The Nuclear Contact: From Nucleus Photodisintegration To Nucleons Momentum Distributions

Betzalel Bazak

The Racah institute of Physics The Hebrew University, Jerusalem, Israel

The 8th International Workshop on Chiral Dynamics
Pisa, Italy
June 30, 2015

Betzalel Bazak (HU) The Nuclear Contact 1/21

Outline

- 1. Tan's Relations
- 2. The Nuclear Contact(s)
- 3. Nuclear Photoabsorption
- 4. Experimental Evaluation of the np Contact
- 5. Momentum Distributions
- 6. Conclusions

References:

- Nuclear Neutron-Proton Contact and the Photoabsorption Cross Section Ronen Weiss, BB, and Nir Barnea, PRL 114, 012501 (2015).
- Generalized nuclear contacts and the nucleon's momentum distributions Ronen Weiss, BB, and Nir Barnea, arXiv:1503.07047 (2015).

Betzalel Bazak (HU) The Nuclear Contact 2/21

Universality

- Universality occur when a system is not sensitive to its microscopic details.
- Low energy: Only s-wave survives.
- Short range: Most of the wave function is outside the range of the potential.

- The wave function depends on a single length scale the scattering length *a*
- The potential can be replaced by the Bethe-Peierles boundary condition

$$\left| \frac{d \log(r\psi)}{dr} \right|_0 = \left. \frac{u'}{u} \right|_0 = -\frac{1}{a}$$

• Valid for any short range potential.

Betzalel Bazak (HU) The Nuclear Contact

The Contact

A system of spin up - spin down fermions

The contact C measures the number of fermions pairs with small separations,

$$C = \int d\mathbf{R} \mathcal{C}(\mathbf{R})$$

- Naively, the number of pairs in a sphere of volume V should scale as V^2 .

Betzalel Bazak (HU)

The Contact

A system of spin up - spin down fermions

The contact *C* measures the number of fermions pairs with small separations,

$$C = \int d\mathbf{R} \mathcal{C}(\mathbf{R})$$

- Naively, the number of pairs in a sphere of volume V should scale as V^2 .
- For large scattering length, it scales as $V^{4/3}$ due to strong correlations.

Betzalel Bazak (HU) The Nuclear Contact 4/21

Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow \frac{C}{k^4}$$

$$\left(\frac{dE}{da^{-1}}\right)_S = -\frac{\hbar^2}{4\pi m}C$$

$$T+U=\sum_{\sigma}\int\frac{dk}{(2\pi)^3}\frac{\hbar^2k^2}{2m}\left(n_{\sigma}(k)-\frac{C}{k^4}\right)+\frac{\hbar^2}{4\pi ma}C$$

$$\left\langle n1\left(R+\frac{r}{2}\right)n2\left(R-\frac{r}{2}\right)\right\rangle \longrightarrow \frac{1}{16\pi^2}\left(\frac{1}{r^2}-\frac{2}{ar}\right)\mathcal{C}(R)$$

Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow \frac{C}{k^4}$$

Adiabatic relation

$$\left[\left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C \right]$$

$$T+U=\sum_{\sigma}\intrac{dk}{(2\pi)^3}rac{\hbar^2k^2}{2m}\left(n_{\sigma}(k)-rac{C}{k^4}
ight)+rac{\hbar^2}{4\pi ma}C$$

$$\left\langle n1\left(R+\frac{r}{2}\right)n2\left(R-\frac{r}{2}\right)\right\rangle \longrightarrow \frac{1}{16\pi^2}\left(\frac{1}{r^2}-\frac{2}{ar}\right)\mathcal{C}(R)$$

Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow \frac{C}{k^4}$$

Adiabatic relation

$$\left| \left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C \right|$$

The energy relation

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C$$

$$\left\langle n1\left(R+\frac{r}{2}\right)n2\left(R-\frac{r}{2}\right)\right\rangle \longrightarrow \frac{1}{16\pi^2}\left(\frac{1}{r^2}-\frac{2}{ar}\right)\mathcal{C}(R)$$

Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow \frac{C}{k^4}$$

Adiabatic relation

$$\left(\frac{dE}{da^{-1}}\right)_S = -\frac{\hbar^2}{4\pi m}C$$

The energy relation

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C$$

Density-Density correlator at short distances

$$\left\langle n1\left(R+\frac{r}{2}\right)n2\left(R-\frac{r}{2}\right)\right\rangle \longrightarrow \frac{1}{16\pi^2}\left(\frac{1}{r^2}-\frac{2}{ar}\right)\mathcal{C}(R)$$

Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow \frac{C}{k^4}$$

Adiabatic relation

$$\left[\left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C \right]$$

The energy relation

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C$$

Density-Density correlator at short distances

$$\left\langle n1\left(\mathbf{R} + \frac{\mathbf{r}}{2}\right)n2\left(\mathbf{R} - \frac{\mathbf{r}}{2}\right)\right\rangle \longrightarrow \frac{1}{16\pi^2}\left(\frac{1}{r^2} - \frac{2}{ar}\right)\mathcal{C}(\mathbf{R})$$

The Contact - Experimental Results

Momentum Distribution

Adiabatic relation

Ultra cold gas of fermionic ⁴⁰K

J. T. Stewart et al. PRL 104, 235301 (2010)

The Contact - The Two Body Case

- Consider two particles interacting with short range interaction with large scattering length.
- The energy of a universal dimer,

$$E = -\frac{\hbar^2}{ma^2}$$

Using the adiabatic relation,

$$C = -\frac{4\pi m}{\hbar^2} \frac{dE}{da^{-1}} = \frac{8\pi}{a}$$

The wave function reads,

$$\psi(r) = Y_{00} \sqrt{\frac{2}{a}} \frac{e^{-r/a}}{r} \approx Y_{00} \sqrt{\frac{2}{a}} \left(\frac{1}{r} - \frac{1}{a}\right)$$

and therefore the tail of the momentum distribution

$$n(k) \longrightarrow \frac{8\pi/a}{k^4} = \frac{6}{k}$$

The Contact - The Two Body Case

- Consider two particles interacting with short range interaction with large scattering length.
- The energy of a universal dimer,

$$E = -\frac{\hbar^2}{ma^2}$$

Using the adiabatic relation,

$$C = -\frac{4\pi m}{\hbar^2} \frac{dE}{da^{-1}} = \frac{8\pi}{a}$$

The wave function reads,

$$\psi(\mathbf{r}) = Y_{00} \sqrt{\frac{2}{a}} \frac{e^{-r/a}}{r} \approx Y_{00} \sqrt{\frac{2}{a}} \left(\frac{1}{r} - \frac{1}{a}\right)$$

and therefore the tail of the momentum distribution

$$n(k) \longrightarrow \frac{8\pi/a}{k^4} = \frac{C}{k^4}$$

The Contact - The Many Body Case

When two particles approach each other

$$\Psi \xrightarrow[r_{ij}\to 0]{} (1/r_{ij}-1/a)A_{ij}(\mathbf{R}_{ij},\{\mathbf{r}_k\}_{k\neq i,j})$$

$$C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle$$

Where

$$\langle A_{ij}|A_{ij}\rangle = \int \prod_{k\neq i,j} d\mathbf{r}_k d\mathbf{R}_{ij} A_{ij}^{\dagger} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right) \cdot A_{ij} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right)$$

 For large k, the Fourier transform is dominated by the short-range divergences,

$$\int d^3r_i e^{-ik\cdot r_i} \psi(r_1,...,r_N) \approx \int d^3r_i e^{-ik\cdot r_i} \sum_{j,j\neq i} \frac{1}{r_{ij}} A(\mathbf{R}_{ij},r_l)$$

The Contact - The Many Body Case

When two particles approach each other

$$\boxed{\Psi \xrightarrow[r_{ij}\to 0]{} (1/r_{ij}-1/a)A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j})}$$

$$C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle$$

Where

$$\langle A_{ij}|A_{ij}\rangle = \int \prod_{k\neq i,j} d\mathbf{r}_k d\mathbf{R}_{ij} A_{ij}^{\dagger} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right) \cdot A_{ij} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right)$$

$$\int d^3r_i e^{-ik\cdot r_i} \psi(r_1,...,r_N) \approx \int d^3r_i e^{-ik\cdot r_i} \sum_{j,j\neq i} \frac{1}{r_{ij}} A(\mathbf{R}_{ij},r_l)$$

The Contact - The Many Body Case

When two particles approach each other

$$\boxed{\Psi \xrightarrow[r_{ij}\to 0]{} (1/r_{ij}-1/a)A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j})}$$

$$C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle$$

Where

$$\langle A_{ij}|A_{ij}\rangle = \int \prod_{k\neq i,j} d\mathbf{r}_k d\mathbf{R}_{ij} A_{ij}^{\dagger} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right) \cdot A_{ij} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right)$$

• For large k, the Fourier transform is dominated by the short-range divergences,

$$\int d^3r_i e^{-i\mathbf{k}\cdot\mathbf{r}_i} \psi(\mathbf{r}_1,...,\mathbf{r}_N) \approx \int d^3r_i e^{-i\mathbf{k}\cdot\mathbf{r}_i} \sum_{j,j\neq i} \frac{1}{r_{ij}} A(\mathbf{R}_{ij},\mathbf{r}_l)$$

Scales

- NN interaction range $\mu_{\pi}^{-1} = \hbar/m_{\pi}c \approx 1.4 \text{ fm}$
- NN scattering lengths $a_t = 5.4$ fm , $a_s \approx 20$ fm thus $\mu_{\pi} |a| \geq 3.8$
- The nuclear radius is $R \approx 1.2A^{1/3}$ fm
- The interparticle distance $d \approx 2.4$ fm thus $\mu_{\pi}d \approx 1.7$

$$\Psi \xrightarrow[r_{ij} \to 0]{} (1/r_{ij} - 1/a) A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

Scales

- NN interaction range $\mu_{\pi}^{-1} = \hbar/m_{\pi}c \approx 1.4$ fm
- NN scattering lengths $a_t = 5.4$ fm , $a_s \approx 20$ fm thus $\mu_{\pi} |a| \geq 3.8$
- The nuclear radius is $R \approx 1.2A^{1/3}$ fm
- The interparticle distance $d \approx 2.4$ fm thus $\mu_{\pi} d \approx 1.7$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics.
- The interaction range is significant.
- There could be different interaction channels not only s-wave.
- Therefore, we need to replace the asymptotic form

$$\boxed{\Psi \xrightarrow[r_{ij}\to 0]{} (1/r_{ij}-1/a)A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j})}$$

• Consequently we don't expect a $1/k^4$ tail

Scales

- NN interaction range $\mu_{\pi}^{-1} = \hbar/m_{\pi}c \approx 1.4$ fm
- NN scattering lengths $a_t = 5.4$ fm , $a_s \approx 20$ fm thus $\mu_{\pi} |a| \geq 3.8$
- The nuclear radius is $R \approx 1.2A^{1/3}$ fm
- The interparticle distance $d \approx 2.4$ fm thus $\mu_{\pi} d \approx 1.7$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics.
- The interaction range is significant.
- There could be different interaction channels not only *s*-wave.
- Therefore, we need to replace the asymptotic form

$$\boxed{\Psi \xrightarrow[r_{ij}\to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A_{ij}^{\alpha}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j})}$$

• Consequently we don't expect a $1/k^4$ tail

• In nuclear physics we have 3 possible particle pairs

$$ij = \{pp, nn, pn\}$$

• For each pair there are different channels

$$\alpha = (s, \ell)jm$$

• For each pair we define the contact matrix

$$C_{ij}^{\alpha\beta} \equiv 16\pi^2 N_{ij} \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle$$

• For $\ell = 0$ we need consider only 4 contacts

$$P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\}$$

Adding isospin symmetry the number of contacts is reduced to 2,

$$C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\}$$

 $C_t \longleftrightarrow \{(np)_{S=1}\}$

Betzalel Bazak (HU) The Nuclear Contact

• In nuclear physics we have 3 possible particle pairs

$$ij = \{pp, nn, pn\}$$

• For each pair there are different channels

$$\alpha = (s, \ell)jm$$

• For each pair we define the contact matrix

$$C_{ij}^{\alpha\beta} \equiv 16\pi^2 N_{ij} \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle$$

• For $\ell = 0$ we need consider only 4 contacts

$$P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\}$$

Adding isospin symmetry the number of contacts is reduced to 2,

$$C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\}$$

 $C_t \longleftrightarrow \{(np)_{S=1}\}$

• In nuclear physics we have 3 possible particle pairs

$$ij = \{pp, nn, pn\}$$

• For each pair there are different channels

$$\alpha = (s, \ell)jm$$

• For each pair we define the contact matrix

$$C_{ij}^{\alpha\beta} \equiv 16\pi^2 N_{ij} \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle$$

• For $\ell = 0$ we need consider only 4 contacts

$$P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\}$$

Adding isospin symmetry the number of contacts is reduced to 2,

$$C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\}$$

$$C_t \longleftrightarrow \{(np)_{S=1}\}$$

• In nuclear physics we have 3 possible particle pairs

$$ij = \{pp, nn, pn\}$$

• For each pair there are different channels

$$\alpha = (s, \ell)jm$$

• For each pair we define the contact matrix

$$C_{ij}^{\alpha\beta} \equiv 16\pi^2 N_{ij} \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle$$

• For $\ell = 0$ we need consider only 4 contacts

$$P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\}$$

Adding isospin symmetry the number of contacts is reduced to 2,

$$C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\}$$

$$C_t \longleftrightarrow \{(np)_{S=1}\}$$

Photoabsorption of Nuclei

The Deuteron cross-section

H. Arenhovel, and M. Sanzone, Few-Body Syst. (1991).

Up to $\hbar\omega \approx 200$ MeV the cross-section $\sigma_A(\omega)$ is dominated by the **dipole** operator

$$\sigma_{A}\left(\omega\right)=4\pi^{2}\alpha\omega R\left(\omega\right)$$

R is the response function

$$R(\omega) = \sum_{f} \left| \langle \Psi_f | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}} | \Psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega)$$

The Quasi-Deuteron Picture

- The photon carries energy but (almost) no momentum
- It is captured by a single **proton**.
- The proton is ejected without any FSI.
- Momentum conservation \Rightarrow a nucleon with opposite momentum must be ejected $k \approx -k_p$.
- Dipole dominance \Rightarrow this partner must be a **neutron**.
- $\hbar\omega \longrightarrow \infty \Rightarrow \sigma(\omega)$ depends on a **universal** short range *pn* wave-function.
- The resulting cross-section is given by

$$\sigma_A(\omega) = \frac{L}{A} \frac{NZ}{A} \sigma_d(\omega)$$

• L is known as the Levinger Constant

J. S. Levinger, Phys. Rev. 84, 43 (1951).

Betzalel Bazak (HU) The Nuclear Contact 12 / 21

The Quasi-Deuteron Model Revised

• When a pn pair are close together Ψ_0 is factorized into

$$\Psi_0(\mathbf{r}_1,...,\mathbf{r}_A) = \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{pn}) A_{pn}^{\alpha} \left(\mathbf{R}_{pn}, \{\mathbf{r}_j\}_{j \neq p,n} \right) + \dots$$

$$\Psi_f^{\alpha}(\mathbf{r}_1,\ldots,\mathbf{r}_A) = \frac{4\pi}{\sqrt{C_{\alpha}}}\hat{\mathcal{A}}\left\{\frac{1}{\sqrt{\Omega}}e^{-i\mathbf{k}\cdot\mathbf{r}_{pn}}\chi_S A_{pn}^{\alpha}(\mathbf{R}_{pn},\{\mathbf{r}_j\}_{j\neq p,n})\right\}$$

• Assuming *s*-wave dominance, α is either singlet or triplet and $\varphi_{\alpha} \approx \varphi_{d}$,

$$\langle \Psi_f^\alpha | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}} | \Psi_0 \rangle \approx \sqrt{\frac{C_\alpha a_t}{8\pi}} \langle \psi_{d,f} | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}} | \psi_{d,0} \rangle$$

The cross section,

$$\sigma_A(\omega) = \frac{a_t}{4\pi} \frac{(C_s + C_t)}{2} \sigma_d(\omega) = \frac{a_t}{4\pi} \bar{C}_{pn} \sigma_d(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$

Betzalel Bazak (HU) The Nuclear Contact 13 / 21

The Quasi-Deuteron Model Revised

• When a pn pair are close together Ψ_0 is factorized into

$$\Psi_0(\mathbf{r}_1,...,\mathbf{r}_A) = \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{pn}) A_{pn}^{\alpha} \left(\mathbf{R}_{pn}, \{\mathbf{r}_j\}_{j \neq p,n} \right) + \dots$$

$$\Psi_f^{\alpha}(\mathbf{r}_1,\ldots,\mathbf{r}_A) = \frac{4\pi}{\sqrt{C_{\alpha}}}\hat{\mathcal{A}}\left\{\frac{1}{\sqrt{\Omega}}e^{-i\mathbf{k}\cdot\mathbf{r}_{pn}}\chi_S A_{pn}^{\alpha}(\mathbf{R}_{pn},\{\mathbf{r}_j\}_{j\neq p,n})\right\}$$

Assuming s-wave dominance, α is either singlet or triplet and $\varphi_{\alpha} \approx \varphi_{d}$,

$$\langle \Psi_f^\alpha | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}} | \Psi_0 \rangle \approx \sqrt{\frac{C_\alpha a_t}{8\pi}} \langle \psi_{d,f} | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}} | \psi_{d,0} \rangle$$

The cross section.

$$\sigma_A(\omega) = \frac{a_t}{4\pi} \frac{(C_s + C_t)}{2} \sigma_d(\omega) = \frac{a_t}{4\pi} \bar{C}_{pn} \sigma_d(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$

The Levinger Constant and the Nuclear Contact

- In his original paper Levinger has estimated L = 6.4
- In view of the available data we can conclude

$$L = 5.50 \pm 0.21$$

- N = Z = A/2
- Normalize by the Fermi momentum

$$\frac{\bar{C}_{pn}}{k_F A} = \frac{\pi}{k_F a_t} (5.50 \pm 0.21)$$

• $1/k_F a_t \approx 0.15$

$$\bar{C}_{pn}/k_FA \approx 2.55 \pm 0.10$$

O. A. P. Tavares and M. L. Terranova, J. Phys. G 18, 521 (1992).

Comparison to Atomic Physics

Atomic data - ⁴⁰K - J. T. Stewart et al., PRL **104**, 235301 (2010) ⁶Li - G.B. Partridge et al., PRL **95**, 020404 (2005)

Nuclear data - The main source of the horizontal error bar is the range (a_5, a_t)

Betzalel Bazak (HU) The Nuclear Contact 15 / 21

Comparison to Atomic Physics

Atomic data - 40 K - J. T. Stewart et al., PRL **104**, 235301 (2010) 6 Li - G.B. Partridge et al., PRL **95**, 020404 (2005)

Nuclear data - The main source of the horizontal error bar is the range (a_s, a_t)

Betzalel Bazak (HU) The Nuclear Contact 15 / 21

1-body neutron and proton momentum distributions

$$n_n(\mathbf{k}), n_p(\mathbf{k})$$

2-body nn, np, pp momentum distributions

$$F_{nn}(\mathbf{k})$$
, $F_{pn}(\mathbf{k})$, $F_{pp}(\mathbf{k})$

The proton momentum distribution

$$n_p^{JM}(\mathbf{k}) = Z \int \prod_{l \neq p} \frac{d^3 k_l}{(2\pi)^3} \left| \tilde{\Psi}(\mathbf{k}_1, \dots, \mathbf{k}_p = \mathbf{k}, \dots, \mathbf{k}_A) \right|^2$$

Using the asymptotic wave-function

$$\Psi \xrightarrow[r_{ij}\to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A^{\alpha}_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j})$$

we get

$$n_p(\mathbf{k}) = rac{1}{2J+1} \sum_{lpha,eta} \tilde{\varphi}_{pp}^{lpha\dagger}(\mathbf{k}) \tilde{\varphi}_{pp}^{eta}(\mathbf{k}) Z(Z-1) \langle A_{pp}^{lpha}|A_{pp}^{eta}
angle \ + rac{1}{2J+1} \sum_{lpha,eta} \tilde{\varphi}_{pn}^{lpha\dagger}(\mathbf{k}) \tilde{\varphi}_{pn}^{eta}(\mathbf{k}) NZ \langle A_{pn}^{lpha}|A_{pn}^{eta}
angle$$

The proton momentum distribution

$$n_p^{JM}(\mathbf{k}) = Z \int \prod_{l \neq p} \frac{d^3 k_l}{(2\pi)^3} \left| \tilde{\Psi}(\mathbf{k}_1, \dots, \mathbf{k}_p = \mathbf{k}, \dots, \mathbf{k}_A) \right|^2$$

Using the asymptotic wave-function

$$\Psi \xrightarrow[r_{ij}\to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A^{\alpha}_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j})$$

we get

$$n_p(\mathbf{k}) = \sum_{\alpha,\beta} \tilde{\varphi}_{pp}^{\alpha\dagger}(\mathbf{k}) \tilde{\varphi}_{pp}^{\beta}(\mathbf{k}) \frac{2C_{pp}^{\alpha\beta}}{16\pi^2} + \sum_{\alpha,\beta} \tilde{\varphi}_{pn}^{\alpha\dagger}(\mathbf{k}) \tilde{\varphi}_{pn}^{\beta}(\mathbf{k}) \frac{C_{pn}^{\alpha\beta}}{16\pi^2}$$

Betzalel Bazak (HU) The Nuclear Contact 17 / 21

Furthermore, starting from the general assumption

$$\boxed{\Psi \xrightarrow[r_{ij}\to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A_{ij}^{\alpha}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j})}$$

The following asymptotic relations between the 1-body and 2-body momentum distributions can be proven

$$n_p(\mathbf{k}) \xrightarrow[\mathbf{k}\to\infty]{} 2F_{pp}(\mathbf{k}) + F_{pn}(\mathbf{k})$$

$$n_n(\mathbf{k}) \xrightarrow[k\to\infty]{} 2F_{nn}(\mathbf{k}) + F_{pn}(\mathbf{k})$$

These relations hold regardless of the specific form of φ_{α} and without any assumptions on $\{\alpha\}$

Betzalel Bazak (HU) The Nuclear Contact 18 / 21

Numerical verification of the momentum relations

VMC calculations of light nuclei

 Wiringa et al. published a series of 1-body, 2-body momentum distributions

R. B. Wiringa et al., PRC 89, 024305 (2014)

- The data is available for nuclei in the range $2 \le A \le 10$.
- The calculations were done with the VMC method
- For symmetric nuclei $n_p = n_n$

The momentum relations holds for 4 fm⁻¹ $\leq k \leq 5$ fm⁻¹

The nuclear contact

The nuclear contact

The nuclear contact

Conclusions and outlook

Generalizing Tan's contact to nuclear physics

- The Quasi-Deuteron model was revised.
- The Levinger constant and the nuclear contacts are close relatives.
- \bar{C}_{pn} was deduced using previous evaluations of Levinger constant.
- \bar{C}_{pn}/A seems to be constant throughout the nuclear chart.
- Its value stands in line with the universal curve measured in ultracold atomic systems.
- Momentum relations were derived, connecting one-body and two-body distributions.
- There relations were verified using VMC data.
- Levinger constant derived from this data is in agreement with that derived from photoabsorption experiments.

Outlook

- Electron scattering.
- Neutrino scattering.
- ...

We have only started to explore the usefulness of the contact formalism in nuclear physics!

Backup slides

Betzalel Bazak (HU) The Nuclear Contact 21/21

Quantum field theory formulation of the Zero-Range Model,

$$\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R}) + \frac{g(\Lambda)}{m} \psi_1^{\dagger} \psi_2^{\dagger} \psi_2 \psi_1(\mathbf{R}) + \mathcal{V}$$

Renormalization

$$g(\Lambda) = \frac{4\pi a}{1 - 2a\Lambda/\pi}$$

• Defining di-atomic field operator, $\Phi(R) = g(\Lambda)\psi_2\psi_1(R)$

$$\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R}) - \frac{\Lambda}{2\pi^2 m} \Phi^{\dagger} \Phi + \frac{1}{4\pi ma} \Phi^{\dagger} \Phi + \mathcal{V}$$

• Identifying $C = \int d^3R \langle \Phi^{\dagger}\Phi(R) \rangle$ we got the adiabatic relation.

Quantum field theory formulation of the Zero-Range Model,

$$\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R}) + \frac{g(\Lambda)}{m} \psi_1^{\dagger} \psi_2^{\dagger} \psi_2 \psi_1(\mathbf{R}) + \mathcal{V}$$

Renormalization,

$$g(\Lambda) = \frac{4\pi a}{1 - 2a\Lambda/\pi}$$

$$\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R}) - \frac{\Lambda}{2\pi^2 m} \Phi^{\dagger} \Phi + \frac{1}{4\pi ma} \Phi^{\dagger} \Phi + \mathcal{V}$$

Quantum field theory formulation of the Zero-Range Model,

$$\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R}) + \frac{g(\Lambda)}{m} \psi_1^{\dagger} \psi_2^{\dagger} \psi_2 \psi_1(\mathbf{R}) + \mathcal{V}$$

Renormalization,

$$g(\Lambda) = \frac{4\pi a}{1 - 2a\Lambda/\pi}$$

Defining di-atomic field operator, $\Phi(\mathbf{R}) = g(\Lambda)\psi_2\psi_1(\mathbf{R})$

$$\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R}) - \frac{\Lambda}{2\pi^2 m} \Phi^{\dagger} \Phi + \frac{1}{4\pi ma} \Phi^{\dagger} \Phi + \mathcal{V}$$

Quantum field theory formulation of the Zero-Range Model,

$$\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R}) + \frac{g(\Lambda)}{m} \psi_1^{\dagger} \psi_2^{\dagger} \psi_2 \psi_1(\mathbf{R}) + \mathcal{V}$$

Renormalization,

$$g(\Lambda) = \frac{4\pi a}{1 - 2a\Lambda/\pi}$$

Defining di-atomic field operator, $\Phi(R) = g(\Lambda)\psi_2\psi_1(R)$

$$\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^{\dagger} \nabla \psi_{\sigma}(\mathbf{R}) - \frac{\Lambda}{2\pi^2 m} \Phi^{\dagger} \Phi + \frac{1}{4\pi ma} \Phi^{\dagger} \Phi + \mathcal{V}$$

• Identifying $C = \int d^3R \langle \Phi^{\dagger} \Phi(R) \rangle$ we got the adiabatic relation.

Comment I

Nuclear Short Range Correlations

C. Ciofi degli Atti, and S. Simula, PRC 53, 1689 (1996)

Short range correlations and their universal nature is an intensive line of research in NP

[Ciofi degli Atti, Frankfurt, Strikman, Sargasian, Piasetzky,...]

Comment II

Nuclear Short Range Correlations

O. Hen, et al., Science 346, 614 (2014)

Short range correlations measured in (e,e') experiments at JLAB.

A clear preference for correlated np pairs.

Betzalel Bazak (HU)

21 / 21

Experimental Results - fitting the Levinger Constant

The ¹²C photoabsorption cross-section

Points - data of Ahrens (Nucl. Phys. A 446, 229 (1985))

Line - the Ouasi-Deutron model L=5.8

Short range interaction

We start with 2-body Schrodinger ...

$$\left[\left[-\frac{\hbar^2}{m} \nabla^2 + V(\mathbf{r}) \right] \psi = E \psi \right]$$

At vanishing distance, $r \longrightarrow 0$

- The energy becomes negligible $E \ll \hbar^2/mr^2$
- The w.f. ψ assumes an asymptotic energy independent form φ

$$r\varphi(r) = 0|_{r=0}$$

• Valid for any A-body system.