The Nuclear Contact:
From Nucleus Photodisintegration
To Nucleons Momentum Distributions

Betzalel Bazak

The Racah institute of Physics
The Hebrew University, Jerusalem, Israel

The 8th International Workshop on Chiral Dynamics
Pisa, Italy
June 30, 2015
Outline

1. Tan’s Relations
2. The Nuclear Contact(s)
3. Nuclear Photoabsorption
4. Experimental Evaluation of the np Contact
5. Momentum Distributions
6. Conclusions

References:

1. Nuclear Neutron-Proton Contact and the Photoabsorption Cross Section

2. Generalized nuclear contacts and the nucleon’s momentum distributions
Universality occur when a system is not sensitive to its microscopic details.

- Low energy: Only s-wave survives.
- Short range: Most of the wave function is outside the range of the potential.
- The wave function depends on a single length scale - the **scattering length** a
- The potential can be replaced by the Bethe-Peierles boundary condition

$$\left.\frac{d \log(r\psi)}{dr}\right|_0 = \left.\frac{u'}{u}\right|_0 = -\frac{1}{a}$$

- Valid for any short range potential.
The contact C measures the number of fermions pairs with small separations,

$$C = \int dR C(R)$$

- Naively, the number of pairs in a sphere of volume V should scale as V^2.
- For large scattering length, it scales as $V^{4/3}$ due to strong correlations.
The contact C measures the number of fermions pairs with small separations,

$$C = \int dR C(R)$$

- Naively, the number of pairs in a sphere of volume V should scale as V^2.
- For large scattering length, it scales as $V^{4/3}$ due to strong correlations.
The Contact - Tan’s Relations

Tail of momentum distribution \(|a|^{-1} \ll k \ll r_0^{-1}\)

\[
n_\sigma(k) \rightarrow \frac{C}{k^4}
\]

Adiabatic relation

\[
\left(\frac{dE}{da^{-1}} \right)_s = -\frac{\hbar^2}{4\pi m} C
\]

The energy relation

\[
T + U = \sum_\sigma \int \frac{dk}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_\sigma(k) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C
\]

Density-Density correlator at short distances

\[
\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \rangle \rightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R)
\]
The Contact - Tan’s Relations

1. **Tail of momentum distribution** $|a|^{-1} \ll k \ll r_0^{-1}$

 $n_\sigma(k) \rightarrow \frac{C}{k^4}$

2. **Adiabatic relation**

 \[
 \left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C
 \]

3. **The energy relation**

 \[
 T + U = \sum_\sigma \int \frac{dk}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_\sigma(k) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C
 \]

4. **Density-Density correlator at short distances**

 \[
 \left\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \right\rangle \rightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R)
 \]
The Contact - Tan’s Relations

1. Tail of momentum distribution \(|a|^{-1} \ll k \ll r_0^{-1} \)

\[
n_\sigma(k) \longrightarrow \frac{C}{k^4}
\]

2. Adiabatic relation

\[
\left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C
\]

3. The energy relation

\[T + U = \sum_\sigma \int \frac{dk}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_\sigma(k) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C\]

4. Density-Density correlator at short distances

\[
\left\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \right\rangle \longrightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R)
\]

...
The Contact - Tan’s Relations

1. Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_\sigma(k) \longrightarrow \frac{C}{k^4}$$

2. Adiabatic relation

$$\left(\frac{dE}{da^{-1}} \right)_s = -\frac{\hbar^2}{4\pi m} C$$

3. The energy relation

$$T + U = \sum_\sigma \int \frac{dk}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_\sigma(k) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C$$

4. Density-Density correlator at short distances

$$\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \rangle \longrightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R)$$
Tail of momentum distribution \(\left| a \right|^{-1} \ll k \ll r_0^{-1} \)

\[
n_\sigma(k) \rightarrow \frac{C}{k^4}
\]

Adiabatic relation

\[
\left(\frac{dE}{da^{-1}} \right)_S = -\frac{\hbar^2}{4\pi m} C
\]

The energy relation

\[
T + U = \sum_\sigma \int \frac{dk}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_\sigma(k) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C
\]

Density-Density correlator at short distances

\[
\langle n_1 \left(R + \frac{r}{2} \right) n_2 \left(R - \frac{r}{2} \right) \rangle \rightarrow \frac{1}{16\pi^2} \left(\frac{1}{r^2} - \frac{2}{ar} \right) C(R)
\]

\[\ldots\]
The Contact - Experimental Results

Momentum Distribution

Ultra cold gas of fermionic ^{40}K

J. T. Stewart et al. PRL 104, 235301 (2010)

Adiabatic relation
Consider two particles interacting with short range interaction with large scattering length.

The energy of a universal dimer,

\[E = -\frac{\hbar^2}{ma^2} \]

Using the adiabatic relation,

\[C = -\frac{4\pi m}{\hbar^2} \frac{dE}{da^{-1}} = \frac{8\pi}{a} \]

The wave function reads,

\[\psi(r) = Y_{00} \sqrt{\frac{2}{a}} e^{-r/a} \approx Y_{00} \sqrt{\frac{2}{a}} \left(\frac{1}{r} - \frac{1}{a} \right) \]

and therefore the tail of the momentum distribution

\[n(k) \rightarrow \frac{8\pi/a}{k^4} = \frac{C}{k^4} \]
Consider two particles interacting with short range interaction with large scattering length.

The energy of a universal dimer,

\[E = -\frac{\hbar^2}{ma^2} \]

Using the adiabatic relation,

\[C = -\frac{4\pi m}{\hbar^2} \frac{dE}{da^{-1}} = \frac{8\pi}{a} \]

The wave function reads,

\[\psi(r) = Y_{00} \sqrt{\frac{2}{a}} \frac{e^{-r/a}}{r} \approx Y_{00} \sqrt{\frac{2}{a}} \left(\frac{1}{r} - \frac{1}{a} \right) \]

and therefore the tail of the momentum distribution

\[n(k) \xrightarrow{k^4} \frac{8\pi/a}{k^4} = \frac{C}{k^4} \]
The Contact - The Many Body Case

- When two particles approach each other

\[
\Psi \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a} \right) A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j})
\]

\[
C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle
\]

- Where

\[
\langle A_{ij} | A_{ij} \rangle = \int \prod_{k \neq i,j} dr_k dR_{ij} A_{ij}^\dagger \left(R_{ij}, \{r_k\}_{k \neq i,j} \right) \cdot A_{ij} \left(R_{ij}, \{r_k\}_{k \neq i,j} \right)
\]

- For large \(k\), the Fourier transform is dominated by the short-range divergences,

\[
\int d^3 r_i e^{-ik \cdot r_i} \psi(r_1, ..., r_N) \approx \int d^3 r_i e^{-ik \cdot r_i} \sum_{i \neq j} \frac{1}{r_{ij}} A(R_{ij}, r_i)
\]
The Contact - The Many Body Case

- When two particles approach each other

\[
\Psi \xrightarrow{r_{ij} \to 0} (1/r_{ij} - 1/a) A_{ij}(R_{ij}, \{r_k\}_{k \neq i, j})
\]

\[
C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle
\]

- Where

\[
\langle A_{ij} | A_{ij} \rangle = \int \prod_{k \neq i, j} dr_k dR_{ij} A_{ij}^\dagger \left(R_{ij}, \{r_k\}_{k \neq i, j} \right) \cdot A_{ij} \left(R_{ij}, \{r_k\}_{k \neq i, j} \right)
\]

- For large \(k\), the Fourier transform is dominated by the short-range divergences,

\[
\int d^3 r_i e^{-ik \cdot r_i} \psi(r_1, ..., r_N) \approx \int d^3 r_i e^{-ik \cdot r_i} \sum_{j, j \neq i} \frac{1}{r_{ij}} A(R_{ij}, r_l)
\]
When two particles approach each other

\[\Psi \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a} \right) A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j}) \]

\[C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle \]

Where

\[\langle A_{ij} | A_{ij} \rangle = \int \prod_{k \neq i,j} dr_k dR_{ij} A_{ij}^\dagger(R_{ij}, \{r_k\}_{k \neq i,j}) \cdot A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j}) \]

For large k, the Fourier transform is dominated by the short-range divergences,

\[\int d^3 r_i e^{-i k \cdot r_i} \psi(r_1, ..., r_N) \approx \int d^3 r_i e^{-i k \cdot r_i} \sum_{j,i} \frac{1}{r_{ij}} A(R_{ij}, r_l) \]
Scales

- NN interaction range \(\mu_\pi^{-1} = \hbar / m_\pi c \approx 1.4 \text{ fm} \)
- NN scattering lengths \(a_t = 5.4 \text{ fm}, a_s \approx 20 \text{ fm} \) thus \(\mu_\pi |a| \geq 3.8 \)
- The nuclear radius is \(R \approx 1.2 A^{1/3} \text{ fm} \)
- The interparticle distance \(d \approx 2.4 \text{ fm} \) thus \(\mu_\pi d \approx 1.7 \)

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics.
- The interaction range is significant.
- There could be different interaction channels - not only s-wave.
- Therefore, we need to replace the asymptotic form

\[
\Psi \xrightarrow[r_{ij} \to 0]{} (1/r_{ij} - 1/a) A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j})
\]

- Consequently, we don’t expect a \(1/k^4 \) tail
The Nuclear Contact(s)

Scales
- NN interaction range $\mu_{\pi}^{-1} = \hbar/m_\pi c \approx 1.4 \text{ fm}$
- NN scattering lengths $a_t = 5.4 \text{ fm}$, $a_s \approx 20 \text{ fm}$ thus $\mu_{\pi} |a| \geq 3.8$
- The nuclear radius is $R \approx 1.2A^{1/3} \text{ fm}$
- The interparticle distance $d \approx 2.4 \text{ fm}$ thus $\mu_{\pi}d \approx 1.7$

Conclusions
- The Tan conditions are not strictly applicable in nuclear physics.
- The interaction range is significant.
- There could be different interaction channels - not only s-wave.
- Therefore, we need to replace the asymptotic form

$$
\Psi \xrightarrow{r_{ij} \to 0} \frac{1}{r_{ij}} - \frac{1}{a} A_{ij}(R_{ij}, \{r_k\}_{k \neq i,j})
$$

Consequently we don’t expect a $1/k^4$ tail
The Nuclear Contact(s)

Scales

- NN interaction range $\mu_\pi^{-1} = \hbar/m_\pi c \approx 1.4$ fm
- NN scattering lengths $a_t = 5.4$ fm, $a_s \approx 20$ fm thus $\mu_\pi |a| \geq 3.8$
- The nuclear radius is $R \approx 1.2A^{1/3}$ fm
- The interparticle distance $d \approx 2.4$ fm thus $\mu_\pi d \approx 1.7$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics.
- The interaction range is significant.
- There could be different interaction channels - not only s-wave.
- Therefore, we need to replace the asymptotic form

$$\Psi \rightarrow \sum_\alpha \varphi_\alpha (r_{ij}) A_{ij}^\alpha (R_{ij}, \{r_k\}_{k \neq i,j})$$

- Consequently we don’t expect a $1/k^4$ tail
In nuclear physics we have \(3\) possible particle pairs

\[ij = \{pp, \; nn, \; pn\} \]

For each pair there are different channels

\[\alpha = (s, \ell)jm \]

For each pair we define the contact matrix

\[C_{ij}^{\alpha\beta} \equiv 16\pi^2 N_{ij} \langle A_{ij}^\alpha | A_{ij}^\beta \rangle \]

For \(\ell = 0\) we need consider only \(4\) contacts

\[P = \{(pp)_{S=0}, \; (nn)_{S=0}, \; (np)_{S=0}, \; (np)_{S=1}\} \]

Adding isospin symmetry the number of contacts is reduced to \(2\),

\[C_s \leftrightarrow \{(pp)_{S=0}, \; (nn)_{S=0}, \; (np)_{S=0}\} \]

\[C_t \leftrightarrow \{(np)_{S=1}\} \]
The Nuclear Contact(s)

- In nuclear physics we have 3 possible particle pairs
 \[ij = \{pp, \, nn, \, pn\} \]
- For each pair there are different channels
 \[\alpha = (s, \ell)jm \]
- For each pair we define the contact matrix
 \[C_{ij}^{\alpha\beta} \equiv 16\pi^2N_{ij}\langle A_{ij}^\alpha|A_{ij}^\beta\rangle \]
- For \(\ell = 0 \) we need consider only 4 contacts
 \[P = \{(pp)_{s=0}, \, (nn)_{s=0}, \, (np)_{s=0}, \, (np)_{s=1}\} \]
- Adding isospin symmetry the number of contacts is reduced to 2,
 \[C_s \leftrightarrow \{(pp)_{s=0}, \, (nn)_{s=0}, \, (np)_{s=0}\} \]
 \[C_t \leftrightarrow \{(np)_{s=1}\} \]
In nuclear physics we have 3 possible particle pairs:

\[ij = \{pp, \, nn, \, pn\} \]

For each pair there are different channels:

\[\alpha = (s, \ell)jm \]

For each pair we define the contact matrix:

\[C_{ij}^{\alpha\beta} \equiv 16\pi^2 N_{ij} \langle A_{ij}^\alpha | A_{ij}^\beta \rangle \]

For \(\ell = 0 \) we need consider only 4 contacts:

\[P = \{ (pp)_{s=0}, (nn)_{s=0}, (np)_{s=0}, (np)_{s=1} \} \]

Adding isospin symmetry the number of contacts is reduced to 2,

\[C_s \leftrightarrow \{ (pp)_{s=0}, (nn)_{s=0}, (np)_{s=0} \} \]
\[C_t \leftrightarrow \{ (np)_{s=1} \} \]
In nuclear physics we have 3 possible particle pairs

\[ij = \{pp, nn, pn\} \]

For each pair there are different channels

\[\alpha = (s, \ell)jm \]

For each pair we define the contact matrix

\[C_{ij}^{\alpha \beta} \equiv 16\pi^2 N_{ij} \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle \]

For \(\ell = 0 \) we need consider only 4 contacts

\[P = \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}, (np)_{S=1}\} \]

Adding isospin symmetry the number of contacts is reduced to 2,

\[C_s \longleftrightarrow \{(pp)_{S=0}, (nn)_{S=0}, (np)_{S=0}\} \]
\[C_t \longleftrightarrow \{(np)_{S=1}\} \]
Photoabsorption of Nuclei

Up to $\hbar \omega \approx 200$ MeV the cross-section $\sigma_A(\omega)$ is dominated by the dipole operator

$$\sigma_A(\omega) = 4\pi^2 \alpha \omega R(\omega)$$

R is the response function

$$R(\omega) = \sum_f \left| \langle \Psi_f | \mathbf{e} \cdot \hat{D} | \Psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega)$$

The Quasi-Deuteron Picture

- The photon carries energy but (almost) no momentum.
- It is captured by a single proton.
- The proton is ejected without any FSI.
- Momentum conservation \Rightarrow a nucleon with opposite momentum must be ejected $k \approx -k_p$.
- Dipole dominance \Rightarrow this partner must be a neutron.
- $\hbar \omega \rightarrow \infty \Rightarrow \sigma(\omega)$ depends on a universal short range pn wave-function.
- The resulting cross-section is given by

$$\sigma_A(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$

- L is known as the Levinger Constant

J. S. Levinger, Phys. Rev. 84, 43 (1951).
When a pn pair are close together Ψ_0 is factorized into

$$\Psi_0(r_1, \ldots, r_A) = \sum_{\alpha} \varphi_\alpha(r_{pn}) A^\alpha_{pn}(R_{pn}, \{r_j\}_{j \neq p,n}) + \ldots$$

Assuming s-wave dominance, α is either singlet or triplet and $\varphi_\alpha \approx \varphi_d$.

$$\langle \Psi_\alpha^f | \epsilon \cdot \hat{D} | \Psi_0 \rangle \approx \sqrt{\frac{C_\alpha a_t}{8\pi}} \langle \psi_{d,f} | \epsilon \cdot \hat{D} | \psi_{d,0} \rangle$$

The cross section,

$$\sigma_A(\omega) = \frac{a_t}{4\pi} \frac{(C_s + C_t)}{2} \sigma_d(\omega) = \frac{a_t}{4\pi} \tilde{C}_{pn} \sigma_d(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$
When a pn pair are close together Ψ_0 is factorized into

$$\Psi_0(r_1, \ldots, r_A) = \sum_{\alpha} \varphi_{\alpha}(r_{pn}) A_{pn}^{\alpha}(R_{pn}, \{r_j \}_{j \neq p, n}) + \ldots$$

Assuming s-wave dominance, α is either singlet or triplet and $\varphi_{\alpha} \approx \varphi_d$,

$$\Psi_f^{\alpha}(r_1, \ldots, r_A) = \frac{4\pi}{\sqrt{C_{\alpha}}} \hat{A} \left\{ \frac{1}{\sqrt{\Omega}} e^{-ik \cdot r_{pn}} \chi_S A_{pn}^{\alpha}(R_{pn}, \{r_j \}_{j \neq p, n}) \right\}$$

The cross section,

$$\sigma_A(\omega) = \frac{a_t}{4\pi} \frac{(C_s + C_t)}{2} \sigma_d(\omega) = \frac{a_t}{4\pi} \tilde{C}_{pn} \sigma_d(\omega) = \frac{L}{A} \frac{NZ}{\sigma_d(\omega)}$$
In his original paper Levinger has estimated $L = 6.4$

In view of the available data we can conclude

$$L = 5.50 \pm 0.21$$

$N = Z = A/2$

Normalize by the Fermi momentum

$$\frac{\tilde{C}_{pn}}{k_F A} = \frac{\pi}{k_F a_t} (5.50 \pm 0.21)$$

$$1/k_F a_t \approx 0.15$$

$$\frac{\tilde{C}_{pn}}{k_F A} \approx 2.55 \pm 0.10$$

Comparison to Atomic Physics

Atomic data - 40K - J. T. Stewart et al., PRL 104, 235301 (2010)
6Li - G.B. Partridge et al., PRL 95, 020404 (2005)

Nuclear data - The main source of the horizontal error bar is the range (a_s, a_t)
Comparison to Atomic Physics

Atomic data - 40K - J. T. Stewart et al., PRL 104, 235301 (2010)
6Li - G.B. Partridge et al., PRL 95, 020404 (2005)

Nuclear data - The main source of the horizontal error bar is the range (a_s, a_t)
Momentum distributions

1-body neutron and proton momentum distributions

\[n_n(k), \ n_p(k) \]

2-body \(nn, np, pp \) momentum distributions

\[F_{nn}(k), \ F_{pn}(k), \ F_{pp}(k) \]
Momentum distributions

The proton momentum distribution

\[n_p^{JM}(k) = Z \int \prod_{l \neq p} \frac{d^3 k_l}{(2\pi)^3} |\tilde{\Psi}(k_1, \ldots, k_p = k, \ldots, k_A)|^2 \]

Using the asymptotic wave-function

\[\Psi \xrightarrow{r_{ij} \to 0} \sum_{\alpha} \varphi_{\alpha}(r_{ij}) A_{ij}^\alpha(R_{ij}, \{ r_k \}_{k \neq i,j}) \]

we get

\[n_p(k) = \frac{1}{2J + 1} \sum_{\alpha, \beta} \tilde{\varphi}_{pp}^\alpha(k) \tilde{\varphi}_{pp}^\beta(k) Z(Z - 1) \langle A_{pp}^{\alpha} | A_{pp}^{\beta} \rangle + \frac{1}{2J + 1} \sum_{\alpha, \beta} \tilde{\varphi}_{pn}^\alpha(k) \tilde{\varphi}_{pn}^\beta(k) NZ \langle A_{pn}^{\alpha} | A_{pn}^{\beta} \rangle \]
The proton momentum distribution

\[n_p^{JM}(\mathbf{k}) = Z \int \prod_{l \neq p} \frac{d^3k_l}{(2\pi)^3} |\tilde{\Psi}(\mathbf{k}_1, \ldots, k_p = \mathbf{k}, \ldots, k_A)|^2 \]

Using the asymptotic wave-function

\[\Psi \xrightarrow{r_{ij} \to 0} \sum_\alpha \varphi_\alpha(r_{ij}) A^\alpha_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j}) \]

we get

\[n_p(\mathbf{k}) = \sum_{\alpha, \beta} \bar{\varphi}_{pp}^\alpha(\mathbf{k}) \bar{\varphi}_{pp}^\beta(\mathbf{k}) \frac{2C_{\alpha\beta}^{pp}}{16\pi^2} + \sum_{\alpha, \beta} \bar{\varphi}_{pn}^\alpha(\mathbf{k}) \bar{\varphi}_{pn}^\beta(\mathbf{k}) \frac{C_{\alpha\beta}^{pn}}{16\pi^2} \]
Furthermore, starting from the general assumption

\[\Psi \xrightarrow{r_{ij} \to 0} \sum_{\alpha} \varphi_{\alpha}(r_{ij}) A_{ij}^{\alpha}(R_{ij}, \{r_k\}_{k \neq i,j}) \]

The following \textbf{asymptotic} relations between the 1-body and 2-body momentum distributions can be proven

\[n_p(k) \xrightarrow{k \to \infty} 2F_{pp}(k) + F_{pn}(k) \]

\[n_n(k) \xrightarrow{k \to \infty} 2F_{nn}(k) + F_{pn}(k) \]

These relations hold regardless of the specific form of \(\varphi_{\alpha} \) and without any assumptions on \(\{\alpha\} \).
Numerical verification of the momentum relations

VMC calculations of light nuclei

- Wiringa et al. published a series of 1-body, 2-body momentum distributions

 R. B. Wiringa et al., PRC 89, 024305 (2014)

- The data is available for nuclei in the range $2 \leq A \leq 10$.
- The calculations were done with the VMC method
- For symmetric nuclei $n_p = n_n$

The momentum relations holds for $4 \text{ fm}^{-1} \leq k \leq 5 \text{ fm}^{-1}$
The nuclear contact

Photoabsorption

AV18+UBIX $A \leq 10$

QD Model

$L = 5.50 \pm 0.21$

The Contact

$L = 5.7 \pm 0.7$
The nuclear contact

Photoabsorption

\[L = 5.50 \pm 0.21 \]

QD Model

AV18+UBIX \(A \leq 10 \)

The Contact

\[L = 5.7 \pm 0.7 \]
The nuclear contact

Photoabsorption

QD Model

$L = 5.50 \pm 0.21$

AV18+UBIX $A \leq 10$

The Contact

$L = 5.7 \pm 0.7$
Conclusions and outlook

Generalizing Tan’s contact to nuclear physics

- The Quasi-Deuteron model was revised.
- The Levinger constant and the nuclear contacts are close relatives.
- \bar{C}_{pn} was deduced using previous evaluations of Levinger constant.
- \bar{C}_{pn}/A seems to be constant throughout the nuclear chart.
- Its value stands in line with the universal curve measured in ultracold atomic systems.
- Momentum relations were derived, connecting one-body and two-body distributions.
- There relations were verified using VMC data.
- Levinger constant derived from this data is in agreement with that derived from photoabsorption experiments.

Outlook

- Electron scattering.
- Neutrino scattering.
- …

We have only started to explore the usefulness of the contact formalism in nuclear physics!
The contact: QFT perspective

- Quantum field theory formulation of the Zero-Range Model,

\[
\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi^\dagger_{\sigma} \nabla \psi_{\sigma}(R) + \frac{g(\Lambda)}{m} \psi^\dagger_1 \psi^\dagger_2 \psi_2 \psi_1(R) + \mathcal{V}
\]

- Renormalization,

\[
g(\Lambda) = \frac{4\pi a}{1 - 2a\Lambda/\pi}
\]

- Defining di-atomic field operator, \(\Phi(R) = g(\Lambda) \psi_2 \psi_1(R) \)

\[
\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi^\dagger_{\sigma} \nabla \psi_{\sigma}(R) - \frac{\Lambda}{2\pi^2 m} \Phi^\dagger \Phi + \frac{1}{4\pi ma} \Phi^\dagger \Phi + \mathcal{V}
\]

- Identifying \(C = \int d^3R \langle \Phi^\dagger \Phi(R) \rangle \) we got the adiabatic relation.
The contact: QFT perspective

- Quantum field theory formulation of the Zero-Range Model,

\[H = \sum_\sigma \frac{\hbar^2}{2m} \nabla \psi_\sigma^\dagger \nabla \psi_\sigma(R) + \frac{g(\Lambda)}{m} \psi_1^\dagger \psi_2^\dagger \psi_2 \psi_1(R) + \mathcal{V} \]

- Renormalization,

\[g(\Lambda) = \frac{4\pi a}{1 - 2a\Lambda / \pi} \]

- Defining di-atomic field operator, \(\Phi(R) = g(\Lambda)\psi_2\psi_1(R) \)

\[H = \sum_\sigma \frac{\hbar^2}{2m} \nabla \psi_\sigma^\dagger \nabla \psi_\sigma(R) - \frac{\Lambda}{2\pi^2 m} \Phi^\dagger \Phi + \frac{1}{4\pi ma} \Phi^\dagger \Phi + \mathcal{V} \]

- Identifying \(C = \int d^3R \langle \Phi^\dagger \Phi(R) \rangle \) we got the adiabatic relation.
The contact: QFT perspective

- Quantum field theory formulation of the Zero-Range Model,

\[
\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^\dagger \nabla \psi_{\sigma}(R) + \frac{g(\Lambda)}{m} \psi_{1}^\dagger \psi_{2}^\dagger \psi_{2} \psi_{1}(R) + \mathcal{V}
\]

- Renormalization,

\[
g(\Lambda) = \frac{4\pi a}{1 - 2a\Lambda/\pi}
\]

- Defining di-atomic field operator, \(\Phi(R) = g(\Lambda) \psi_{2} \psi_{1}(R) \)

\[
\mathcal{H} = \sum_{\sigma} \frac{\hbar^2}{2m} \nabla \psi_{\sigma}^\dagger \nabla \psi_{\sigma}(R) - \frac{\Lambda}{2\pi^2 m} \Phi^\dagger \Phi + \frac{1}{4\pi ma} \Phi^\dagger \Phi + \mathcal{V}
\]

- Identifying \(C = \int d^3R \langle \Phi^\dagger \Phi(R) \rangle \) we got the adiabatic relation.
The contact: QFT perspective

- Quantum field theory formulation of the Zero-Range Model,

\[
\mathcal{H} = \sum_\sigma \frac{\hbar^2}{2m} \nabla \psi_\sigma^+ \nabla \psi_\sigma (\mathbf{R}) + \frac{g(\Lambda)}{m} \psi_1^+ \psi_2^+ \psi_2 \psi_1 (\mathbf{R}) + \mathcal{V}
\]

- Renormalization,

\[
g(\Lambda) = \frac{4\pi a}{1 - 2a\Lambda/\pi}
\]

- Defining di-atomic field operator, \(\Phi (\mathbf{R}) = g(\Lambda) \psi_2 \psi_1 (\mathbf{R}) \)

\[
\mathcal{H} = \sum_\sigma \frac{\hbar^2}{2m} \nabla \psi_\sigma^+ \nabla \psi_\sigma (\mathbf{R}) - \frac{\Lambda}{2\pi^2 m} \Phi^+ \Phi + \frac{1}{4\pi ma} \Phi^+ \Phi + \mathcal{V}
\]

- Identifying \(C = \int d^3 R \langle \Phi^+ \Phi (\mathbf{R}) \rangle \) we got the adiabatic relation.
Short range correlations and their universal nature is an intensive line of research in NP

[Ciofi degli Atti, Frankfurt, Strikman, Sargasian, Piasetzky,..]

Short range correlations measured in (e,e') experiments at JLAB.
A clear preference for correlated np pairs.

Experimental Results - fitting the Levinger Constant

The ^{12}C photoabsorption cross-section

Line - the Quasi-Deutron model $L = 5.8$
We start with 2-body Schrodinger ...

\[
\left[-\frac{\hbar^2}{m} \nabla^2 + V(r) \right] \psi = E \psi
\]

At vanishing distance, \(r \to 0 \)

- The energy becomes negligible \(E \ll \hbar^2 / mr^2 \)
- The w.f. \(\psi \) assumes an asymptotic energy independent form \(\varphi \)

\[
\left[-\frac{\hbar^2}{m} \nabla^2 + V(r) \right] \varphi(r) = 0
\]

\(r \varphi(r) = 0 |_{r=0} \)

- Valid for any \(A \)-body system.