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Introduction...

Initial thoughts...

The success of the HRG in describing equilibrium properties (e.g. quark
number susceptibilities) has led to assuming that the vacuum spectrum
does not change ”too much” until temperatures near TC .

logZM
i (T ,V , µX a ,Mi ) = −Vdi

2π2

∫ ∞
0

dkk2 log(1− zie
−Ei/T )

Individual excitations of the system may have modified properties
compared to T = 0.

→ In particular, it is worth asking what becomes of the relevant degrees of
freedom that dominate the low-temperature regime (T < TC ) → π states

Goal

Extensive study of the dispersion relation of the pion quasiparticle at finite
temperature below the phase transition.



Pion dispersion relation...

The ordinary pion dispersion relation dictated by Lorentz symmetry
is E =

√
k2 + m2

π.

We want to a study a modified dispersion relation that takes the
following form:

ωp = u(T )
√
p2 + m2

π

D.T. Son & M. Stephanov ’02, [hep-ph/0204226]

mπ is the screening mass (inverse correlation length).

A chiral expansion was derived around the point (T ,mq = 0) with
T < TC as opposed to the usual (T = 0,mq = 0) ChPT expansion
of Gasser and Leutwyler.

We rederived it starting with Chiral Ward Identities arising from the
PCAC relation and studied the p = 0 case.

B. Brandt, A. Francis, H. Meyer & D.R., Phys. Rev. D90, 054509 (2014)



The double role of u(T ):

ωp = u(T )
√
p2 + m2

π

At zero momentum it determines the ratio of the pion quasiparticle
mass with respect to the screening mass.

ω0 = u(T )mπ (1)

In the chiral limit it truly corresponds to the group velocity of a
massless pion excitation.

vg =
dωp

dp
= u(T ) < c . (2)



Lattice approach

A priori it looks like a very simple problem...

We should measure nothing but the pion ground states at finite
temperature and finite momenta.

But the problem is...

Because of how finite temperature is implemented on the Lattice,
there is no hope on doing spectroscopy along the very short time
direction (Nτ ∼ 12, 16, 20, 24, ...).

The kernel appearing in euclidean time dependent correlators

K (ω, x0) = cosh(ω(β/2−x0))
sinh(ωβ/2) falls off very slowly with x0. β ≡ 1/T

Solutions...

→ Use screening correlators together with the Chiral expansion!

Spectral function reconstruction: Maximum Entropy Method (MEM)
(model dependent).

Backus-Gilbert method (model independent).



Effective chiral expansion around (T ,mq = 0)
In ’02 Son & Stephanov demonstrated that the dispersion relation of
the pion is fully determined by static quantities, which in principle
can be measured accurately enough on finite T lattices.

We exploit thermal Ward Identities arising from the PCAC relation to
determine the residues of the relevant correlators in the chiral limit.

Then, use those at small but finite quark mass in order complete the
expansion.

For example: ρA(ω,p) = f 2
π (m2

π + p2)︸ ︷︷ ︸
Res(ωp)

δ(ω2 − ω2
p)

[arXiv:1506.05732]

Limitations...

Quark condensate is assumed to be different from zero.

The quark mass has to be small.

The width Γ is neglected (parametrically small if sufficiently closed to the
chiral limit)

Correlation functions containing pion states have to be dominated by the
pion itself (at least at large distances).



Lattice estimators for u(T ) at p = 0

ρA(ω, 0) = sgn(ω)f 2
πm

2
πδ(ω2 − ω2

0) + ...

and finally by using:

ω2
0 =

∂2
0GA(x0, 0)

GA(x0, 0)

∣∣∣∣
x0=β/2

= −4m2 GP(x0, 0)

GA(x0, 0)

∣∣∣∣
x0=β/2

uf =
f 2
πmπ

2GA(β/2, 0) sinh(ufmπβ/2)

um = −4m2

m2
π

GP(x0, 0)

GA(x0, 0)

∣∣∣∣
x0=β/2

Relevant quantities...

fπ,mπ

m↔ mMS(µ = 2GeV)

GA(β/2, 0), GP(β/2, 0)

−→ u(T ) is a RGI quantity!!



Lattice setup ...

Two temperature scans (C1, D1) at constant renormalized awi-mass
with Nf = 2 O(a) improved Wilson fermions.

Lattice sizes are 16× 323 covering a temperature range from 150
MeV to 235 MeV.

−→ Additional CLS zero temperature ensemble (A5) 64× 323 equivalent
to C1 at mπ = 290MeV: test ensemble.



Pion velocity results in the C1 scan. ...
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Figure: Pion velocitiy u(T ) Lattice estimators.

ChPT perturbative calculations of u(T ) in Real Time Formalism

Pion Propagation at finite temperature, A. Schenk (1993)

Pion Dynamics at finite femperature, D. Toublan (1997)

=⇒ Both find a significant reduction of the pion quasiparticle mass.



Going for a ”better” finite T lattice ...

B. Brandt, A. Francis, H. Meyer & D.R. [arXiv:1506.05732]
submitted to Phys.Rev. D

Single finite T lattice (Nf = 2), T = 169MeV

Finer lattice spacing ∼ 0.05 fm than the ensembles of the scan ∼ 0.08 fm.

Bigger Volume 24× 643: less finite volume and cutoff effects.

Smaller pion mass ∼ 270MeV.

High statistics.

T = 0 CLS ensemble 128× 643 (O7) to compare with.

T = 169MeV

uf 0.76(1)

um 0.74(1)

uf /um 1.02(1)

Pion mass at T = 169MeV

Pion mass at T = 0
= 0.836(14)

Pion decay constant at T = 169MeV

Pion decay constant at T = 0
= 1.03(2)

=⇒ Pion quasiparticle pole is shifted by ∼ 16%,
while time-like pion decay constant remains

constant!



Going for p 6= 0, first the T = 0 case...

Effective mass plots of axial charge euclidean correlators:∫
d3x e ipx 〈A0(x)A0(0)〉

ω0
1/T

ω0
0/T

x0/a
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=⇒ No violation of boost invariance. Expected behavior of the dispersion
relation → u(T → 0) ∼ 1



Analyzing GA(x0,T = 169MeV,p) at p 6= 0

Ground state extraction ”à la T = 0” becomes unreliable:

1 Too few points available on the temporal extension of a finite T lattice.

2 Excited state contamination due to axial vector mesons contributing at
p 6= 0: ma1 ≈ 1.2GeV

→ Analysis based on direct fits to GA(x0,T , p). Include non-pion contributions:

ρA(ω →∞,T , p) = θ(ω2 − 4m2 − p2)
Nc

24π2
(p2 + 6m2).

ρA(ω,T , p) = A1(p) sinh(ωβ/2)δ(ω − ωp) + A2(p)
Nc

24π2

(
1− e−ωβ

)
θ(ω − c)

=⇒

GA(x0,T , p) = A1(p) cosh(ωp(β/2− x0)) + A2(p)
Nc

24π2

(
e−cx0

x0
+

e−c(β−x0)

β − x0

)



Fit results for p = (0, 0, 2πn/L)

Fit interval is x0/a ∈ [5, 12] to avoid cutoff effects present at small
distances.

8 points for 4 parameters leads to poor constrained fits →
ωn = um

√
m2
π + p2 is NOT a fit parameter. um ∼ 0.74(1) from the

screeening analysis.

n ωn/T Ã2 = A2(p)/p2 c/T Res(ωp) b(p) χ2/d .o.f

1 2.19(3) 1.78(8) 6.7(3) 1.72(6) −0.08(3) 0.06

2 3.73(6) 1.26(2) 6.1(1) 3.3(2) −0.39(4) 0.15

3 5.40(9) 1.19(1) 7.7(1) 3.9(5) −0.65(4) 0.35

4 7.1(1) 1.15(1) 9.67(9) 4.21(7) −0.78(3) 0.49

ρ(ω, p) = Res(ωp)δ(ω2 − ω2
p)

Res(ωp) = 2A1(p)ωp sinh(ωpβ/2)

= f 2
π (m2

π + p2)(1 + b(p))

Value of Ã2 = A2(p)/p2 → 1

b(p) is small for n = 1. Chiral
prediction fulfilled up to
|p| ≈ 400MeV.



Backus-Gilbert method for ρA(ω,p)

Method for inverting integral equations. NOT a new method!

The B.G. method revisited: background, implementation and examples,

Hararioa & Somersalo (1987)

Model independent approach for spectral function reconstruction

GA(x0,T , p) =

∫ ∞
0

dω

(
ρA(ω, p)

tanh(ω/2)

)(
cosh(ω(β/2− x0))

cosh(ωβ/2)

)
︸ ︷︷ ︸

K(x0,ω)

.

Consists in defining an estimator for the true spectral function ρA(ω, p)

ρ̂(ω̄, pn) =

∫ ∞
0

dω δ̂(ω̄, ω)

(
ρA(ω, pn)

tanh(ωβ/2)

)
=

n∑
i=1

G(x i
0,T , pn)qi (ω̄).

The resolution function δ̂(ω̄, ω) is a smooth function peaked around ω̄
which ”smears” the true spectral function.

The coefficients qi (ω̄) are determined by minimizing the width of the
resolution function subject to the condition that the area under the curve
is normalized to 1.

This is carried out by inverting a ”close to singular” matrix. Regulating
with the covariance matrix of the data is necessary!



BG results for ρ̂(ω̄,pn)

Nc

24π2p
2

p2 = (6π/L)2
p2 = (4π/L)2
p2 = (2π/L)2

p2 = 0

ω/T

ρ̂
(ω

,p
n
)/
T

2
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What do we learn?

The asymptotic value of the spectral function is reproduced very well. We
obtain consistent results with the fits: Ã2 → 1.

→ The method is exact if the spectral function is a constant.

→ With this estimator we cannot really resolve the low-frequency region.



Testing the chiral prediction for Res(ωp) with BG method

If we now plug in the expected value of ωp at a given ω̄, we can define an
estimator

Res(ωp, ω)BG =
2ωp tanh(ωpβ/2)ρ̂(ω, pn)

δ̂(ω, ωp)
.

|p| = 0 |p| = 400MeV

Res(ωp, ω)BG/T
4

f2
πm

2
π/T

4

ω/T

2.521.510.50

0.8

0.78

0.76

0.74

0.72

0.7

0.68

0.66

0.64

Res(ωp, ω)BG/T
4

f2
π(m

2
π + p2

1)/T
4

ω/T

2.521.510.50

2.4

2.3

2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

=⇒ If evaluated at ω = ωp, where ωp = um
√

m2
π + p2, the value of the residue

is consistent with the chiral prediction at the 10% level and with the
results of the fits.



Conclusions & Outlook

Strong evidence that the pion dispersion relation at finite T is governed at
small momenta by a single parameter u(T ) ∼ 0.75 up to |p| ∼ 400MeV
(boost invariance violated?).

Splitting in the masses while the time-like pion decay constant remains
unaffected (Implications for HRG?)

T = 0 : pion mass = 267(2) MeV

↙ ↘
T = 169MeV : quasiparticle screening

mass = 223(4)MeV mass = 303(4)MeV

Various two-loop ChPT calculation at finite T support our findings:
A. Schenk, ’93, D. Toublan, ’97

The BG method has been found to be a useful tool for spectral function
reconstruction within QCD.

Extend the calculation to even lighter quark masses.

Detailed study of finite size effects and cutoff dependence.



Backup
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Figure: Trajectory of the pole in the pseudoscalar retarded correlator GR(ω, p).
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Figure: Ratio of estimators uf /um

=⇒ Well in the deconfined phase uf /um ∼ O(T/m).



Some equations on the BG method

G (xi ) =

∫ ∞

0

dωf (ω)K (xi , ω)

f̂ (ω̄) =

∫ ∞

0

dωδ̂(ω̄, ω)f (ω)

δ̂(ω̄, ω) =
∑

i

qi (ω̄)Ki (ω)

qi (ω̄) =

∑
j W
−1
ij (ω̄)R(xj)∑

k,l R(tk)W−1
kl (ω̄)R(xl)

Wij(ω̄) =

∫ ∞

0

dωK (xi , ω)(ω − ω̄)2K (xj , ω)

R(xi ) =

∫ ∞

0

dωK (xi , ω)

Wij → λWij + (1− λ)Sij

λ = 0.002, ω̄/T = 5
λ = 0.01, ω̄/T = 5
λ = 0.5, ω̄/T = 5
λ = 1, ω̄/T = 4

ω/T

T
δ̂(
ω̄
,ω

)

121086420
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A more detailed derivation ...

In the massless theory (m = 0) we notice that 〈PA〉 is fully determined
by WI’s:

GAP(x0, 0) =

∫
d3x 〈P(x)A0(0)〉 =

〈
ψ̄ψ
〉

2β
(x0 − β/2)

GAP(x0, k) =

∫
d3xe−ikx 〈P(x)A0(0)〉 =

∫ ∞

0

dωρAP(ω, k)
sinh(ω(β/2− x0))

sinh(ωβ/2)

One conclude easily that at zero momentum:

ρAP(ω, 0) = −
〈
ψ̄ψ
〉

2
δ(ω)

a massless excitation persists at finite temperature for any temperature
below TC.



We define the screening mass mπ at small but finite quark mass, by
making use of the results for the 〈PA〉 correlator and the GOR relation:

f 2
πm

2
π = −m

〈
ψ̄ψ
〉

Chiral Ward Identities imply for the static 〈PP〉 correlator:

∫
dx0 〈P(0)P(x)〉 = −

〈
ψ̄ψ
〉2

4f 2
π

exp(−mπr)

4πr
r →∞

Now, we use the following Ansatz

ρP(ω, k) = sgn(ω)C (k2)δ(ω2 − ω2
k) + ...

∫
dx0 〈P(0)P(x)〉 = 2 lim

ε→0

∫
d3k

(2π)3
e ikx

∫ ∞

0

dω

ω
e−εωρP(ω, k)

=

∫
d3k

(2π)3
e ikx

C (k2)

ω2
k

+ ...



One last observation ...

By comparing the last two equation one concludes easily that

ω2
k ∝ (k2 + m2

π)

with

C (k2) = −
〈
ψ̄ψ
〉2

u2

4f 2
π

and fπ is defined by

∫
dx0d

2x⊥ 〈A3(x)A3(0)〉 =
1

2
f 2
πmπe

−mπ|x3| |x3| → ∞

Conclusion:
We have proven our formula for the modified dispersion relation and
showed that it is compatible with chiral WI’s in the limit of small quark
mass.



Test of chiral predictions (A5 comparison) ...

mπ [MeV] 305(5)

fπ [MeV] 93(2)∣∣∣∣〈ψ̄ψ〉MS
GOR

∣∣∣∣1/3
(µ = 2GeV) [MeV] 364(7)

ω0 [MeV] 294(4)

fπ,0 [MeV] 97(3)∣∣∣∣〈ψ̄ψ〉MS
GOR,0

∣∣∣∣1/3
(µ = 2GeV) [MeV] 368(9)

uf 0.96(2)

um 0.92(6)

uf /um 1.04(4)

ω0/mπ 0.96(2)

〈
ψ̄ψ
〉

1-loop χPT L = ∞

1-loop χPT LT = 2

[
〈ψ̄ψ〉MS

GOR
(T )

〈ψ̄ψ〉MS

GOR
(0)

]1/3

T/fπ,0

2.32.22.121.91.81.71.61.5
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fπ

1-loop χPT L = ∞
1-loop χPT LT = 2

fπ(T )/fπ(0)

T/fπ,0

2.42.32.22.121.91.81.71.61.5
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`π = m−1
π

1-loop χPT L = ∞
1-loop χPT LT = 2

lπ(T )/lπ(0)

T/fπ,0
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Cross check. Maximum Entropy Method (MEM) ...

Goal: To reproduce the spectral function from the Euclidean correlator
via different models:

Recalling the form of the spectral function for GA:

ρA(ω, 0) =
f 2
πmπ

2u
δ(ω − ω0) + ... =⇒ A(Λ) ≡ 2

∫ Λ

0

dω

ω
ρA(ω, 0) =

f 2
π

u2

One introduces a strong systematic with MEM. One has to check the
model independency of the results very carefully!



Figure: Cutoff Λ-dependence of A(Λ,m(ω))



Figure: Left: 〈PP〉 (x0) channel. Right: 〈A0A0〉 (x0) channel.



Figure: 〈A0A0〉 reconstruction for the 3 different default models.



Summary of MEM results ...


