Recent developments in neutron-proton scattering with Lattice Effective Field Theory

Jose Manuel Alarcón

Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn

In collaboration with Dechuan Du, Nico Klein, Timo Lähde, Dean Lee, Ning Li and Ulf-G. Meißner

• Many-body nuclear interactions is one of the most important problems in physics nowadays.

• Many-body nuclear interactions is one of the most important problems in physics nowadays.

Many experimental programs require reliable estimations of nuclear corrections:

- Many-body nuclear interactions is one of the most important problems in physics nowadays.
- Many experimental programs require reliable estimations of nuclear corrections:
 - Extraction of neutron polarizabilities from photoabsorption cross sections of the deuteron.

- Many-body nuclear interactions is one of the most important problems in physics nowadays.
- Many experimental programs require reliable estimations of nuclear corrections:
 - Extraction of neutron polarizabilities from photoabsorption cross sections of the deuteron.
 - Neutrino detection.

- Many-body nuclear interactions is one of the most important problems in physics nowadays.
- Many experimental programs require reliable estimations of nuclear corrections:
 - Extraction of neutron polarizabilities from photoabsorption cross sections of the deuteron.
 - Neutrino detection.
- Heavy Ion collisions (FAIR).

- Many-body nuclear interactions is one of the most important problems in physics nowadays.
- Many experimental programs require reliable estimations of nuclear corrections:
 - Extraction of neutron polarizabilities from photoabsorption cross sections of the deuteron.
 - Neutrino detection.
- Heavy Ion collisions (FAIR).
- Nuclear interactions can be treated within the chiral EFT formalism

[S. Weinberg NPB 363 (1991)].

- Many-body nuclear interactions is one of the most important problems in physics nowadays.
- Many experimental programs require reliable estimations of nuclear corrections:
 - Extraction of neutron polarizabilities from photoabsorption cross sections of the deuteron.
 - Neutrino detection.
- Heavy Ion collisions (FAIR).
- Nuclear interactions can be treated within the chiral EFT formalism

[S. Weinberg NPB 363 (1991)].

• Interaction based on fundamental symmetries (ab initio).

- Many-body nuclear interactions is one of the most important problems in physics nowadays.
- Many experimental programs require reliable estimations of nuclear corrections:
 - Extraction of neutron polarizabilities from photoabsorption cross sections of the deuteron.
 - Neutrino detection.
- Heavy Ion collisions (FAIR).
- Nuclear interactions can be treated within the chiral EFT formalism

[S. Weinberg NPB 363 (1991)].

- Interaction based on fundamental symmetries (ab initio).
- Systematically improvable (including 3NF, 4NF, etc ...).

- Many-body nuclear interactions is one of the most important problems in physics nowadays.
- Many experimental programs require reliable estimations of nuclear corrections:
 - Extraction of neutron polarizabilities from photoabsorption cross sections of the deuteron.
 - Neutrino detection.
- Heavy Ion collisions (FAIR).
- Nuclear interactions can be treated within the chiral EFT formalism

[S. Weinberg NPB 363 (1991)].

- Interaction based on fundamental symmetries (ab initio).
- Systematically improvable (including 3NF, 4NF, etc ...).
- Provides a way to assess the theoretical errors.

• The non-perturbative nature of the NN interaction complicates the EFT approach [5. Weinberg NPB 363 (1991)].

• The non-perturbative nature of the NN interaction complicates the EFT approach [S. Weinberg NPB 363 (1991)].

• One way to circumvent this problem is to use non-perturbative methods

• The non-perturbative nature of the NN interaction complicates the EFT approach [S. Weinberg NPB 363 (1991)].

One way to circumvent this problem is to use non-perturbative methods

 Lattice

• The non-perturbative nature of the NN interaction complicates the EFT approach [S. Weinberg NPB 363 (1991)].

One way to circumvent this problem is to use non-perturbative methods

 Lattice

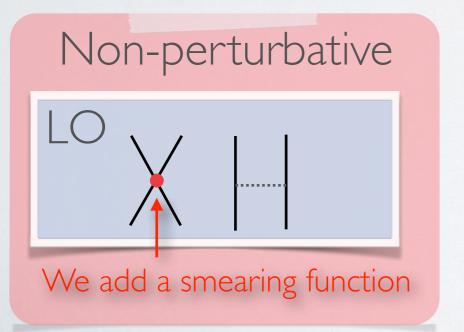
• Pioneering calculation at LO [Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A (2007)] settle down the formalism for NN interactions and show the applicability to systems of three and four nucleons.

• The non-perturbative nature of the NN interaction complicates the EFT approach [S. Weinberg NPB 363 (1991)].

One way to circumvent this problem is to use non-perturbative methods

 Lattice

• Pioneering calculation at LO [Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A (2007)] settle down the formalism for NN interactions and show the applicability to systems of three and four nucleons.



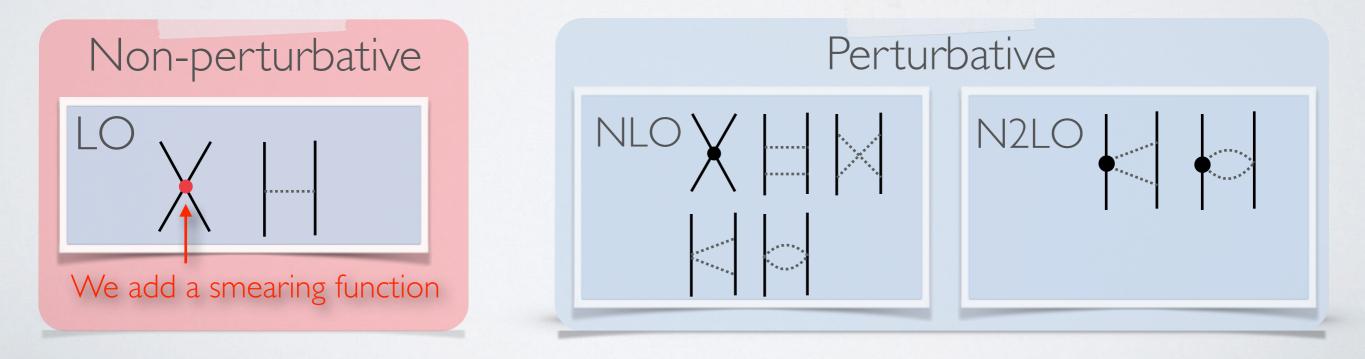
J. M. Alarcón (HISKP Bonn)

• The non-perturbative nature of the NN interaction complicates the EFT approach [S. Weinberg NPB 363 (1991)].

One way to circumvent this problem is to use non-perturbative methods

 Lattice

• Pioneering calculation at LO [Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A (2007)] settle down the formalism for NN interactions and show the applicability to systems of three and four nucleons.



Chiral Dynamics 2015

J. M. Alarcón (HISKP Bonn)

• We put the NN system in a box of size L^3 .

• We put the NN system in a box of size L^3 .

• We discretize the spatial directions in steps of a = 1.97 fm and the temporal direction in steps of a_t = 1.32 fm

- We put the NN system in a box of size L^3 .
- We discretize the spatial directions in steps of a = 1.97 fm and the temporal direction in steps of a_t = 1.32 fm
- The LECs in the lattice and the smearing parameter must be determined from observables.

- We put the NN system in a box of size L^3 .
- We discretize the spatial directions in steps of a = 1.97 fm and the temporal direction in steps of a_t = 1.32 fm
- The LECs in the lattice and the smearing parameter must be determined from observables.
- We modified the NN code to perform a least squares fit to the phase shifts

- We put the NN system in a box of size L^3 .
- We discretize the spatial directions in steps of a = 1.97 fm and the temporal direction in steps of a_t = 1.32 fm
- The LECs in the lattice and the smearing parameter must be determined from observables.

- We put the NN system in a box of size L^3 .
- We discretize the spatial directions in steps of a = 1.97 fm and the temporal direction in steps of a_t = 1.32 fm
- The LECs in the lattice and the smearing parameter must be determined from observables.
- We modified the NN code to perform a least squares fit to the phase shifts Not done before in Nuclear Lattice simulations
 We use the phase shifts from the Nijmegen PWA and E_B.

- We put the NN system in a box of size L^3 .
- We discretize the spatial directions in steps of a = 1.97 fm and the temporal direction in steps of a_t = 1.32 fm
- The LECs in the lattice and the smearing parameter must be determined from observables.
- We modified the NN code to perform a least squares fit to the phase shifts Not done before in Nuclear Lattice simulations
 We use the phase shifts from the Nijmegen PWA and E_B.
 The χ² is defined as follow:

$$\chi^2 = \sum_{i} \left[\frac{\delta_{\alpha}^{latt}(p) - \delta_{\alpha}^{NPWA}(p)}{\Delta_{\alpha}(p)} \right]^2 + \left[\frac{E_B^{latt} - E_B^{exp}}{\delta E_B^{exp}} \right]^2$$

with

$$\Delta_{\alpha} = \max\left(\Delta_{\alpha}^{NPWA}, |\delta_{\alpha}^{NijmI} - \delta_{\alpha}^{NPWA}|, |\delta_{\alpha}^{NijmII} - \delta_{\alpha}^{NPWA}|, |\delta_{\alpha}^{Reid93} - \delta_{\alpha}^{NPWA}|\right) \begin{array}{l} \text{[Epelbaum, Krebs and}\\ \text{MeiBner, EPJA 51 (2015)]} \end{array}$$

• We calculate the phase-shifts using the "Spherical wall method" [Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A 34 (2007)]

• We calculate the phase-shifts using the "Spherical wall method"

[Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A 34 (2007)]

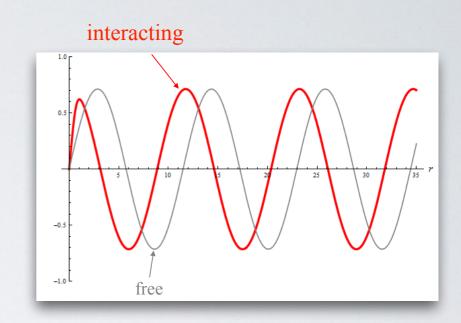
• From the definition of the phase shifts

Radial solution (non-interacting system):

$$r \cdot R(r) = r \cdot j_{\ell}(p r) \xrightarrow[r \to \infty]{} \sin(p r - \pi L/2)$$

Radial solution (interacting system):

 $r \cdot R(r) = r \cos \delta_{\ell}(p) \cdot j_{\ell}(pr) - r \sin \delta_{\ell}(p) \cdot y_{\ell}(pr) \xrightarrow[r \to \infty]{} \sin(pr - \pi L/2 + \delta_{\ell}(p))$



• We calculate the phase-shifts using the "Spherical wall method"

[Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A 34 (2007)]

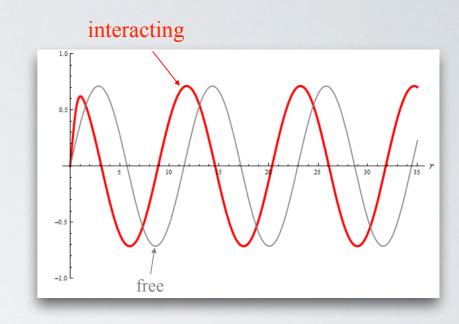
• From the definition of the phase shifts

Radial solution (non-interacting system):

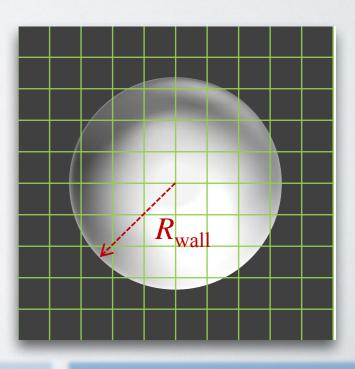
$$r \cdot R(r) = r \cdot j_{\ell}(p r) \xrightarrow[r \to \infty]{} \sin(p r - \pi L/2)$$

Radial solution (interacting system):

 $r \cdot R(r) = r \cos \delta_{\ell}(p) \cdot j_{\ell}(pr) - r \sin \delta_{\ell}(p) \cdot y_{\ell}(pr) \xrightarrow[r \to \infty]{} \sin(pr - \pi L/2 + \delta_{\ell}(p))$



• In order to extract $\delta(p)$, we impose a rigid wall of size $R_{wall} >> R_{interaction}$.



Chiral Dynamics 2015

• We calculate the phase-shifts using the "Spherical wall method"

[Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A 34 (2007)]

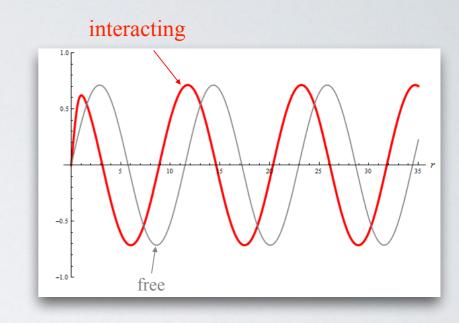
• From the definition of the phase shifts

Radial solution (non-interacting system):

$$r \cdot R(r) = r \cdot j_{\ell}(p r) \xrightarrow[r \to \infty]{} \sin(p r - \pi L/2)$$

Radial solution (interacting system):

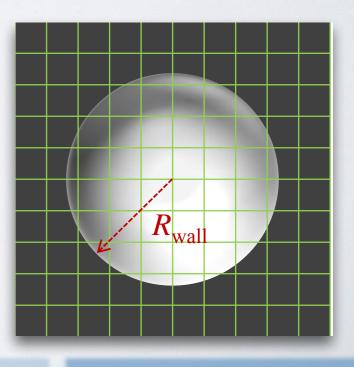
 $r \cdot R(r) = r \cos \delta_{\ell}(p) \cdot j_{\ell}(pr) - r \sin \delta_{\ell}(p) \cdot y_{\ell}(pr) \xrightarrow[r \to \infty]{} \sin(pr - \pi L/2 + \delta_{\ell}(p))$



• In order to extract $\delta(p)$, we impose a rigid wall of size $R_{wall} >> R_{interaction}$.

• At the (rigid) wall, the wave function vanishes, therefore

 $\cos \delta_{\ell}(p) \cdot j_{\ell}(p R_{\text{wall}}) = \sin \delta_{\ell}(p) \cdot y_{\ell}(p R_{\text{wall}})$



• We calculate the phase-shifts using the "Spherical wall method"

[Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A 34 (2007)]

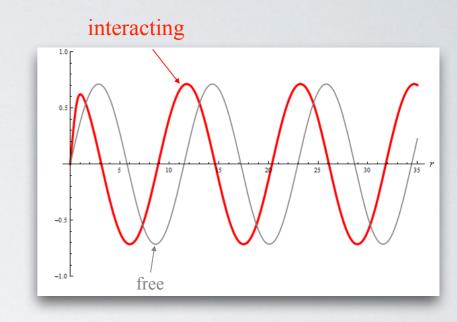
• From the definition of the phase shifts

Radial solution (non-interacting system):

$$r \cdot R(r) = r \cdot j_{\ell}(p r) \xrightarrow[r \to \infty]{} \sin(p r - \pi L/2)$$

Radial solution (interacting system):

 $r \cdot R(r) = r \cos \delta_{\ell}(p) \cdot j_{\ell}(pr) - r \sin \delta_{\ell}(p) \cdot y_{\ell}(pr) \xrightarrow[r \to \infty]{} \sin(pr - \pi L/2 + \delta_{\ell}(p))$

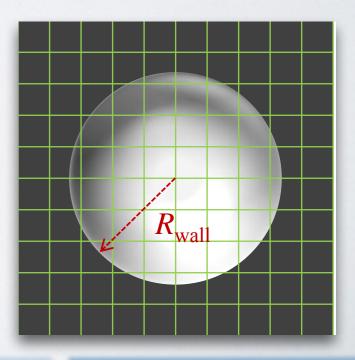


• In order to extract $\delta(p)$, we impose a rigid wall of size $R_{wall} >> R_{interaction}$.

• At the (rigid) wall, the wave function vanishes, therefore

 $\cos \delta_{\ell}(p) \cdot j_{\ell}(p R_{\text{wall}}) = \sin \delta_{\ell}(p) \cdot y_{\ell}(p R_{\text{wall}})$

what means that $\delta_{\ell}(p) = \arctan\left[\frac{j_{\ell}(p R_{\text{wall}})}{y_{\ell}(p R_{\text{wall}})}\right]$



Chiral Dynamics 2015

• We calculate the phase-shifts using the "Spherical wall method"

[Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A 34 (2007)]

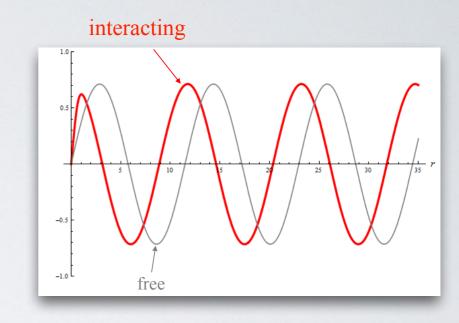
• From the definition of the phase shifts

Radial solution (non-interacting system):

$$r \cdot R(r) = r \cdot j_{\ell}(p r) \xrightarrow[r \to \infty]{} \sin(p r - \pi L/2)$$

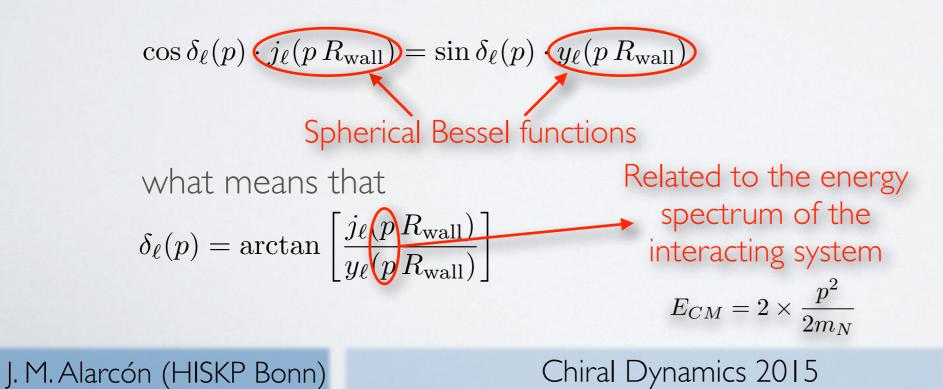
Radial solution (interacting system):

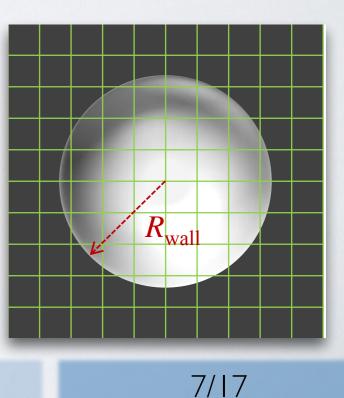
 $r \cdot R(r) = r \cos \delta_{\ell}(p) \cdot j_{\ell}(pr) - r \sin \delta_{\ell}(p) \cdot y_{\ell}(pr) \xrightarrow[r \to \infty]{} \sin(pr - \pi L/2 + \delta_{\ell}(p))$



• In order to extract $\delta(p)$, we impose a rigid wall of size $R_{wall} >> R_{interaction}$.

• At the (rigid) wall, the wave function vanishes, therefore





Results

Phase shifts (Preliminary)

Phase shifts

• We use the Transfer matrix formalism.

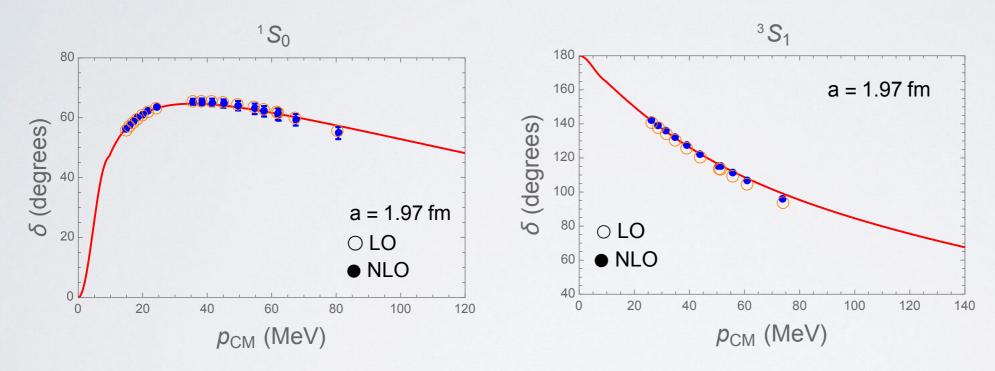
Phase shifts

We use the Transfer matrix formalism.
We fit LO [Contact (smeared) + OPE] with S-waves, up to p_{CM} = (30 - 60) MeV

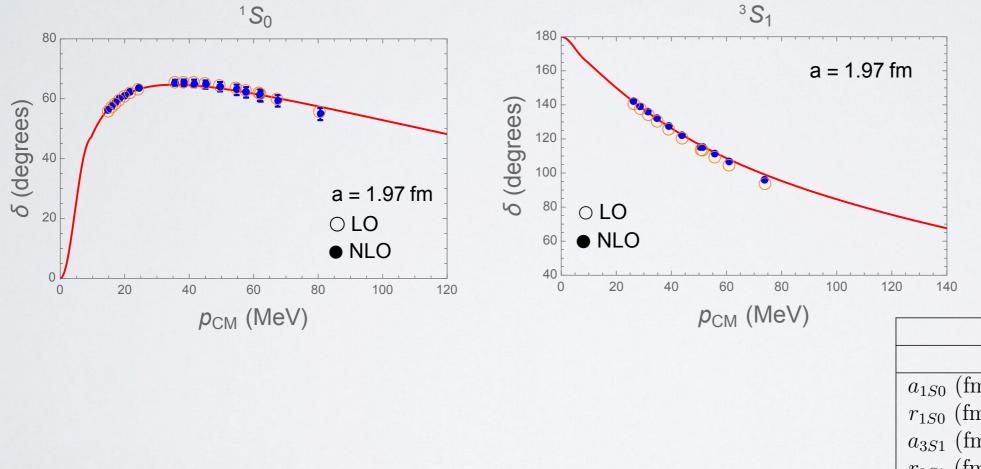
Phase shifts

- We use the Transfer matrix formalism.
- We fit LO [Contact (smeared) + OPE] with S-waves, up to $p_{CM} = (30 60) \text{ MeV}$
- Keeping fixed LO, we fit NLO [Contact] up to $p_{CM} = (70 100)$ MeV

- We use the Transfer matrix formalism.
- We fit LO [Contact (smeared) + OPE] with S-waves, up to $p_{CM} = (30 60) \text{ MeV}$
- Keeping fixed LO, we fit NLO [Contact] up to $p_{CM} = (70 100)$ MeV • For S-waves:



- We use the Transfer matrix formalism.
- We fit LO [Contact (smeared) + OPE] with S-waves, up to $p_{CM} = (30 60) \text{ MeV}$
- Keeping fixed LO, we fit NLO [Contact] up to p_{CM} = (70 100) MeV
 For S-waves:



LONLOExp. a_{1S0} (fm)-23.31-23.79-23.76 r_{1S0} (fm)2.382.572.75 a_{3S1} (fm)5.265.235.42 r_{3S1} (fm)2.052.041.76	Threshold parameters				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		LO	NLO	Exp.	
a_{3S1} (fm) 5.26 5.23 5.42	a_{1S0} (fm)	-23.31	-23.79	-23.76	
	r_{1S0} (fm)	2.38	2.57	2.75	
$r_{3S1} (fm)$ 2.05 2.04 1.76	a_{3S1} (fm)	5.26	5.23	5.42	
	r_{3S1} (fm)	2.05	2.04	1.76	

Throshold parameters

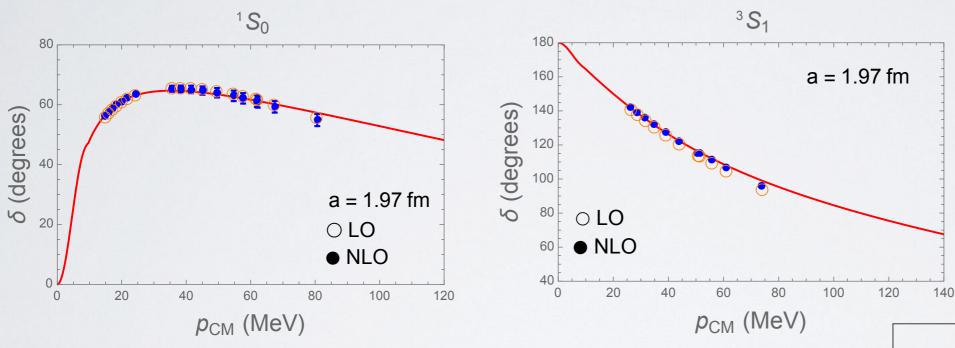
	LO	NLO	Exp.
E_B	-2.223544	-2.224574	-2.224575(9)

J. M. Alarcón (HISKP Bonn)

Chiral Dynamics 2015

10/17

- We use the Transfer matrix formalism.
- We fit LO [Contact (smeared) + OPE] with S-waves, up to $p_{CM} = (30 60) \text{ MeV}$
- Keeping fixed LO, we fit NLO [Contact] up to p_{CM} = (70 100) MeV
 For S-waves:



• LO provides a good description of the S-waves and threshold parameters.

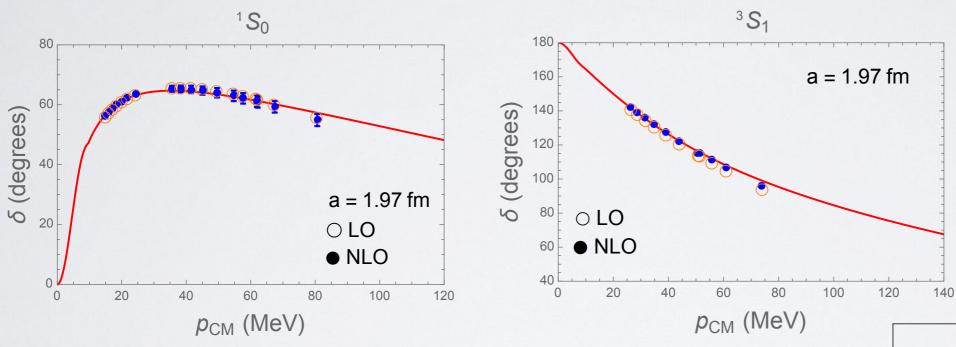
Threshold parameters				
	LO	NLO	Exp.	
a_{1S0} (fm)	-23.31	-23.79	-23.76	
r_{1S0} (fm)	2.38	2.57	2.75	
a_{3S1} (fm)	5.26	5.23	5.42	
r_{3S1} (fm)	2.05	2.04	1.76	

		LO	NLO	Exp.
-	E_B	-2.223544	-2.224574	-2.224575(9)

Chiral Dynamics 2015

10/17

- We use the Transfer matrix formalism.
- We fit LO [Contact (smeared) + OPE] with S-waves, up to $p_{CM} = (30 60) \text{ MeV}$
- Keeping fixed LO, we fit NLO [Contact] up to $p_{CM} = (70 100)$ MeV • For S-waves:



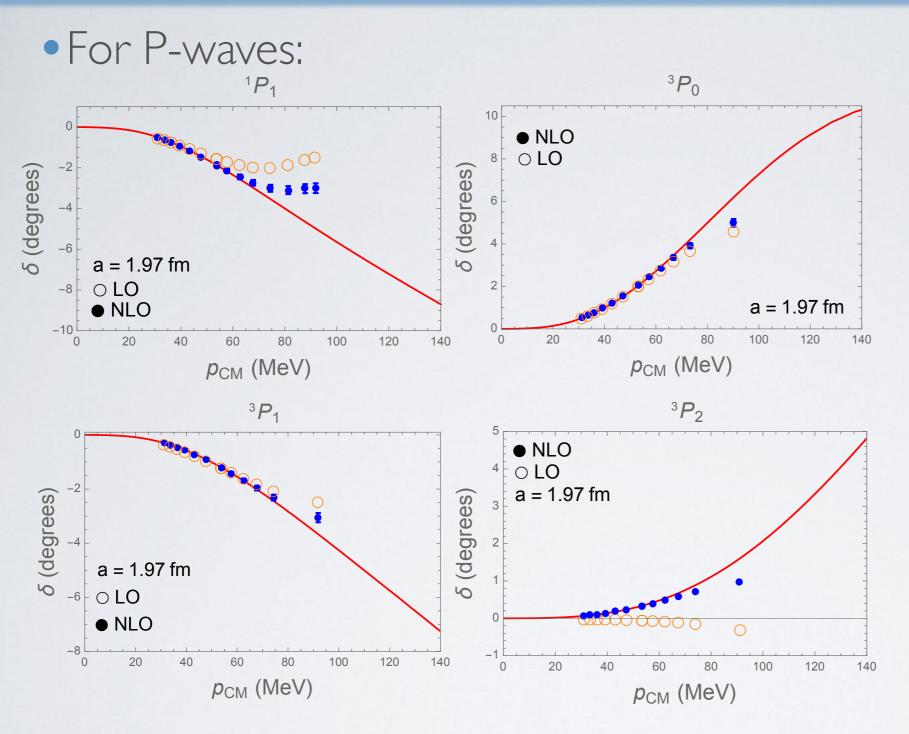
LO provides a good description of the S-waves and threshold parameters.
NLO corrects slightly the LO in the right direction.

Threshold parameters				
	LO	NLO	Exp.	
a_{1S0} (fm)	-23.31	-23.79	-23.76	
r_{1S0} (fm)	2.38	2.57	2.75	
a_{3S1} (fm)	5.26	5.23	5.42	
r_{3S1} (fm)	2.05	2.04	1.76	

	LO	NLO	Exp.
E_B	-2.223544	-2.224574	-2.224575(9)

J. M. Alarcón (HISKP Bonn)

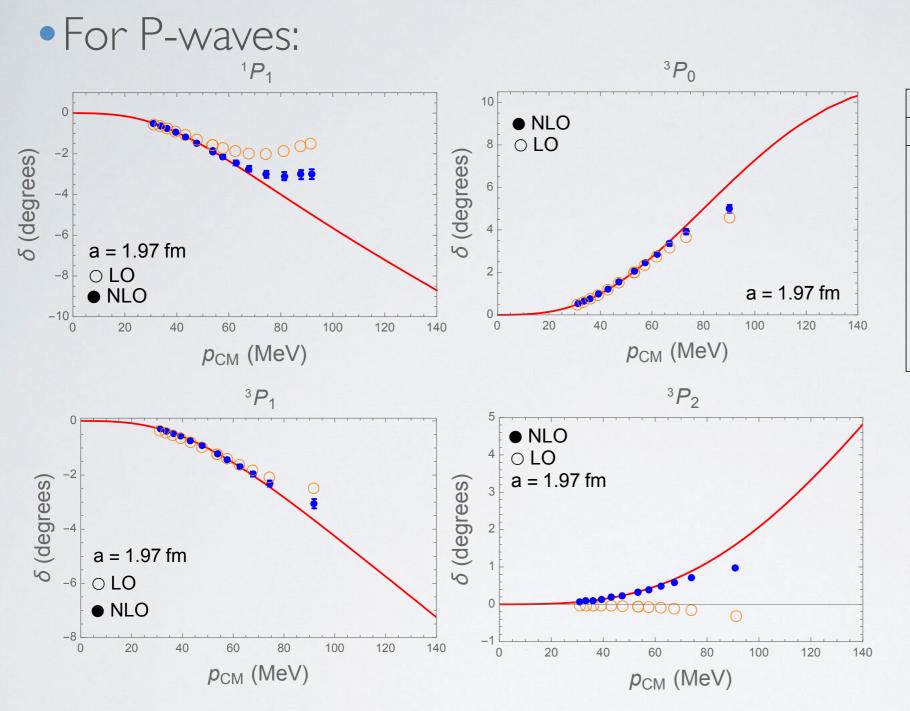
Chiral Dynamics 2015



J. M. Alarcón (HISKP Bonn)

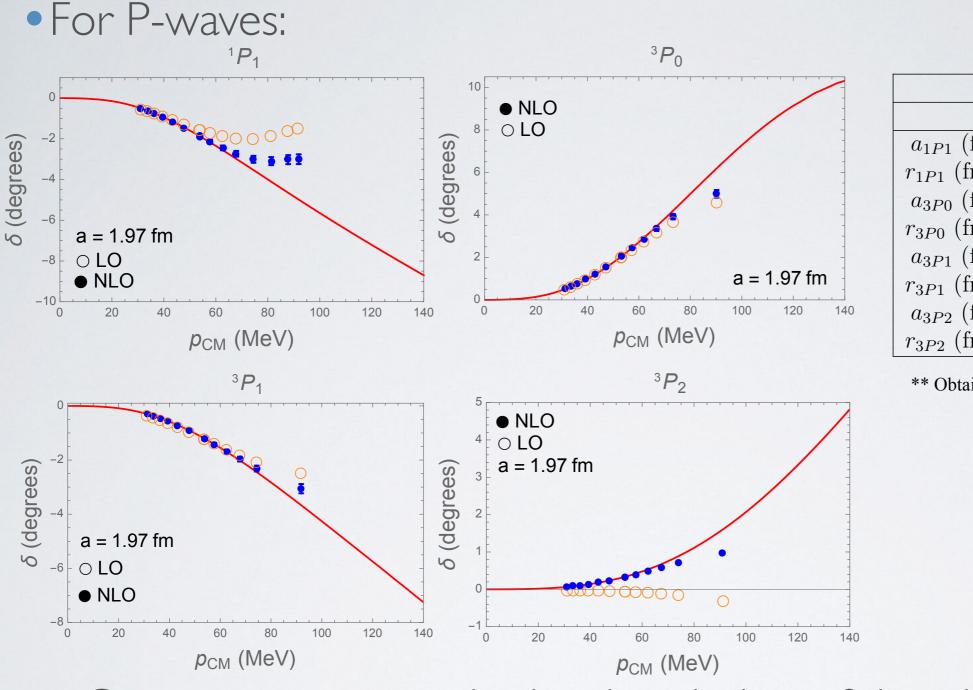
Chiral Dynamics 2015

11/17



Threshold parameters					
	LO	NLO	Exp.		
$a_{1P1} ({\rm fm}^3)$	3.79	2.89	2.81**		
$r_{1P1} \; (\mathrm{fm}^{-1})$	-12.95	-6.28	-7.20^{**}		
$a_{3P0} ({\rm fm}^3)$	-3.14	-2.78	-2.56^{**}		
$r_{3P0} \; ({\rm fm}^{-1})$	6.56	5.36	4.43**		
$a_{3P1} ({\rm fm}^3)$	1.99	1.63	1.54**		
$r_{3P1} \; ({\rm fm}^{-1})$	-13.57	-9.71	-8.54^{**}		
$a_{3P2} ({\rm fm}^3)$	-0.003	-0.33	-0.29^{**}		
$r_{3P2} \; (\mathrm{fm}^{-1})$	-1823	16.78	-3.34^{**}		

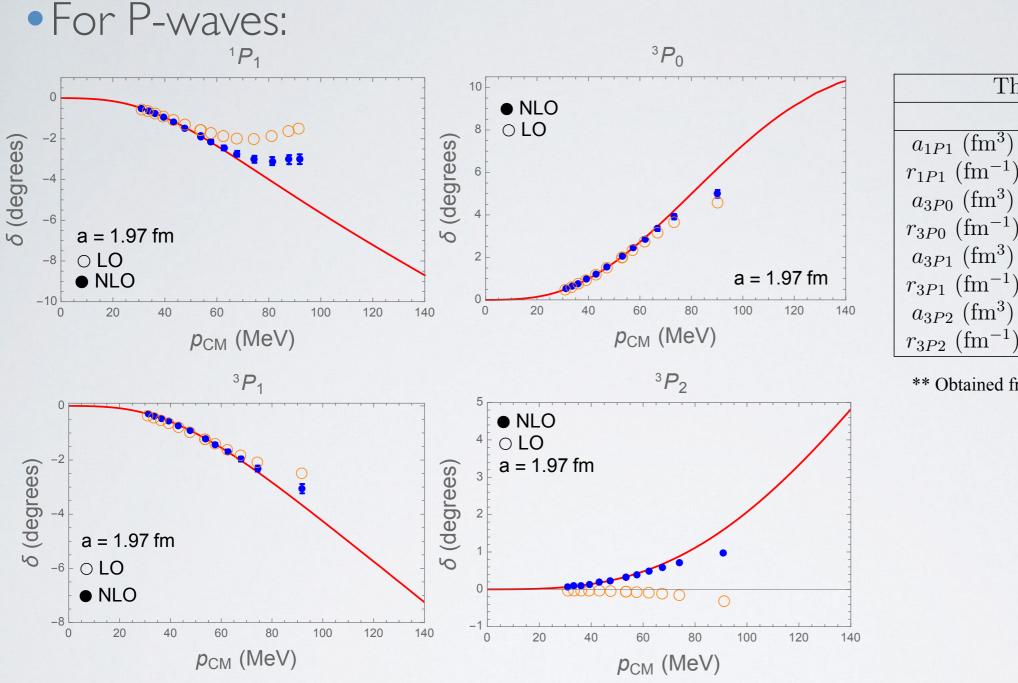
** Obtained from an ERE fit to NPWA



Threshold parameters LO NLO Exp. $a_{1P1} \ ({\rm fm}^3)$ 3.79 2.81** 2.89 -7.20^{**} $r_{1P1} \ (\mathrm{fm}^{-1})$ -12.95-6.28 $a_{3P0} \, ({\rm fm}^3)$ -2.56^{**} -3.14-2.785.364.43** 6.56 $r_{3P0} \ ({\rm fm}^{-1})$ $a_{3P1} \, ({\rm fm}^3)$ 1.54^{**} 1.63 1.99 $r_{3P1} \ ({\rm fm}^{-1})$ -13.57 -8.54^{**} -9.71 $a_{3P2} \,\,({\rm fm}^3)$ -0.33-0.003 -0.29^{**} $r_{3P2} \,(\mathrm{fm}^{-1})$ -1823 -3.34^{**} 16.78

** Obtained from an ERE fit to NPWA

Convergent pattern in the description of the observables.



Threshold parameters NLO LO Exp. $a_{1P1} \ ({\rm fm}^3)$ 3.79 2.81** 2.89 $r_{1P1} \ (\text{fm}^{-1})$ -12.95-6.28 -7.20^{**} -3.14 $a_{3P0} \, ({\rm fm}^3)$ -2.78 -2.56^{**} 5.36 4.43^{**} $r_{3P0} \ ({\rm fm}^{-1})$ 6.56 $a_{3P1} \, ({\rm fm}^3)$ 1.63 1.54^{**} 1.99 $r_{3P1} \; (\mathrm{fm}^{-1})$ -8.54^{**} -13.57-9.71 $a_{3P2} \,\,({\rm fm}^3)$ -0.003-0.33 -0.29^{**} 16.78 -3.34^{**} -1823

** Obtained from an ERE fit to NPWA

Convergent pattern in the description of the observables.

Fulfils the expectations of an EFT approach

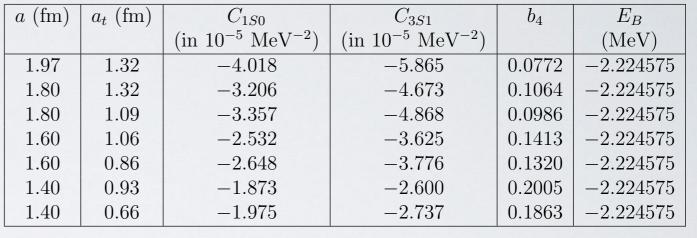
J. M. Alarcón (HISKP Bonn)

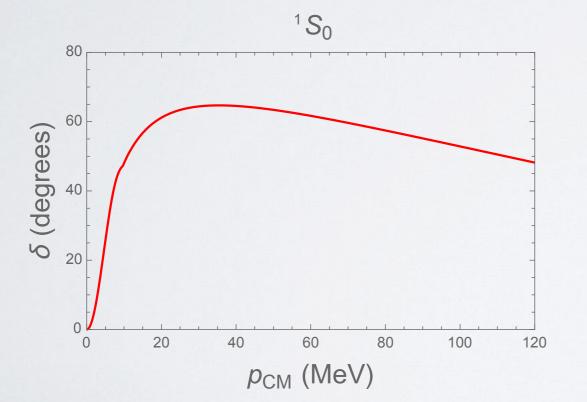
Chiral Dynamics 2015

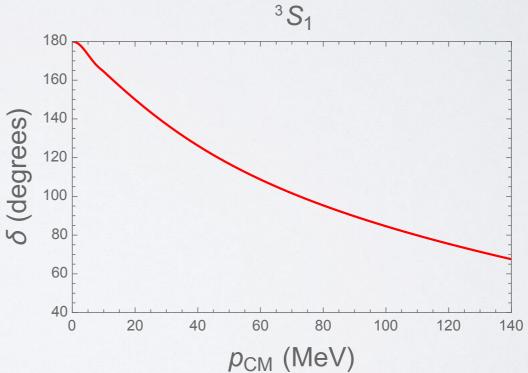
Lattice Spacing Dependence (Preliminary)

- ${}^{\circ}$ We study the spacing dependence of the LO LECs for L=32
- Similar study in the Hamiltonian formalism [Klein, Lee, Liu, Meißner, PLB 747,(2015)]

• *a* reduced, a_t constant • *a* reduced, a_t/a constant • *a* reduced, a_t/a^2 constant

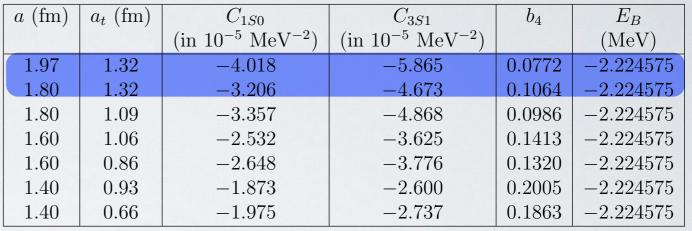


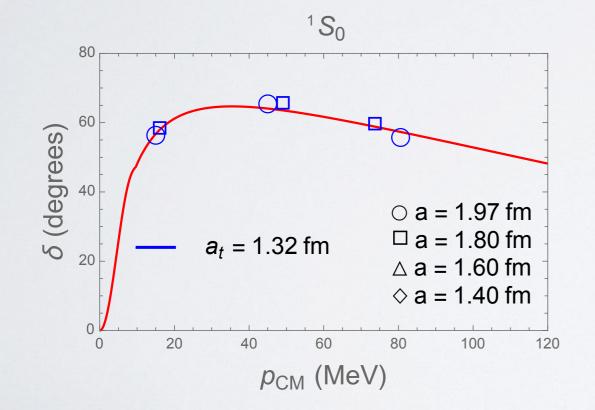


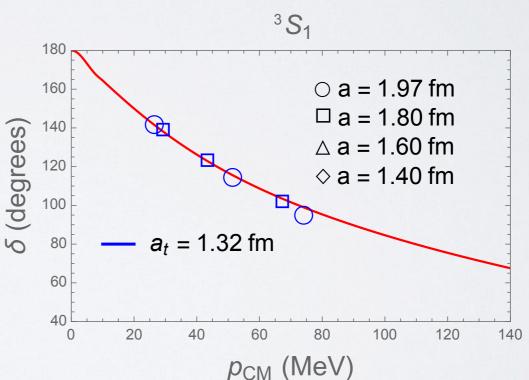


- ${\, }^{\bullet}$ We study the spacing dependence of the LO LECs for L=32
- Similar study in the Hamiltonian formalism [Klein, Lee, Liu, Meißner, PLB 747,(2015)]

• *a* reduced, a_t constant • *a* reduced, a_t/a constant • *a* reduced, a_t/a^2 constant



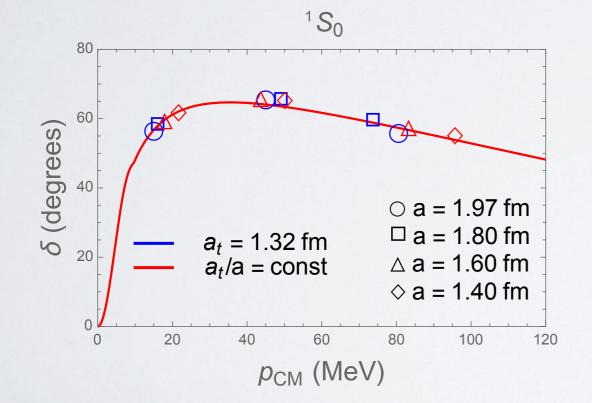


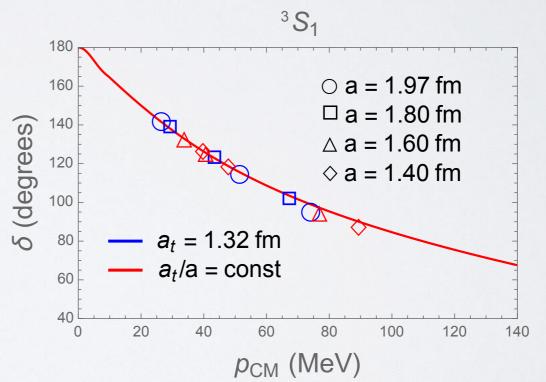


- ${\, }^{\circ}$ We study the spacing dependence of the LO LECs for L=32
- Similar study in the Hamiltonian formalism [Klein, Lee, Liu, Meißner, PLB 747,(2015)]

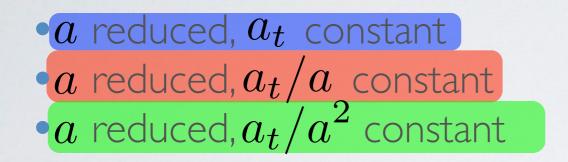
• *a* reduced, a_t constant • *a* reduced, a_t/a constant • *a* reduced, a_t/a^2 constant

$a \ (fm)$	$a_t (\mathrm{fm})$	C_{1S0}	C_{3S1}	b_4	E_B
TT bare		$(\text{in } 10^{-5} \text{ MeV}^{-2})$	$(\text{in } 10^{-5} \text{ MeV}^{-2})$		(MeV)
1.97	1.32	-4.018	-5.865	0.0772	-2.224575
1.80	1.32	-3.206	-4.673	0.1064	-2.224575
1.80	1.09	-3.357	-4.868	0.0986	-2.224575
1.60	1.06	-2.532	-3.625	0.1413	-2.224575
1.60	0.86	-2.648	-3.776	0.1320	-2.224575
1.40	0.93	-1.873	-2.600	0.2005	-2.224575
1.40	0.66	-1.975	-2.737	0.1863	-2.224575

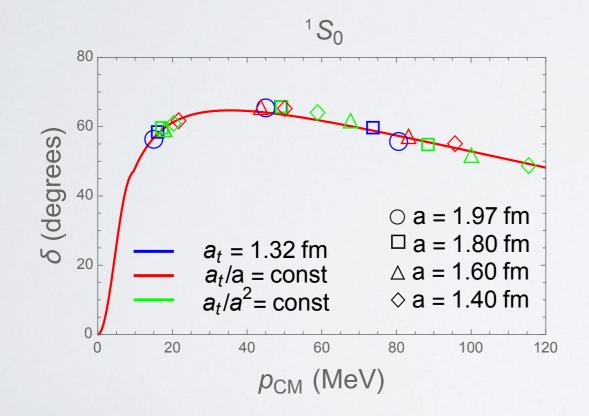


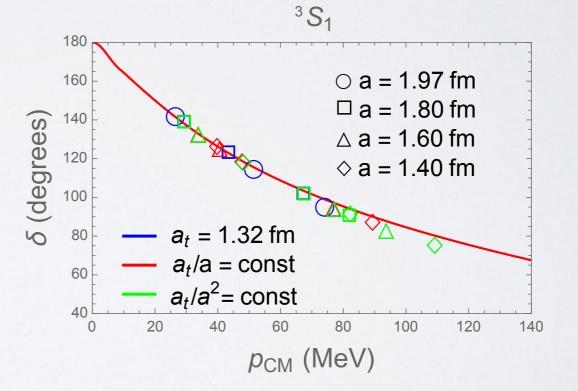


- ${\, \bullet }$ We study the spacing dependence of the LO LECs for L=32
- Similar study in the Hamiltonian formalism [Klein, Lee, Liu, Meißner, PLB 747,(2015)]

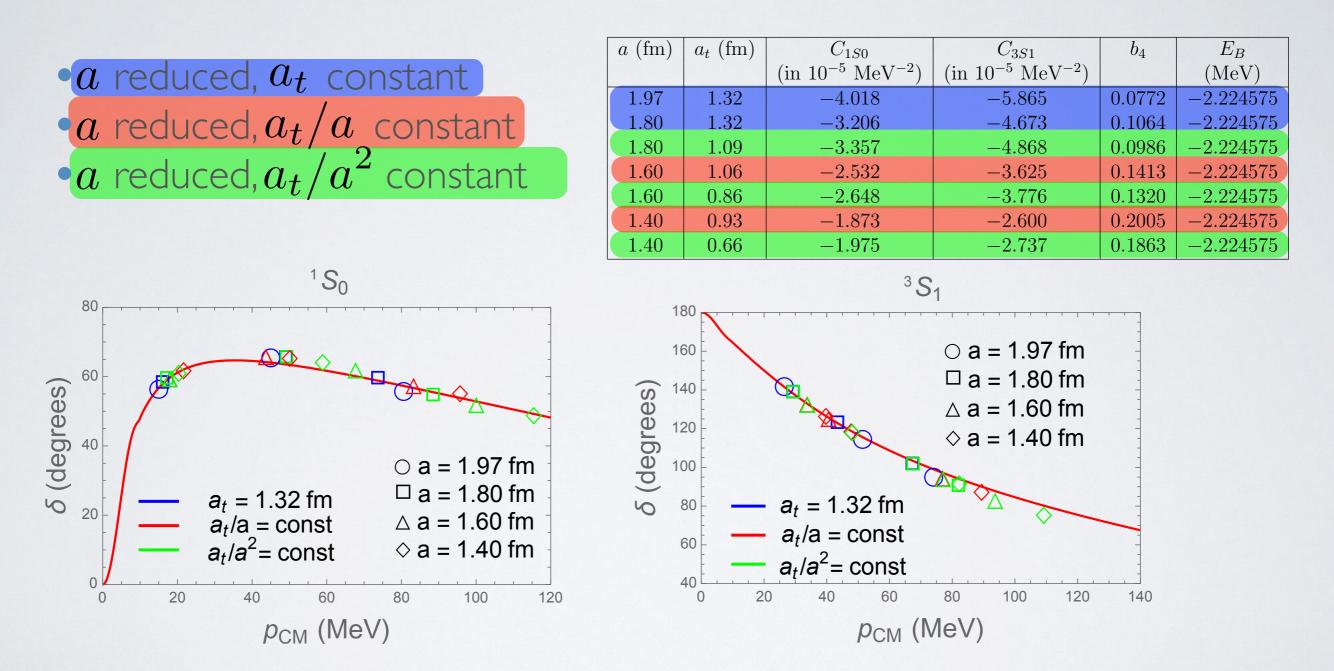


a (fm)	$a_t (fm)$	C_{1S0}	C_{3S1}	b_4	E_B
		$(\text{in } 10^{-5} \text{ MeV}^{-2})$	$(\text{in } 10^{-5} \text{ MeV}^{-2})$		(MeV)
1.97	1.32	-4.018	-5.865	0.0772	-2.224575
1.80	1.32	-3.206	-4.673	0.1064	-2.224575
1.80	1.09	-3.357	-4.868	0.0986	-2.224575
1.60	1.06	-2.532	-3.625	0.1413	-2.224575
1.60	0.86	-2.648	-3.776	0.1320	-2.224575
1.40	0.93	-1.873	-2.600	0.2005	-2.224575
1.40	0.66	-1.975	-2.737	0.1863	-2.224575





- ${\, \bullet }$ We study the spacing dependence of the LO LECs for L=32
- Similar study in the Hamiltonian formalism [Klein, Lee, Liu, Meißner, PLB 747,(2015)]



• Good description is achieved for smaller spacings.

Chiral Dynamics 2015

J. M. Alarcón (HISKP Bonn)

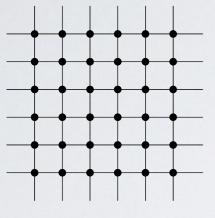
• Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv: 1506.03513] [Lu et al., arXiv: 1506.05652]

• Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]

• We work with Hamiltonian projected into a channel with specific quantum numbers.

• Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]

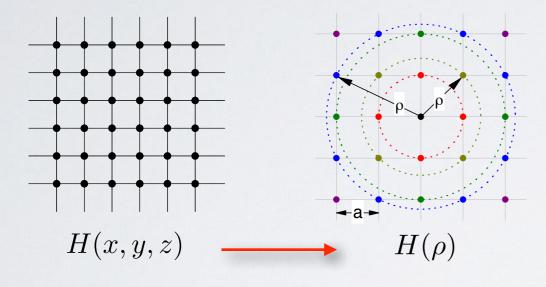
• We work with Hamiltonian projected into a channel with specific quantum numbers.



H(x, y, z)

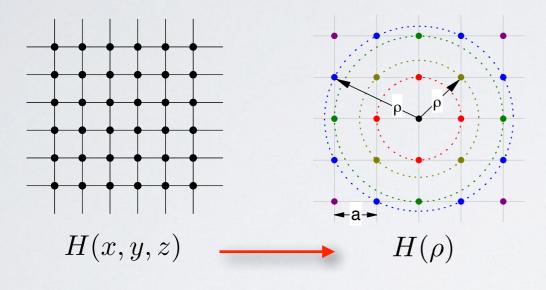
Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]
We work with Hamiltonian projected into a channel with specific

quantum numbers.



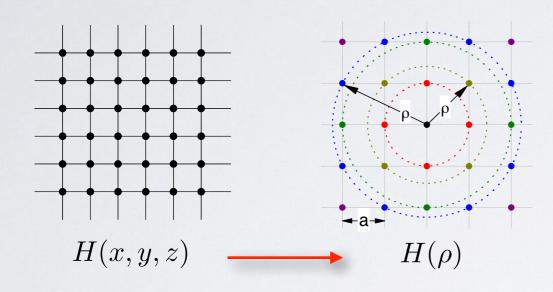
 Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]
 We work with Hamiltonian projected into a channel with specific

quantum numbers.



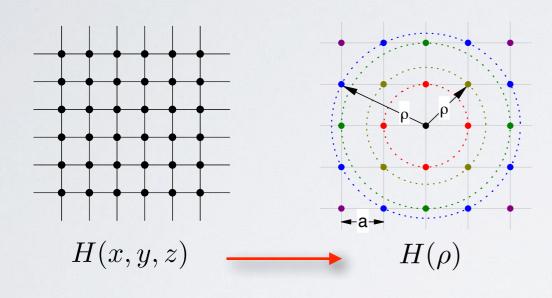
• Reduces scaling with $L: L^3 \longrightarrow L^2$

Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]
We work with Hamiltonian projected into a channel with specific quantum numbers.



• Reduces scaling with $L: L^3 \longrightarrow L^2$ • Saves CPU time.

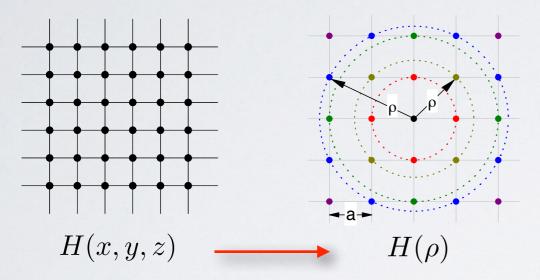
Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]
We work with Hamiltonian projected into a channel with specific quantum numbers.



- Reduces scaling with $L: L^3 \longrightarrow L^2$
- Saves CPU time.
- Reduce lattice artefacts.

Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]
We work with Hamiltonian projected into a channel with specific

quantum numbers.

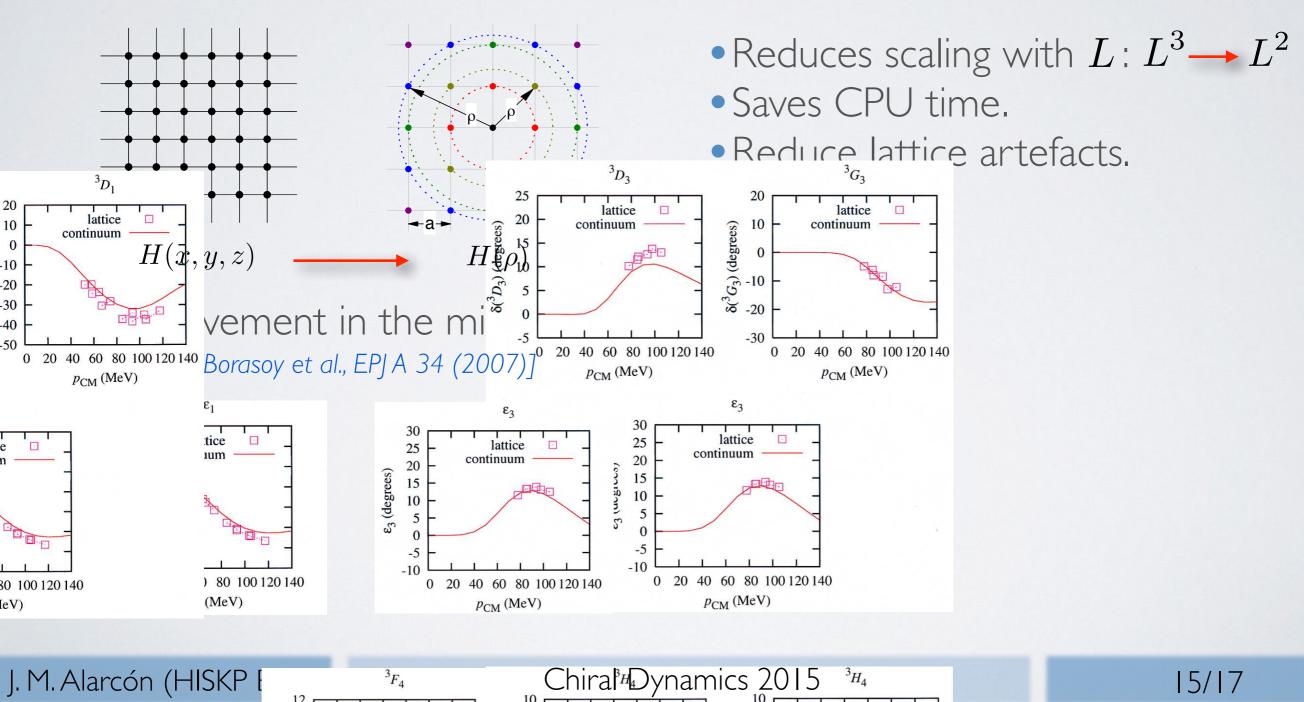


• Improvement in the mixing angles.

- Reduces scaling with $L: L^3 \longrightarrow L^2$
- Saves CPU time.
- Reduce lattice artefacts.

 Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]
 We work with Hamiltonian projected into a channel with specific

quantum numbers.



Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv:1506.03513] [Lu et al., arXiv:1506.05652]
We work with Hamiltonian projected into a channel with specific quantum numbers.

• Reduces scaling with $\Phi \subset L^3 \longrightarrow L^2$ Saves CPU time. • Reduce lattice artefacts. $^{3}D_{3}$ ${}^{3}D_{1}$ 20 lattice lattice lattice continuum 10 continuum degrees) continuum $H(\mathbf{x}, y, z)$ -10 \$ -20 vement in the mi -40 -30 20, 40 60 80-000 20 140 Рым (Mev) / Loget al., arXiv: 1950 0. Q5652 20-040-00 80 100 120 140 0 20 40 60 80 100 120 140 Borasoy et al., EPJA 3 $^{(2)}(207)$ $^{(0)}$ $p_{\rm CM}$ $p_{\rm CM}$ (MeV) -20 tice 25 lattice 25 um continuum 20 20 10 (degrees) 15 (D-G) E.F. 0 20 40 60 80 30 1 80 100 120 140 0 20 40 60 80 100 120 140 30 100 120 140 60 90 120 30 60 90 12 $p_{\rm CM}$ (MeV) 0, (MeV) $p_{\rm CM}$ (MeV) (eV) p_{CM} (MeV) $p_{\rm CM}$ (MeV) J. M. Alarcón (HISKP Chiral^aDynamics 2015 5/17

Summary and Conclusions

Summary and Conclusions

• Neutron-proton scattering on the lattice has made very important progress recently.

- Modification of the NN scattering calculation that allows:
 - Statistical analysis of the free parameters in the theory.
 - Systematic study of cutoff-dependence in the transfer matrix formalism.
 Crucial to explore higher energies
- Radial Transfer Matrix formalism + auxiliary complex potential:
 Improvement in the extraction of phase shifts and mixing angles.
 Easy identification of states.
- Ready to include the TPE at NLO and N2LO.
- N3LO calculation is under way.
- Progress relevant for few-body *ab initio* calculations with NLEFT.

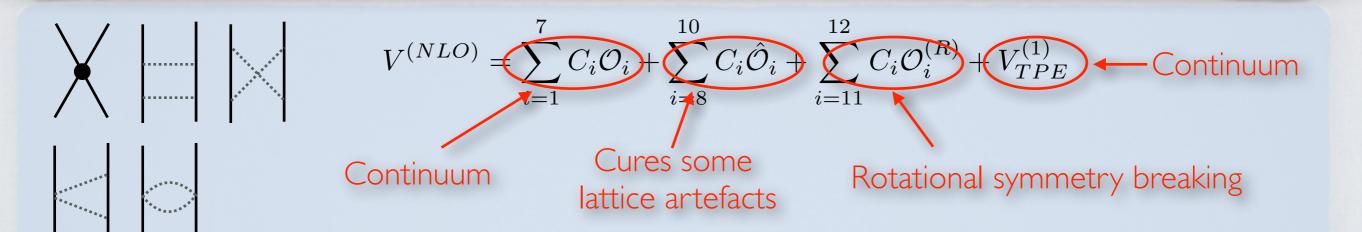
Stay tuned!

FIN

Introduction

- We calculate the energy levels in the transfer matrix formalism.
 The same formalism used in Monte Carlo simulations.
 - $\mathcal{Z} \propto \operatorname{Tr}\{M^{L_t}\} \qquad M \equiv :\exp\left[-(H_{free} + V)\alpha_t\right] : \rightarrow a_t/a$

$$V^{(LO)} = \frac{1}{2}C\sum_{\vec{n}} f(\vec{n}) \left[\rho^{a^{\dagger},a}(\vec{n})\right]^{2} + \frac{1}{2}C_{I^{2}}\sum_{I}\sum_{\vec{n}} f(\vec{n}) \left[\rho^{a^{\dagger},a}(\vec{n})\right]^{2} \\ - \frac{g_{A}^{2}\alpha_{t}}{8f_{\pi}^{2}q_{\pi}}\sum_{S_{1},S_{2},I}\sum_{\vec{n}_{1},\vec{n}_{2}}G_{S_{1}S_{2}}(\vec{n}_{1}-\vec{n}_{2})\rho^{a^{\dagger},a}_{S_{1},I}(\vec{n}_{1})\rho^{a^{\dagger},a}_{S_{2},I}(\vec{n}_{2})$$



$$V^{(N^2LO)} \neq V^{(2)}_{TPE}$$
 Continuum

J. M. Alarcón (HISKP Bonn)

•********** *********

Mixing Angle

Mixing angle

• For spin triplet (S = 1), channels with same total angular momentum (J) can mix.

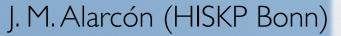
• Lowest mixing happens in the the $\ell = 0$ (S) and $\ell = 2$ (D) waves.

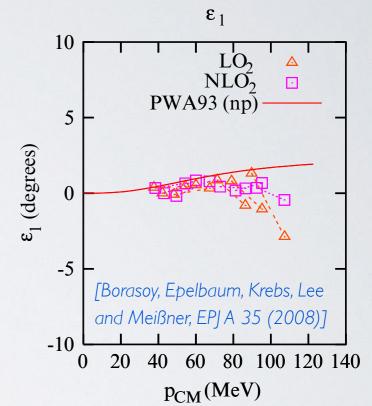
• One can parametrize the ${}^{3}S_{1}-{}^{3}D_{1}$ mixing in terms of one mixing angle ϵ_{J} , defined as:

$$S = \begin{pmatrix} e^{2i\delta_{J-1}}\cos 2\epsilon_J & ie^{2i(\delta_{J-1}+\delta_{J+1})}\sin 2\epsilon_J \\ ie^{2i(\delta_{J-1}+\delta_{J+1})}\sin 2\epsilon_J & e^{2i\delta_{J+1}}\cos 2\epsilon_J \end{pmatrix}$$

• Radial Transfer Matrix formalism + auxiliary complex potential. [Elhatisari et al., arXiv: 1506.03513] [Lu et al., arXiv: 1506.05652]

- Reduces scaling with $L: L^3 \longrightarrow L^2$
- The code runs much faster.
- Better identification of states.
 - Improvement in D-waves and mixing angle.





LECs

$$\begin{split} \Delta V &= \frac{1}{2} \Delta C : \sum_{\vec{n}} \rho^{a^{\dagger},a}(\vec{n}) \rho^{a^{\dagger},a}(\vec{n}) :, \\ \Delta V_{I^2} &= \frac{1}{2} \Delta C_{I^2} : \sum_{\vec{n},I} \rho^{a^{\dagger},a}(\vec{n}) \rho^{a^{\dagger},a}_{I}(\vec{n}) :. \\ V_{q^2} &= -\frac{1}{2} C_{q^2} : \sum_{\vec{n},I} \rho^{a^{\dagger},a}(\vec{n}) \Delta_I^2 \rho^{a^{\dagger},a}(\vec{n}) :, \\ V_{I^2,q^2} &= -\frac{1}{2} C_{I^2,q^2} : \sum_{\vec{n},I,I} \rho^{a^{\dagger},a}_{I}(\vec{n}) \Delta_I^2 \rho^{a^{\dagger},a}_{I}(\vec{n}) :, \\ V_{S^2,q^2} &= -\frac{1}{2} C_{S^2,q^2} : \sum_{\vec{n},S,I} \rho^{a^{\dagger},a}_{S}(\vec{n}) \Delta_I^2 \rho^{a^{\dagger},a}_{S}(\vec{n}) :, \\ V_{S^2,q^2} &= -\frac{1}{2} C_{S^2,q^2} : \sum_{\vec{n},S,I} \rho^{a^{\dagger},a}_{S}(\vec{n}) \Delta_I^2 \rho^{a^{\dagger},a}_{S}(\vec{n}) :, \\ V_{S^2,I^2,q^2} &= -\frac{1}{2} C_{S^2,I^2,q^2} : \sum_{\vec{n},S,I} \rho^{a^{\dagger},a}_{S}(\vec{n}) \Delta_I^2 \rho^{a^{\dagger},a}_{S}(\vec{n}) :, \\ V_{I^2,(q,S)^2} &= \frac{1}{2} C_{(q,S)^2} : \sum_{\vec{n}} \sum_{S} \Delta_S \rho^{a^{\dagger},a}_{S}(\vec{n}) \sum_{S'} \Delta_{S'} \rho^{a^{\dagger},a}_{S',I}(\vec{n}) :, \\ V_{I^2,(q,S)^2} &= \frac{1}{2} C_{I^2,(q,S)^2} : \sum_{\vec{n},I} \sum_{S} \Delta_S \rho^{a^{\dagger},a}_{S,I}(\vec{n}) \sum_{S'} \Delta_{S'} \rho^{a^{\dagger},a}_{S',I}(\vec{n}) :, \\ V_{I^2,(q,S)^2} &= -\frac{i}{2} C_{I^2,(q,S)^2} : \sum_{\vec{n},I,I} \sum_{S} (\epsilon_{I,S,I'} \left[\Pi^{a^{\dagger},a}_{I}(\vec{n}) \Delta_{I'} \rho^{a^{\dagger},a}_{S,I}(\vec{n}) + \Pi^{a^{\dagger},a}_{I,S}(\vec{n}) \Delta_{I'} \rho^{a^{\dagger},a}_{I'}(\vec{n}) \right] :, \\ V_{I^2,(iq\timesS)\cdot k} &= -\frac{i}{2} C_{I^2,(iq\timesS)\cdot k} : \sum_{\vec{n},I,I,S,I'} \varepsilon_{I,S,I'} \left[\Pi^{a^{\dagger},a}_{I}(\vec{n}) \Delta_{I'} \rho^{a^{\dagger},a}_{S,I}(\vec{n}) + \Pi^{a^{\dagger},a}_{I,S,I}(\vec{n}) \Delta_{I'} \rho^{a^{\dagger},a}_{I'}(\vec{n}) \right] \\ V_{SSqq} &= \frac{1}{2} C_{SSqq} : \sum_{\vec{n}} \sum_{S} \Delta_S \rho^{a^{\dagger},a}_{S}(\vec{n}) \Delta_S \rho^{a^{\dagger},a}_{S,I}(\vec{n}) :, \\ V_{I^2,SSqq} &= \frac{1}{2} C_{I^2,SSqq} : \sum_{\vec{n}} \sum_{S,I} \Delta_S \rho^{a^{\dagger},a}_{S,I}(\vec{n}) \Delta_S \rho^{a^{\dagger},a}_{S,I}(\vec{n}) :. \end{split}$$

• With:

$$\begin{split} \Delta_l^2 f(\vec{n}) &= f(\vec{n} + \hat{l}) + f(\vec{n} - \hat{l}) - 2f(\vec{n}) \\ \Pi_l^{a^{\dagger,a}}(\vec{n}) &= \frac{1}{4} \sum_{\nu_1,\nu_2,\nu_3=0,1} \sum_{i,j=0,1} (-1)^{\nu_l + 1} a_{i,j}^{\dagger}(\vec{n} + \vec{\nu}(-l)) a_{i,j}(\vec{n} + \vec{\nu}) \end{split}$$

	LEC	Best values
	$C_{1S0}(10^{-5} \text{ MeV}^{-2})$	(-4.109, -3.948)
	$C_{3S1}(10^{-5} \text{ MeV}^{-2})$	(-5.795, -5.953)
	b_4	(0.07315, 0.08036)
	$\frac{1}{2}\Delta C$	(-0.1001981989246, 0.069098012299509)
	$\frac{1}{2}\Delta C_{I^2}$	(-0.1186509115258, -0.155867706639699)
	$-\frac{1}{2}C_{q^2}$	(-0.040401953567687, 0.01260072939741)
	$-\frac{1}{2}C_{I^2,q^2}$	(0.05827200896289, 0.087718222009940)
	$-\frac{1}{2}C_{S^2,q^2}$	(-0.1823593021535, -0.155942762178279)
	$-rac{1}{2}C_{S^2,I^2,q^2}$	(0.154122107843797, 0.1564530211543)
	$\frac{1}{2}C_{(q\cdot S)^2}$	(-0.007464222898765, -0.08246628305442)
	$\frac{1}{2}C_{I^2,(q\cdot S)^2}$	(0.026826212664155, 0.09557831588958)
	$-\frac{i}{2}C_{i(q \times S) \cdot k}$	(0.011724357058981, 0.01252865843888)
:,	$-\frac{i}{2}C_{I^2,i(q\times S)\cdot k}$	(0.003908119019660, 0.004176219479628)
	$\frac{1}{2}C_{SSqq}$	(0.416621988891837, 0.5407916495280)
	$\frac{1}{2}\overline{C}_{I^2,SSqq}$	(-0.416621988891837, -0.5407916495280)

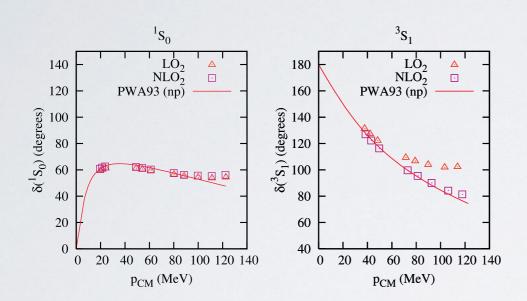
$$\begin{aligned} \Pi_{l,S}^{a^{\dagger},a}(\vec{n}) &= \frac{1}{4} \sum_{\nu_{1},\nu_{2},\nu_{3}=0,1} \sum_{i,j,i'=0,1} (-1)^{\nu_{l}+1} a_{i,j}^{\dagger}(\vec{n}+\vec{\nu}(-l)) [\sigma_{S}]_{ii'} a_{i,j}(\vec{n}+\vec{\nu}) \\ \Pi_{l,I}^{a^{\dagger},a}(\vec{n}) &= \frac{1}{4} \sum_{\nu_{1},\nu_{2},\nu_{3}=0,1} \sum_{i,j,j'=0,1} (-1)^{\nu_{l}+1} a_{i,j}^{\dagger}(\vec{n}+\vec{\nu}(-l)) [\tau_{I}]_{jj'} a_{i,j}(\vec{n}+\vec{\nu}) \\ \Pi_{l,S,I}^{a^{\dagger},a}(\vec{n}) &= \frac{1}{4} \sum_{\nu_{1},\nu_{2},\nu_{3}=0,1} \sum_{i,j,i',j'=0,1} (-1)^{\nu_{l}+1} a_{i,j}^{\dagger}(\vec{n}+\vec{\nu}(-l)) [\sigma_{S}]_{ii'} [\tau_{I}]_{jj'} a_{i,j}(\vec{n}+\vec{\nu}) \end{aligned}$$

J. M. Alarcón (HISKP Bonn)

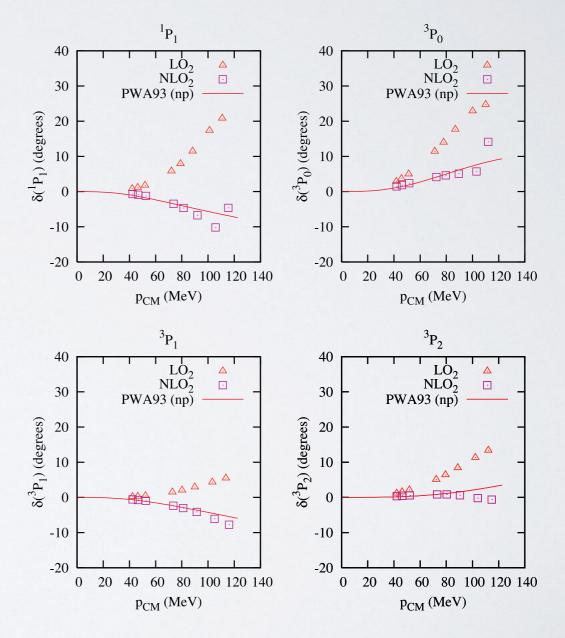
Previous results

Previous Results

[Borasoy, Epelbaum, Krebs, Lee and Meißner, EPJ A 35 (2008)]



• P-waves



J. M. Alarcón (HISKP Bonn)

• S-waves