
In order to extract phase shifts in the presence of an auxiliary po-

tential, we express the eigenfunctions in region II as a linear combi-
nation of the spherical Bessel functions h+J (kr) and h

−
J (kr), where

k =
√
2µE is the scattering momentum. Let us denote the wave

function by ψ(r) and write

ψ(r)∼= Ah−J (kr)−Bh+J (kr), RI ≤ r ≤ RO, (9)

where A and B are constants to be determined with least square fit-
ting. Then the resulting coefficients A, B satisfy the simple linear
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for coupled S= 1 channels. Note that for coupled channels there are
two independent components and the orbital angular momentum L
in Eq. (3) becomes a 2× 2 diagonal matrix with diagonal elements
L= J±1. In the continuum, the phase shifts and mixing angles can
be obtained by solving Eqs. (4) and (5) with appropriate boundary
conditions.
Let us now consider Eq. (1) on the lattice with PBC. Since ro-

tational symmetry is broken by the lattice discretization itself as
well as the PBC, the resulting energy eigenstates belong to the ir-
reducible representations (irreps) A1, A2, E , T1 and T2 of the cubic
group SO(3,Z) instead of that of the full SO(3) rotational group
[5, 22, 23].
The violation of rotational symmetry complicates the identifica-

tion of high angular momentum states as well as the extraction of
scattering parameters. Following Ref. [5], we impose a hard spher-
ical wall with radius RW , given by

V →V +Λθ (r−RW ), (6)

in order to remove the effects of periodic copies due to PBC and
the associated rotational symmetry breaking effects. Here, θ is the
Heaviside step function and Λ is a large positive number.
Angular momentum decomposition.− Let |⃗r⟩ ⊗ |Sz⟩ denote the

two-body quantum state with separation vector r⃗ and z-component
of total intrinsic spin Sz. We define radial coordinates on the lat-
tice by grouping together lattice mesh points with the same radial
distance ρ as shown in Fig. 1. We then project onto states which
correspond to total angular states J,Jz in the continuum limit. For
this projection we use spherical harmonicsYL,Lz with orbital angular
momentum L,Lz and Clebsch-Gordan coefficientsCJ,JzL,Lz,S,Sz ,

|ρ⟩J,JzL = ∑
r⃗,Lz,Sz

CJ,JzL,Lz,S,SzYL,Lz(r̂)δρ ,|⃗r| |⃗r⟩⊗ |Sz⟩. (7)

On the lattice the states |ρ⟩J,JzL form a complete but non-orthonormal
basis. In order to deal with the non-orthonormality, we calculate the
norm matrix for these states and then solve the generalized eigen-
value equation to determine eigenstates of the lattice Hamiltonian.
The appearance of non-zero matrix elements mixing together dif-

ferent total angular momenta J and J′ are a sign of rotational sym-
metry breaking. This mixture can only happen between SO(3,Z)
irreps of the same type. For higher angular momentum states this
unphysical mixture is inevitable, resulting in a number of non-zero

Table I. Energy levels calculated with (w/) and without (w/o) J-mixing ma-
trix elements. ∆ denotes the energy difference. Units are MeV.

Even parity Odd parity
state g w/ w/o ∆ state g w/ w/o ∆
13S(D)1 T1 0.037 0.038 0.001 13P1 T1 0.917 0.918 0.001
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mixing angles when we deal with a scattering problem. As these
mixtures are purely unphysical artifacts, it would actually be prefer-
able to remove them from the final results. For this reason, we sim-
ply drop all the unphysical couplings between channels with differ-
ent total angular momenta.
In order to study the effect of this projection to a single value of J,

we calculate the energy eigenvalues for our benchmark interacting
system at a lattice spacing a= 100MeV−1. The spherical wall is set
to RW = 10.02a. In Table I we show the lowest few energy levels.
The columns denoted by “w/” and “w/o” represent the results with
and without these J-mixingmatrix elements, respectively. Their dif-
ferences are denoted by “∆”. Clearly the differences are numerically
very small.
Auxiliary potential.−We first show the lattice method for the un-

coupled S= 1 channels. Suppose that the interactionV is negligible
beyond some radius RI . We now introduce another distance param-
eter RO lying in between RI and RW . Then the radial space can be
divided into three regions, as shown in Fig. 2. The effective poten-
tial corresponding to Eq. (4) is confined in region I with r ≤ RI and
the radial wave functions in region II with RI ≤ r ≤ RO are linear
combinations of spherical Bessel functions. So we can solve the
generalized eigenvalue equation and determine the phase shifts with
the spherical hard wall constraint. Nevertheless, with this method
we can only obtain phase shifts at certain discrete energy eigenval-
ues. In particular, we need a very large spherical box size to obtain
the information at low energies. In order to study the whole en-
ergy region of interest, we add a Gaussian auxiliary potential to the
Hamiltonian in region III with RO ≤ r ≤ RW ,

Vaux(r)≡V0 exp
(

−(r−RW )2/a2
)

, RO ≤ r ≤ RW , (8)

where V0 is a constant and a is the lattice spacing. This potential
vanishes in regions I and II, thus does not affect the behavior of wave
functions inside the sphere r=RO. However, the energy eigenvalues
can be shifted continuously with different values of V0. In Fig. 2 we
show the effective potential with V0 =−25 MeV.
In order to extract phase shifts in the presence of an auxiliary po-

tential, we express the eigenfunctions in region II as a linear combi-
nation of the spherical Bessel functions h+J (kr) and h

−
J (kr), where

k =
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2µE is the scattering momentum. Let us denote the wave

function by ψ(r) and write
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Fig. 7. Coupled partial waves and mixing angle for J = 1.
The pairs of points connected by dotted lines indicate pairs of
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εJ(kII)=
AII

J−1

AII
J+1

sin
(

∆II
J−1−∆I

J−1

)

+ O(ε3
J ). (89)

at k = kII.

10 Results for S = 1 coupled channels

In fig. 7 we show lattice and continuum results for 3S1,
3D1 partial waves and J = 1 mixing angle ε1. The 3P2,
3F2 partial waves and mixing angle ε2 are shown in fig. 8.
The 3D3, 3G3 partial waves and mixing angle ε3 are shown

Fig. 9. Coupled partial waves and mixing angle for J = 3.

Fig. 10. Coupled partial waves and mixing angle for J = 4.

in fig. 9. The 3F4, 3H4 partial waves and mixing angle ε4

are shown in fig. 10. As before we use Rwall = 10 + ϵ,
9+ϵ, and 8+ϵ lattice units. The pairs of points connected
by dotted lines indicate pairs of solutions at k = kI and
k = kII. The partial-wave ratios
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(90)

are determined by computing the inner product of the
standing wave near the spherical wall with spherical har-
monics.

The lattice results in the coupled channels are some-
what less accurate than the S = 0 results and uncoupled
S = 1 results. However, they are still within 20% of the

[Borasoy et al., EPJ A 34 (2007)]  
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are determined by computing the inner product of the
standing wave near the spherical wall with spherical har-
monics.

The lattice results in the coupled channels are some-
what less accurate than the S = 0 results and uncoupled
S = 1 results. However, they are still within 20% of the
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Figure 1. (Color online) Two dimensional schematic picture for grouping
the mesh points. The lattice spacing is denoted by a.

for coupled S= 1 channels. Note that for coupled channels there are
two independent components and the orbital angular momentum L
in Eq. (3) becomes a 2× 2 diagonal matrix with diagonal elements
L= J±1. In the continuum, the phase shifts and mixing angles can
be obtained by solving Eqs. (4) and (5) with appropriate boundary
conditions.
Let us now consider Eq. (1) on the lattice with PBC. Since ro-

tational symmetry is broken by the lattice discretization itself as
well as the PBC, the resulting energy eigenstates belong to the ir-
reducible representations (irreps) A1, A2, E , T1 and T2 of the cubic
group SO(3,Z) instead of that of the full SO(3) rotational group
[5, 22, 23].
The violation of rotational symmetry complicates the identifica-

tion of high angular momentum states as well as the extraction of
scattering parameters. Following Ref. [5], we impose a hard spher-
ical wall with radius RW , given by

V →V +Λθ (r−RW ), (6)

in order to remove the effects of periodic copies due to PBC and
the associated rotational symmetry breaking effects. Here, θ is the
Heaviside step function and Λ is a large positive number.
Angular momentum decomposition.− Let |⃗r⟩ ⊗ |Sz⟩ denote the

two-body quantum state with separation vector r⃗ and z-component
of total intrinsic spin Sz. We define radial coordinates on the lat-
tice by grouping together lattice mesh points with the same radial
distance ρ as shown in Fig. 1. We then project onto states which
correspond to total angular states J,Jz in the continuum limit. For
this projection we use spherical harmonicsYL,Lz with orbital angular
momentum L,Lz and Clebsch-Gordan coefficientsCJ,JzL,Lz,S,Sz ,

|ρ⟩J,JzL = ∑
r⃗,Lz,Sz

CJ,JzL,Lz,S,SzYL,Lz(r̂)δρ ,|⃗r| |⃗r⟩⊗ |Sz⟩. (7)

On the lattice the states |ρ⟩J,JzL form a complete but non-orthonormal
basis. In order to deal with the non-orthonormality, we calculate the
norm matrix for these states and then solve the generalized eigen-
value equation to determine eigenstates of the lattice Hamiltonian.
The appearance of non-zero matrix elements mixing together dif-

ferent total angular momenta J and J′ are a sign of rotational sym-
metry breaking. This mixture can only happen between SO(3,Z)
irreps of the same type. For higher angular momentum states this
unphysical mixture is inevitable, resulting in a number of non-zero

Table I. Energy levels calculated with (w/) and without (w/o) J-mixing ma-
trix elements. ∆ denotes the energy difference. Units are MeV.

Even parity Odd parity
state g w/ w/o ∆ state g w/ w/o ∆
13S(D)1 T1 0.037 0.038 0.001 13P1 T1 0.917 0.918 0.001
13D2 E 2.764 2.766 0.002 13P(F)2 E 1.795 1.796 0.001
13D(G)3 T1 3.347 3.351 0.004 13P0 A1 3.048 3.053 0.005
13G4 A1 6.562 6.567 0.005 13F3 A2 4.616 4.620 0.004
13G4 T1 6.624 6.637 0.013 13F(H)4 A1 4.998 5.003 0.005

mixing angles when we deal with a scattering problem. As these
mixtures are purely unphysical artifacts, it would actually be prefer-
able to remove them from the final results. For this reason, we sim-
ply drop all the unphysical couplings between channels with differ-
ent total angular momenta.
In order to study the effect of this projection to a single value of J,

we calculate the energy eigenvalues for our benchmark interacting
system at a lattice spacing a= 100MeV−1. The spherical wall is set
to RW = 10.02a. In Table I we show the lowest few energy levels.
The columns denoted by “w/” and “w/o” represent the results with
and without these J-mixingmatrix elements, respectively. Their dif-
ferences are denoted by “∆”. Clearly the differences are numerically
very small.
Auxiliary potential.−We first show the lattice method for the un-

coupled S= 1 channels. Suppose that the interactionV is negligible
beyond some radius RI . We now introduce another distance param-
eter RO lying in between RI and RW . Then the radial space can be
divided into three regions, as shown in Fig. 2. The effective poten-
tial corresponding to Eq. (4) is confined in region I with r ≤ RI and
the radial wave functions in region II with RI ≤ r ≤ RO are linear
combinations of spherical Bessel functions. So we can solve the
generalized eigenvalue equation and determine the phase shifts with
the spherical hard wall constraint. Nevertheless, with this method
we can only obtain phase shifts at certain discrete energy eigenval-
ues. In particular, we need a very large spherical box size to obtain
the information at low energies. In order to study the whole en-
ergy region of interest, we add a Gaussian auxiliary potential to the
Hamiltonian in region III with RO ≤ r ≤ RW ,

Vaux(r)≡V0 exp
(

−(r−RW )2/a2
)

, RO ≤ r ≤ RW , (8)

where V0 is a constant and a is the lattice spacing. This potential
vanishes in regions I and II, thus does not affect the behavior of wave
functions inside the sphere r=RO. However, the energy eigenvalues
can be shifted continuously with different values of V0. In Fig. 2 we
show the effective potential with V0 =−25 MeV.
In order to extract phase shifts in the presence of an auxiliary po-

tential, we express the eigenfunctions in region II as a linear combi-
nation of the spherical Bessel functions h+J (kr) and h

−
J (kr), where

k =
√
2µE is the scattering momentum. Let us denote the wave

function by ψ(r) and write

ψ(r)∼= Ah−J (kr)−Bh+J (kr), RI ≤ r ≤ RO, (9)

where A and B are constants to be determined with least square fit-
ting. Then the resulting coefficients A, B satisfy the simple linear
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are determined by computing the inner product of the
standing wave near the spherical wall with spherical har-
monics.

The lattice results in the coupled channels are some-
what less accurate than the S = 0 results and uncoupled
S = 1 results. However, they are still within 20% of the
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Figure 3. (Color online) Phase shifts and mixing angles for J ≤ 4 in the S = 1 channel. Full, open and half-open squares denote the results obtained with
auxiliary potential strengthV0 = 0, V0 =−25 MeV andV0 =−20 MeV, respectively. ForV0 =−20 MeV only selected results are shown. Solid lines denote
continuum results.

by introducing real and complex auxiliary potentials in each chan-
nel and found to be in excellent agreement with continuum results.
In this letter we have benchmarked the lattice method with a sim-

ple lattice model with a Gaussian interaction. In a sequel work we
present more details of the lattice method as well as the extension
to more general interactions, including long-range interactions such
as the Coulomb interaction. There are immediate applications of
this method to lattice systems of considerable practical interest in
nuclear, hadronic, and cold atomic physics. One important and ex-
citing application is to improve the analysis of ab initio lattice sim-
ulations of nucleus-nucleus scattering using the adiabatic projection
method [18–21].
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by introducing real and complex auxiliary potentials in each chan-
nel and found to be in excellent agreement with continuum results.
In this letter we have benchmarked the lattice method with a sim-

ple lattice model with a Gaussian interaction. In a sequel work we
present more details of the lattice method as well as the extension
to more general interactions, including long-range interactions such
as the Coulomb interaction. There are immediate applications of
this method to lattice systems of considerable practical interest in
nuclear, hadronic, and cold atomic physics. One important and ex-
citing application is to improve the analysis of ab initio lattice sim-
ulations of nucleus-nucleus scattering using the adiabatic projection
method [18–21].

We are grateful for discussions with Serdar Elhatisari, Dan
Moinard and Evgeny Epelbaum. We acknowledge partial financial
support from the Deutsche Forschungsgemeinschaft (Sino-German
CRC 110), the Helmholtz Association (Contract No. VH-VI-417),
BMBF (Grant No. 05P12PDTEE), the U.S. Department of Energy
(DE-FG02-03ER41260), by the EUHadronPhysics3 project and the
Magnus Ehrnrooth Foundation of the Finnish Society of Sciences
and Letters.

[1] D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).
[2] J. E. Drut and A. N. Nicholson, J. Phys. G 40, 043101 (2013).
[3] J.-W. Chen and D. B. Kaplan, Phys. Rev. Lett. 92, 257002 (2004).
[4] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur.

Phys. J. A 31, 105 (2007).
[5] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur.

Phys. J. A 34, 185 (2007).
[6] M. Lüscher, Comm. Math. Phys. 105, 153 (1986).
[7] V. Bernard, M. Lage, U.-G. Meißner, and A. Rusetsky, JHEP 08, 024

(2008).
[8] T. Luu and M. J. Savage, Phys. Rev. D 83,114508 (2011).
[9] M. Gockeler et al., Phys. Rev. D 86, 094513 (2012) [arXiv:1206.4141

[hep-lat]].
[10] N. Li and C. Liu, Phys. Rev. D 87, 014502 (2013).
[11] R. A. Brice?o, Z. Davoudi, T. Luu and M. J. Savage, Phys. Rev. D 88,

no. 11, 114507 (2013).
[12] T. Luu, M. J. Savage, A. Schwenk, and J. P. Vary, Phys. Rev. C 82,

034003 (2010).
[13] I. Stetcu, J. Rotureau, B. Barrett, and U. Van Kolck, Ann. Phys. 325,

1644 (2010).
[14] B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur.

Phys. J. A 35, 343 (2008).
[15] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A

41, 125 (2009).
[16] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur. Phys. J. A

45, 335 (2010).
[17] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Phys. Rev. Lett.

104, 142501 (2010).
[18] M. Pine, D. Lee and G. Rupak, Eur. Phys. J. A 49, 151 (2013)

[arXiv:1309.2616 [nucl-th]].
[19] S. Elhatisari and D. Lee, Phys. Rev. C 90, no. 6, 064001 (2014)

[arXiv:1407.2784 [nucl-th]].
[20] A. Rokash, M. Pine, S. Elhatisari, D. Lee, E. Epelbaum and H. Krebs,

arXiv:1505.02967 [nucl-th].
[21] S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T. A. L?hde,

T. Luu and U. G. Mei?ner, arXiv:1506.03513 [nucl-th].
[22] R. C. Johnson, Phys. Lett. B 114, 147 (1982).
[23] B.-N. Lu, T. A. Lähde, D. Lee, and U.-G. Meißner, Phys. Rev. D 90,

034507 (2014).
[24] H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev. 105, 302

(1957).

4

Figure 3. (Color online) Phase shifts and mixing angles for J ≤ 4 in the S = 1 channel. Full, open and half-open squares denote the results obtained with
auxiliary potential strengthV0 = 0, V0 =−25 MeV andV0 =−20 MeV, respectively. ForV0 =−20 MeV only selected results are shown. Solid lines denote
continuum results.

by introducing real and complex auxiliary potentials in each chan-
nel and found to be in excellent agreement with continuum results.
In this letter we have benchmarked the lattice method with a sim-

ple lattice model with a Gaussian interaction. In a sequel work we
present more details of the lattice method as well as the extension
to more general interactions, including long-range interactions such
as the Coulomb interaction. There are immediate applications of
this method to lattice systems of considerable practical interest in
nuclear, hadronic, and cold atomic physics. One important and ex-
citing application is to improve the analysis of ab initio lattice sim-
ulations of nucleus-nucleus scattering using the adiabatic projection
method [18–21].
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Summary and Conclusions



Summary and Conclusions
•Neutron-proton scattering on the lattice has made very 
important progress recently.
•Modification of the NN scattering calculation that allows:

•Statistical analysis of the free parameters in the theory.
•Systematic study of cutoff-dependence in the transfer matrix formalism.

                                    Crucial to explore higher energies       
      

•Radial Transfer Matrix formalism + auxiliary complex potential:
•Improvement in the extraction of phase shifts and mixing angles.
•Easy identification of states.

•Ready to include the TPE at NLO and N2LO.
•N3LO calculation is under way.
•Progress relevant for few-body ab initio calculations with NLEFT.

J. M. Alarcón (HISKP Bonn)

Stay tuned!
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Spares



•We calculate the energy levels in the transfer matrix formalism.
•The same formalism used in Monte Carlo simulations.

J. M. Alarcón (HISKP Bonn)

Introduction
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Mixing Angle



•For spin triplet (   ), channels with same total angular    
momentum (   ) can mix. 
•Lowest mixing happens in the the          (  ) and         (   ) waves.

J. M. Alarcón (HISKP Bonn)

Mixing angle

S =

✓
e2i�J�1

cos 2✏J ie2i(�J�1+�J+1)
sin 2✏J

ie2i(�J�1+�J+1)
sin 2✏J e2i�J+1

cos 2✏J

◆

[Borasoy, Epelbaum, Krebs, Lee 
and Meißner, EPJ A 35 (2008)]

352 The European Physical Journal A

Fig. 8. D-wave phase shifts versus center-of-mass momentum
for LO1 and NLO1.

Fig. 9. D-wave phase shifts versus center-of-mass momentum
for LO2 and NLO2.
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Fig. 10. ε1 mixing angle for LO1 and NLO1 on the left, LO2

and NLO2 on the right.

7 Summary and discussion

We have studied nucleon-nucleon scattering on the lattice
at next-to-leading order in the chiral effective field the-
ory at momenta less than or equal to the pion mass.
Throughout our analysis we tested model independence
at fixed lattice spacing by repeating calculations using
two different lattice actions. The first leading-order ac-
tion, LO1, included instantaneous one-pion exchange and
same-site contact interactions. The second leading-order
action, LO2, included instantaneous one-pion exchange
and Gaussian-smeared interactions. We computed next-
to-leading-order corrections for these actions and in each
case found results accurate up to corrections at higher
order. In the second paper of this series we use the LO2

and NLO2 actions to compute the ground state of dilute
neutron matter using Monte Carlo simulations. This is
done using the auxiliary-field transfer matrix method in-
troduced in [13].

Overall we find that the Gaussian-smeared actions LO2

and NLO2 are more accurate than the standard actions
LO1 and NLO1. This can be seen most easily from the size
of the required NLO corrections in table 2. For P -wave
interactions, however, we see from comparing fig. 6 and
fig. 7 that the standard actions LO1 and NLO1 are more
accurate. In future studies it would be useful to try to
find an improved LO action with accurate S-wave phase
shifts and smaller P -wave attraction without inducing sign
problems in Monte Carlo simulations.

The results presented here can be extended to higher
orders in chiral effective field theory. If we continue with
the low cutoff momentum Λ ≈ 2.3mπ, then the NNLO
two-pion exchange potential can be expanded in powers
of q2/(4m2

π) in the same manner as the NLO two-pion
exchange potential. This expansion yields local operators
which are either renormalizations of local operators with
zero or two derivatives, local operators with four deriva-
tives, or local operators with more than four derivatives.
The operators with four derivatives should be treated in
the same manner as local four-derivative operators ap-
pearing at N3LO in the usual chiral power counting.

In our analysis we have ignored small effects that ap-
pear in extraneous channels due to broken rotational in-
variance on the lattice. For example the mixed 3S1-3D1

•One can parametrize the      mixing in 
terms of one mixing angle     , defined as:

•Radial Transfer Matrix formalism + auxiliary 
complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:

1506.05652]      
•Reduces scaling with    :             
•The code runs much faster.
•Better identification of states.

•Improvement in D-waves and mixing angle.

S = 1
J

3S1–
3D1

✏J

` = 0 ` = 2S D

L L3 L2



LECs



J. M. Alarcón (HISKP Bonn)

LECs
Fit 37

(a = 1.97 fm, L = 32, pmax

CM

= 70 MeV)
LEC Best values Thr. param.

LO NLO Exp.
C1S0(10

�5 MeV�2) (�4.109,�3.948) a1S0 (fm)
C3S1(10

�5 MeV�2) (�5.795,�5.953) r1S0 (fm)
b4 (0.07315, 0.08036) a3S1 (fm)

1
2�C (�0.1001981989246, 0.069098012299509) r3S1 (fm)

1
2�C

I

2 (�0.1186509115258,�0.155867706639699) a1P1 (fm3)
�1

2Cq

2 (�0.040401953567687, 0.01260072939741) r1P1 (fm�1)
�1

2CI

2
,q

2 (0.05827200896289, 0.087718222009940) a3P0 (fm3)
�1

2CS

2
,q

2 (�0.1823593021535,�0.155942762178279) r3P0 (fm�1)
�1

2CS

2
,I

2
,q

2 (0.154122107843797, 0.1564530211543) a3P1 (fm3)
1
2C(q·S)2 (�0.007464222898765,�0.08246628305442) r3P1 (fm�1)

1
2CI

2
,(q·S)2 (0.026826212664155, 0.09557831588958) a3P2 (fm3)

� i

2Ci(q⇥S)·k (0.011724357058981, 0.01252865843888) r3P2 (fm�1)
� i

2CI

2
,i(q⇥S)·k (0.003908119019660, 0.004176219479628) a1D2 (fm5)

1
2CSSqq

(0.416621988891837, 0.5407916495280) r1D2 (fm�3)
1
2CI

2
,SSqq

(�0.416621988891837,�0.5407916495280) a3D1 (fm5)
r3D2 (fm�3) 1.61 1.49 4.01⇤⇤

a3D3 (fm5) 2.28 6.19 �0.16⇤⇤

r3D3 (fm�3) 7.07 4.01

Table 1: Best values of the NLO fits in the 12 operator basis.⇤ Fitted value. ⇤⇤ Values extracted from an
ERE fit to the NPWA phases.
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VI2,(q·S)2 =
1

2
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X
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X
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a†,a
S,I (~n)

X
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i
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and the two contact terms breaking the rotational symmetry at O(Q2) are

VSSqq =
1

2
CSSqq :

X

~n

X

S

�S⇢
a†,a
S (~n)�S⇢

a†,a
S (~n) :, (43)

VI2,SSqq =
1

2
CI2,SSqq :

X

~n

X

S,I

�S⇢
a†,a
S,I (~n)�S⇢

a†,a
S,I (~n) : . (44)

In the 12 operator basis, if we fit the LO free parameters together with the NLO ones, one has
to set

�C = 0, (45)

�CI2 = 0. (46)

Also, we take the I = 1 combination of the coe�cients Ci(q⇥S)·k and CI2,i(q⇥S)·k, what means
that both are determined by the I = 1 coe�cient CI=1

i(q⇥S)·k in the following way:

Ci(q⇥S)·k =
3

4
CI=1

i(q⇥S)·k (47)

CI2,i(q⇥S)·k =
1

4
CI=1

i(q⇥S)·k (48)

And, regarding the rotational symmetry breaking operators, VSSqq and VI2,SSqq, we take its
I = 0 combination, which implies

Cssqq = �CI2,ssqq (49)

This means that, with these constrains, this NLO basis introduces new 8 free parameters if the
LO couplings are refitted, or 10 if the LO couplings are kept fixed.

2.1.1 Fits

We start plotting the results for the set of values included in the original code in order to compare
with the fitted values and check the improvement. The labels for this plots will read ”Plot X”,
where X is the number of the plot.
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2 Next-to-Leading Order calculation

For the NLO we have available two di↵erent operator basis (or actions):

1. The old action, with 12 operators, where two of them are corrections to the LO contact
terms.

2. The new action, with 15 operators.

Now we define the basic blocks that we use to write both actions. For each lattice axis,
l = 1, 2, 3, we define l+ and l� as l+ = 2, 3, 1 and l� = 3, 1, 2 respectively. We also use the same
notation for the spin index S = 1, 2, 3 and define S+ = 2, 3, 1 and S� = 3, 1, 2. We write �S with
S = 1, 2, 3 for the spin Pauli matrices, while ⌧I with I = 1, 2, 3 are the isospin Pauli matrices. We
write the nucleon annihilation operators as ai,j with i = 0, 1 for spin-up and spin-down respectively
and j = 0, 1 for isospin-up and isospin-down respectively.

We define

⇢(~n0,~n) =
X

i,j

a†i,j(~n
0)ai,j(~n) (16)

⇢I(~n
0,~n) =

X

i,j,j0

a†i,j0(~n
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⇢S(~n
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X
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For the various local densities we just set the two positions to be the same,

⇢(~n) = ⇢(~n,~n) (20)

⇢I(~n) = ⇢I(~n,~n) (21)

⇢S(~n) = ⇢S(~n,~n) (22)

⇢S,I(~n) = ⇢S,I(~n,~n) (23)

�lf(~n) =
1

4
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�2
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with

~⌫ = ⌫
1

1̂ + ⌫
2

2̂ + ⌫
3

3̂ (32)

We now define the lattice bilinears for the two di↵erent basis:

2.1 12 operator basis (aka old action)

The corrections to the leading-order contact interactions are
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The seven contact interactions with two derivatives are
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Fig. 5. S-wave phase shifts versus center-of-mass momentum
for LO2 and NLO2.

Fig. 6. P -wave phase shifts versus center-of-mass momentum
for LO1 and NLO1.

Rwall = 10+ϵ, 9+ϵ, and 8+ϵ; the second radial excitation
of Rwall = 10 + ϵ, 9 + ϵ, and 8 + ϵ; and so on. The S-wave
phase shifts for LO1 and NLO1 versus the center-of-mass
momentum pCM are shown in fig. 4. We compare these
with the S-wave phase shifts for LO2 and NLO2 in fig. 5.
The NLO1 and NLO2 results are both in good agreement
with partial-wave results from [40]. Systematic errors are
first noticeable at momenta greater than about 80MeV
and are larger for NLO1. In both cases the deviations are
consistent with higher-order effects such as two-nucleon
contact interactions with four derivatives.

The P -wave phase shifts are presented in figs. 6 and 7.
The phase shifts are already not bad for LO1 and are quite
accurate for NLO1. This indicates that at low momenta
only a small correction is needed on top of P -wave in-

Fig. 7. P -wave phase shifts versus center-of-mass momentum
for LO2 and NLO2.

teractions produced by one-pion exchange. In the case of
LO2 we see that the effect of Gaussian smearing, while
useful for S-wave phase shifts, produces an unphysical at-
traction in each P -wave channel that must be cancelled
by the NLO2 corrections. For the NLO2 results the resid-
ual deviations appear consistent with effects produced by
higher-order terms such as four-derivative contact interac-
tions. For 1P1 and 3P0 there is some indication of higher-
derivative effects for pCM near 110MeV.

The D-wave phase shifts are shown in figs. 8 and 9.
None of the D-wave data was used in the fitting of op-
erator coefficients. For both NLO1 and NLO2 results the
errors appear consistent with effects from higher-order in-
teractions. The NLO1 deviations are somewhat smaller,
though the NLO1 and NLO2 deviations appear similar in
character. Overall the differences among LO1, LO2, NLO1,
and NLO2 results for the D waves are smaller than the
corresponding differences for the S and P waves. This ob-
servation is consistent with the dominance of the one-pion
exchange potential and validity of the Born approximation
in higher partial waves.

The mixing parameter ε1 in the Stapp parameteriza-
tion [41] is shown in fig. 10. Results for LO1 and NLO1

are on the left, and results for LO2 and NLO2 are on the
right. The pairs of points connected by dotted lines indi-
cate pairs of solutions at k = kI and k = kII for the cou-
pled 3S1-3D1 channels. For LO1 it is interesting to note
that ε1 has the wrong sign. For both NLO1 and NLO2 re-
sults the remaining deviations appear consistent with the
effects produced by higher-order interactions.
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