Low energy QCD parameters from $\eta \rightarrow 3\pi \text{ and beyond}$

Marián Kolesár*

(in collaboration with J.Novotný*)

update of arXiv:1409.3380

- A) QCD parameters at low energies
- **B)** Low energy EFT
- C) The $\eta \rightarrow 3\pi$ decays
- **D)** $\pi\pi$ scattering
- E) Bayesian statistical analysis
- F) Results
- **G)** Conclusions

Chiral Dynamics 2015, Pisa, June 30, 2015

*Institute of particle and nuclear physics, Charles University, Prague

Spontaneous chiral symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$ \rightarrow pseudo-Goldstone bosons π^{\pm}, π^0 ($N_f=2$) or π, K, η ($N_f=3$)

SB χ S order parameters:

 $F(N_f)$ - pseudoscalar decay constant in the chiral limit:

$$F(N_f) = F_P^a|_{m_q \to 0}, \ ip_\mu F_P^a = \langle 0|A_\mu^a|P \rangle$$

 $\Sigma(N_f)$ - quark condensate in the chiral limit:

$$\Sigma(N_f) = -\langle 0|\bar{q}q|0\rangle|_{m_q \to 0}$$

Paramagnetic inequality: $F_0 \equiv F(3) < F(2) \equiv F$, $\Sigma_0 \equiv \Sigma(3) < \Sigma(2) \equiv \Sigma$

Convenient reparameterization: $(\hat{m} = (m_u + m_d)/2)$

$$Z(N_f) = \frac{F(N_f)^2}{F_{\pi}^2}, \quad X(N_f) = \frac{2\,\hat{m}\Sigma(N_f)}{F_{\pi}^2 M_{\pi}^2}, \quad Y(N_f) = \frac{X}{Z} = \frac{2\,\hat{m}B(N_f)}{M_{\pi}^2}$$

Allowed range: $X(N_f), Z(N_f) \in (0, 1)$

Spontaneous chiral symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$ \rightarrow pseudo-Goldstone bosons π^{\pm}, π^0 ($N_f=2$) or π, K, η ($N_f=3$)

SB χ S order parameters:

 $F(N_f)$ - pseudoscalar decay constant in the chiral limit:

$$F(N_f) = F_P^a|_{m_q \to 0}, \ ip_\mu F_P^a = \langle 0|A_\mu^a|P \rangle$$

 $\Sigma(N_f)$ - quark condensate in the chiral limit:

$$\Sigma(N_f) = -\langle 0|\bar{q}q|0\rangle|_{m_q \to 0}$$

Paramagnetic inequality: $F_0 \equiv F(3) < F(2) \equiv F$, $\Sigma_0 \equiv \Sigma(3) < \Sigma(2) \equiv \Sigma$

Convenient reparameterization: $(\hat{m}=(m_u+m_d)/2)$

$$Z(N_f) = \frac{F(N_f)^2}{F_{\pi}^2}, \quad X(N_f) = \frac{2\,\hat{m}\Sigma(N_f)}{F_{\pi}^2 M_{\pi}^2}, \quad Y(N_f) = \frac{X}{Z} = \frac{2\,\hat{m}B(N_f)}{M_{\pi}^2}$$

Allowed range: $X(N_f), Z(N_f) \in (0, 1)$

Spontaneous chiral symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$ \rightarrow pseudo-Goldstone bosons π^{\pm}, π^0 ($N_f=2$) or π, K, η ($N_f=3$)

SB χ S order parameters:

 $F(N_f)$ - pseudoscalar decay constant in the chiral limit:

$$F(N_f) = F_P^a|_{m_q \to 0}, \ ip_\mu F_P^a = \langle 0|A_\mu^a|P \rangle$$

 $\Sigma(N_f)$ - quark condensate in the chiral limit:

$$\Sigma(N_f) = -\langle 0|\bar{q}q|0\rangle|_{m_q \to 0}$$

Paramagnetic inequality: $F_0 \equiv F(3) < F(2) \equiv F$, $\Sigma_0 \equiv \Sigma(3) < \Sigma(2) \equiv \Sigma$ (Stern et al.2000,2002)

Convenient reparameterization: $(\hat{m}=(m_u+m_d)/2)$

$$Z(N_f) = \frac{F(N_f)^2}{F_{\pi}^2}, \quad X(N_f) = \frac{2\,\hat{m}\Sigma(N_f)}{F_{\pi}^2 M_{\pi}^2}, \quad Y(N_f) = \frac{X}{Z} = \frac{2\,\hat{m}B(N_f)}{M_{\pi}^2}$$

Allowed range: $X(N_f), Z(N_f) \in (0, 1)$

Spontaneous chiral symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$ \rightarrow pseudo-Goldstone bosons π^{\pm}, π^0 ($N_f=2$) or π, K, η ($N_f=3$)

SB χ S order parameters:

 $F(N_f)$ - pseudoscalar decay constant in the chiral limit:

$$F(N_f) = F_P^a|_{m_q \to 0}, \ ip_\mu F_P^a = \langle 0|A_\mu^a|P\rangle$$

 $\Sigma(N_f)$ - quark condensate in the chiral limit:

$$\Sigma(N_f) = -\langle 0|\bar{q}q|0\rangle|_{m_q \to 0}$$

Paramagnetic inequality: $F_0 \equiv F(3) < F(2) \equiv F$, $\Sigma_0 \equiv \Sigma(3) < \Sigma(2) \equiv \Sigma$ (Stern et al.2000,2002)

Convenient reparameterization: $(\hat{m} = (m_u + m_d)/2)$

$$Z(N_f) = \frac{F(N_f)^2}{F_{\pi}^2}, \quad X(N_f) = \frac{2\,\hat{m}\Sigma(N_f)}{F_{\pi}^2 M_{\pi}^2}, \quad Y(N_f) = \frac{X}{Z} = \frac{2\,\hat{m}B(N_f)}{M_{\pi}^2}$$

Allowed range: $X(N_f), Z(N_f) \in (0, 1)$

Spontaneous chiral symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$ \rightarrow pseudo-Goldstone bosons π^{\pm}, π^0 ($N_f=2$) or π, K, η ($N_f=3$)

SB χ S order parameters:

 $F(N_f)$ - pseudoscalar decay constant in the chiral limit:

$$F(N_f) = F_P^a|_{m_q \to 0}, \ ip_\mu F_P^a = \langle 0|A_\mu^a|P\rangle$$

 $\Sigma(N_f)$ - quark condensate in the chiral limit:

$$\Sigma(N_f) = -\langle 0|\bar{q}q|0\rangle|_{m_q \to 0}$$

Paramagnetic inequality: $F_0 \equiv F(3) < F(2) \equiv F$, $\Sigma_0 \equiv \Sigma(3) < \Sigma(2) \equiv \Sigma$ (Stern et al.2000,2002)

Convenient reparameterization: $(\hat{m} = (m_u + m_d)/2)$

$$Z(N_f) = \frac{F(N_f)^2}{F_{\pi}^2}, \quad X(N_f) = \frac{2\,\widehat{m}\Sigma(N_f)}{F_{\pi}^2 M_{\pi}^2}, \quad Y(N_f) = \frac{X}{Z} = \frac{2\,\widehat{m}B(N_f)}{M_{\pi}^2}$$

Allowed range: $X(N_f), Z(N_f) \in (0, 1)$

Spontaneous chiral symmetry breaking: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$ \rightarrow pseudo-Goldstone bosons π^{\pm}, π^0 ($N_f=2$) or π, K, η ($N_f=3$)

SB χ S order parameters:

 $F(N_f)$ - pseudoscalar decay constant in the chiral limit:

$$F(N_f) = F_P^a|_{m_q \to 0}, \ ip_\mu F_P^a = \langle 0|A_\mu^a|P\rangle$$

 $\Sigma(N_f)$ - quark condensate in the chiral limit:

$$\Sigma(N_f) = -\langle 0|\bar{q}q|0\rangle|_{m_q \to 0}$$

Paramagnetic inequality: $F_0 \equiv F(3) < F(2) \equiv F$, $\Sigma_0 \equiv \Sigma(3) < \Sigma(2) \equiv \Sigma$ (Stern et al.2000,2002)

Convenient reparameterization: $(\hat{m} = (m_u + m_d)/2)$

$$Z(N_f) = \frac{F(N_f)^2}{F_{\pi}^2}, \quad X(N_f) = \frac{2\,\hat{m}\Sigma(N_f)}{F_{\pi}^2 M_{\pi}^2}, \quad Y(N_f) = \frac{X}{Z} = \frac{2\,\hat{m}B(N_f)}{M_{\pi}^2}$$

Allowed range: $X(N_f), Z(N_f) \in (0, 1)$

Two flavour values:

		Z(2)	X(2)
Descotes-Genon et al. 2001	phenomenology	0.89±0.03	$0.81 {\pm} 0.07$
Bernard et al. 2012	lattice+Re χ PT	$0.86 {\pm} 0.01$	$0.89{\pm}0.01$
FLAG 2013 $N_f = 2$	lattice	0.87 ± 0.01	0.86±0.09
FLAG 2013 $N_f = 2+1$	lattice	0.886±0.004	$0.84{\pm}0.14$

Three flavour values:

phenomenology		Z(3)	X(3)
Bijnens, Ecker 2014	NNLO χ PT (main fit)	0.59	0.63
Bijnens, Ecker 2014	NNLO χ PT (free fit)	0.51	0.48
Amoros et al. 2001	NNLO χ PT ("fit 10")	0.89	0.66
Descotes-Genon 2007	Re χ PT $\pi\pi+\pi K$	>0.2	<0.8
lattice			
Bernard et al. 2012	RBC/UKQCD+Re χ PT	0.54±0.06	0.38 ± 0.05
Ecker et al. 2013	RBC/UKQCD+large N_c	$0.91{\pm}0.08$	
MILC 2009	MILC 09A	0.72±0.06	$0.62{\pm}0.07$

Mass parameters (3 flavour):

- \widehat{m} light quark mass average
- $m{r}\,$ strange to light quark mass ratio
- R isospin violation (light quark mass difference)

$$\hat{m} = \frac{m_u + m_d}{2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}$$

Isospin breaking parameter R:

phenomenology		R
Dashen's theorem	LO	44
Dashen's theorem	NNLO	37
Bijnens et al. 2007	$\eta \rightarrow 3\pi$ NNLO χPT	41.3
Kampf et al. 2012	$\eta ightarrow 3\pi$ dispersive	37.8±3.3
lattice		
FLAG 2013 $N_f=2$	lattice average	40.7±4.3
FLAG 2013 $N_f = 2+1$	lattice average	35.8±2.6

Chiral perturbation theory ($N_f=3$)

(Gasser, Leutwyler 1985)

Generating functional:

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int \mathcal{D}\pi \ e^{i\int d^4x \ \mathcal{L}_{eff}[\pi,v,a,s,p]}$$

SB χ **S**: $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp \frac{i}{F_0} \pi^a(x) \lambda^a, \quad \mathcal{M} = \operatorname{diag}(m_u, m_d, m_s)$$

$$\mathcal{L}^{(2(k+l))} \sim p^{2k} \chi^{l}, \quad \chi = 2B_{0}\mathcal{M}$$

$$\mathcal{L}^{(2)} = \frac{F_{0}^{2}}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^{+} + (U^{+}\chi + \chi^{+}U)]$$

$$\mathcal{L}^{(4)} = \mathcal{L}^{(4)}(L_{1}\dots L_{10}) + \mathcal{L}^{(4)}_{WZ}$$

$$\mathcal{L}^{(6)} = \mathcal{L}^{(6)}(C_{1}\dots C_{90}) + \mathcal{L}^{(6)}_{WZ}(C_{1}^{W}\dots C_{23}^{W})$$

(Gasser,Leutwyler 1985)

Chiral perturbation theory $(N_f=3)$ **Generating functional:**

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int \mathcal{D}\pi \ e^{i\int d^4x \ \mathcal{L}_{eff}[\pi,v,a,s,p]}$$

SB $_{\chi}$ **S:** $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp \frac{i}{F_0} \pi^a(x) \lambda^a, \quad \mathcal{M} = \operatorname{diag}(m_u, m_d, m_s)$$

$$\mathcal{L}^{(2(k+l))} \sim p^{2k} \chi^{l}, \quad \chi = 2B_{0}\mathcal{M}$$

$$\mathcal{L}^{(2)} = \frac{F_{0}^{2}}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^{+} + (U^{+}\chi + \chi^{+}U)]$$

$$\mathcal{L}^{(4)} = \mathcal{L}^{(4)}(L_{1}\dots L_{10}) + \mathcal{L}^{(4)}_{WZ}$$

$$\mathcal{L}^{(6)} = \mathcal{L}^{(6)}(C_{1}\dots C_{90}) + \mathcal{L}^{(6)}_{WZ}(C_{1}^{W}\dots C_{23}^{W})$$

(Gasser, Leutwyler 1985)

Chiral perturbation theory $(N_f=3)$

Generating functional:

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int \mathcal{D}\pi \ e^{i\int d^4x \ \mathcal{L}_{eff}[\pi,v,a,s,p]}$$

SB χ **S:** $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp \frac{i}{F_0} \pi^a(x) \lambda^a, \quad \mathcal{M} = \operatorname{diag}(m_u, m_d, m_s)$$

$$\mathcal{L}^{(2(k+l))} \sim p^{2k} \chi^{l}, \quad \chi = 2B_{0}\mathcal{M}$$

$$\mathcal{L}^{(2)} = \frac{F_{0}^{2}}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^{+} + (U^{+}\chi + \chi^{+}U)]$$

$$\mathcal{L}^{(4)} = \mathcal{L}^{(4)}(L_{1}\dots L_{10}) + \mathcal{L}^{(4)}_{WZ}$$

$$\mathcal{L}^{(6)} = \mathcal{L}^{(6)}(C_{1}\dots C_{90}) + \mathcal{L}^{(6)}_{WZ}(C_{1}^{W}\dots C_{23}^{W})$$

Chiral perturbation theory $(N_f=3)$

(Gasser,Leutwyler 1985)

Generating functional:

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int \mathcal{D}\pi \ e^{i\int d^4x \ \mathcal{L}_{eff}[\pi,v,a,s,p]}$$

SB χ **S:** $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp \frac{i}{F_0} \pi^a(x) \lambda^a, \quad \mathcal{M} = \operatorname{diag}(m_u, m_d, m_s)$$

$$\mathcal{L}^{(2(k+l))} \sim p^{2k} \chi^{l}, \quad \chi = 2B_{0}\mathcal{M}$$

$$\mathcal{L}^{(2)} = \frac{F_{0}^{2}}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^{+} + (U^{+}\chi + \chi^{+}U)]$$

$$\mathcal{L}^{(4)} = \mathcal{L}^{(4)}(L_{1}\dots L_{10}) + \mathcal{L}^{(4)}_{WZ}$$

$$\mathcal{L}^{(6)} = \mathcal{L}^{(6)}(C_{1}\dots C_{90}) + \mathcal{L}^{(6)}_{WZ}(C_{1}^{W}\dots C_{23}^{W})$$

Chiral perturbation theory $(N_f=3)$

(Gasser, Leutwyler 1985)

Generating functional:

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int \mathcal{D}\pi \ e^{i\int d^4x \ \mathcal{L}_{eff}[\pi,v,a,s,p]}$$

SB χ **S:** $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp \frac{i}{F_0} \pi^a(x) \lambda^a, \quad \mathcal{M} = \operatorname{diag}(m_u, m_d, m_s)$$

$$\mathcal{L}^{(2(k+l))} \sim p^{2k} \chi^{l}, \quad \chi = 2B_{0}\mathcal{M}$$

$$\mathcal{L}^{(2)} = \frac{F_{0}^{2}}{4} \operatorname{Tr}[D_{\mu}UD^{\mu}U^{+} + (U^{+}\chi + \chi^{+}U)]$$

$$\mathcal{L}^{(4)} = \mathcal{L}^{(4)}(L_{1}\dots L_{10}) + \mathcal{L}^{(4)}_{WZ}$$

$$\mathcal{L}^{(6)} = \mathcal{L}^{(6)}(C_{1}\dots C_{90}) + \mathcal{L}^{(6)}_{WZ}(C_{1}^{W}\dots C_{23}^{W})$$

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- traditional approach to $\chi {\rm PT}$ implicitly assumes good convergence, hides uncertainties

- Standard χ PT Lagrangian and power counting
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, higher orders collected in remainders
- remainders not neglected, estimated and treated as sources of error

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- traditional approach to $\chi {\rm PT}$ implicitly assumes good convergence, hides uncertainties

- Standard χ PT Lagrangian and power counting
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, higher orders collected in remainders
- remainders not neglected, estimated and treated as sources of error

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- traditional approach to $\chi {\rm PT}$ implicitly assumes good convergence, hides uncertainties

- Standard χ PT Lagrangian and power counting
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, higher orders collected in remainders
- remainders not neglected, estimated and treated as sources of error

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- traditional approach to $\chi {\rm PT}$ implicitly assumes good convergence, hides uncertainties

- Standard χ PT Lagrangian and power counting (Gasser, Leutwyler 1984, 1985)
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, higher orders collected in remainders
- remainders not neglected, estimated and treated as sources of error

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- traditional approach to $\chi {\rm PT}$ implicitly assumes good convergence, hides uncertainties

- Standard χ PT Lagrangian and power counting (Gasser, Leutwyler 1984, 1985)
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, higher orders collected in remainders
- remainders not neglected, estimated and treated as sources of error

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- traditional approach to $\chi {\rm PT}$ implicitly assumes good convergence, hides uncertainties

- Standard χ PT Lagrangian and power counting (Gasser, Leutwyler 1984, 1985)
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, higher orders collected in remainders
- remainders not neglected, estimated and treated as sources of error

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- traditional approach to $\chi {\rm PT}$ implicitly assumes good convergence, hides uncertainties

- Standard χ PT Lagrangian and power counting (Gasser, Leutwyler 1984, 1985)
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, higher orders collected in remainders
- remainders not neglected, estimated and treated as sources of error

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- traditional approach to $\chi {\rm PT}$ implicitly assumes good convergence, hides uncertainties

- Standard χ PT Lagrangian and power counting (Gasser, Leutwyler 1984, 1985)
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, higher orders collected in remainders
- remainders not neglected, estimated and treated as sources of error

B) Treatment of low energy constants

 $\mathcal{O}(p^2)$: F_0 - pseudoscalar decay constant in the chiral limit

 Σ_0 - quark condensate in the chiral limit ($\Sigma_0 = B_0 F_0^2$)

- $m{r}\,$ strange to light quark ratio
- R isospin violation (light quark mass difference)

$$Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2\,\hat{m}\Sigma_0}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}$$

where $\hat{m} = (m_u + m_d)/2$

 $\mathcal{O}(p^4)$: L_4 - L_8 - in terms of F_P^2, M_P^2 - algebraically, indirect remainders generated

 $\mathcal{O}(p^6)$ and higher: C_i 's etc.

implicit in remainders

left free

B) Treatment of low energy constants

 $\mathcal{O}(p^2)$: F_0 - pseudoscalar decay constant in the chiral limit

 Σ_0 - quark condensate in the chiral limit ($\Sigma_0 = B_0 F_0^2$)

- $r\,$ strange to light quark ratio
- R isospin violation (light quark mass difference)

$$Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2\,\hat{m}\Sigma_0}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}$$

where $\hat{m} = (m_u + m_d)/2$

 $\mathcal{O}(p^4)$: L_4 - L_8 - in terms of F_P^2, M_P^2 - algebraically, indirect remainders generated

 $\mathcal{O}(p^6)$ and higher: C_i 's etc.

implicit in remainders

left free

B) Treatment of low energy constants

 $\mathcal{O}(p^2)$: F_0 - pseudoscalar decay constant in the chiral limit

 Σ_0 - quark condensate in the chiral limit ($\Sigma_0 = B_0 F_0^2$)

- $r\,$ strange to light quark ratio
- R isospin violation (light quark mass difference)

$$Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2\,\hat{m}\Sigma_0}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}$$

where $\hat{m} = (m_u + m_d)/2$

 $\mathcal{O}(p^4)$: L_4 - L_8 - in terms of F_P^2, M_P^2 - algebraically, indirect remainders generated

 $\mathcal{O}(p^6)$ and higher: C_i 's etc.

implicit in remainders

left free

Decay widths: $\Gamma_{exp}^+ = 300 \pm 12 \text{ eV}, \quad \Gamma_{exp}^0 = 428 \pm 17 \text{ eV}$ (PDG 2014)

Dalitz plot parameters: $a_{\text{exp}} = -1.09 \pm 0.02$ (KLOE 2008)

The charged decay amplitude in terms of 4-point Green functions:

$$F_{\pi}^{3}F_{\eta}A(s,t,u) = G_{+-83}^{(4)} - \varepsilon_{\pi}G_{+-33}^{(4)} + \varepsilon_{\eta}G_{+-88}^{(4)} + \Delta_{G_{D}}^{(6)}$$

- to first order in isospin breaking, EM effects neglected

- physical mixing angles to all chiral orders and first in 1/R

Direct remainder expansion around the Dalitz plot center

$$\Delta_{G_D} = \Delta_A + \Delta_B(s - s_0) + \Delta_C(s - s_0)^2 + \Delta_D[(t - s_0)^2 + (u - s_0)^2]$$

- LO: X, Z, r, R
- NLO: L_1, L_2, L_3
- direct rem.: Δ_A , Δ_B , Δ_C , Δ_D
- indirect rem.: $\Delta_{M_{\pi}}$, $\Delta_{F_{\pi}}$, $\Delta_{M_{K}}$, $\Delta_{F_{K}}$, $\Delta_{M_{\eta}}$, $\Delta_{F_{\eta}}$, $\Delta_{M_{38}}$, $\Delta_{Z_{38}}$

Decay widths: $\Gamma_{exp}^+ = 300 \pm 12 \text{ eV}, \quad \Gamma_{exp}^0 = 428 \pm 17 \text{ eV}$ (PDG 2014)

Dalitz plot parameters: $a_{exp} = -1.09 \pm 0.02$ *(KLOE 2008)*

The charged decay amplitude in terms of 4-point Green functions:

$$F_{\pi}^{3}F_{\eta}A(s,t,u) = G_{+-83}^{(4)} - \varepsilon_{\pi}G_{+-33}^{(4)} + \varepsilon_{\eta}G_{+-88}^{(4)} + \Delta_{G_{D}}^{(6)}$$

- to first order in isospin breaking, EM effects neglected

- physical mixing angles to all chiral orders and first in 1/R

(Ditsche et al. 2009)

Direct remainder expansion around the Dalitz plot center

$$\Delta_{G_D} = \Delta_A + \Delta_B(s - s_0) + \Delta_C(s - s_0)^2 + \Delta_D[(t - s_0)^2 + (u - s_0)^2]$$

- LO: X, Z, r, R
- NLO: L_1, L_2, L_3
- direct rem.: Δ_A , Δ_B , Δ_C , Δ_D
- indirect rem.: $\Delta_{M_{\pi}}$, $\Delta_{F_{\pi}}$, $\Delta_{M_{K}}$, $\Delta_{F_{K}}$, $\Delta_{M_{\eta}}$, $\Delta_{F_{\eta}}$, $\Delta_{M_{38}}$, $\Delta_{Z_{38}}$

Decay widths: $\Gamma_{exp}^+ = 300 \pm 12 \text{ eV}, \quad \Gamma_{exp}^0 = 428 \pm 17 \text{ eV}$ (PDG 2014)

Dalitz plot parameters: $a_{exp} = -1.09 \pm 0.02$ *(KLOE 2008)*

The charged decay amplitude in terms of 4-point Green functions:

$$F_{\pi}^{3}F_{\eta}A(s,t,u) = G_{+-83}^{(4)} - \varepsilon_{\pi}G_{+-33}^{(4)} + \varepsilon_{\eta}G_{+-88}^{(4)} + \Delta_{G_{D}}^{(6)}$$

- to first order in isospin breaking, EM effects neglected (Ditsche et al. 2009) - physical mixing angles to all chiral orders and first in 1/R

Direct remainder expansion around the Dalitz plot center

$$\Delta_{G_D} = \Delta_A + \Delta_B(s - s_0) + \Delta_C(s - s_0)^2 + \Delta_D[(t - s_0)^2 + (u - s_0)^2]$$

- LO: X, Z, r, R
- NLO: L₁, L₂, L₃
- direct rem.: Δ_A , Δ_B , Δ_C , Δ_D
- indirect rem.: $\Delta_{M_{\pi}}$, $\Delta_{F_{\pi}}$, $\Delta_{M_{K}}$, $\Delta_{F_{K}}$, $\Delta_{M_{\eta}}$, $\Delta_{F_{\eta}}$, $\Delta_{M_{38}}$, $\Delta_{Z_{38}}$

Decay widths: $\Gamma_{exp}^+ = 300 \pm 12 \text{ eV}, \quad \Gamma_{exp}^0 = 428 \pm 17 \text{ eV}$ (PDG 2014)

Dalitz plot parameters: $a_{exp} = -1.09 \pm 0.02$ *(KLOE 2008)*

The charged decay amplitude in terms of 4-point Green functions:

$$F_{\pi}^{3}F_{\eta}A(s,t,u) = G_{+-83}^{(4)} - \varepsilon_{\pi}G_{+-33}^{(4)} + \varepsilon_{\eta}G_{+-88}^{(4)} + \Delta_{G_{D}}^{(6)}$$

- to first order in isospin breaking, EM effects neglected (Ditsche et al. 2009) - physical mixing angles to all chiral orders and first in 1/R

Direct remainder expansion around the Dalitz plot center

$$\Delta_{G_D} = \Delta_A + \Delta_B(s - s_0) + \Delta_C(s - s_0)^2 + \Delta_D[(t - s_0)^2 + (u - s_0)^2]$$

- LO: X, Z, r, R
- NLO: L_1 , L_2 , L_3
- direct rem.: Δ_A , Δ_B , Δ_C , Δ_D
- indirect rem.: $\Delta_{M_{\pi}}$, $\Delta_{F_{\pi}}$, $\Delta_{M_{K}}$, $\Delta_{F_{K}}$, $\Delta_{M_{\eta}}$, $\Delta_{F_{\eta}}$, $\Delta_{M_{38}}$, $\Delta_{Z_{38}}$

D) $\pi\pi$ scattering (preliminary)

Subthreshold parameters:

$$A_{\pi\pi}(s,t,u) = \frac{\alpha_{\pi\pi}}{F_{\pi}^2} \frac{M_{\pi}^2}{3} + \frac{\beta_{\pi\pi}}{F_{\pi}^2} \left(s - \frac{4M_{\pi}^2}{3} \right) + \frac{\lambda_1}{F_{\pi}^4} \left(s - 2M_{\pi}^2 \right)^2 + \frac{\lambda_2}{F_{\pi}^4} \left[(t - 2M_{\pi}^2)^2 + (u - 2M_{\pi}^2)^2 \right] + \frac{\lambda_3}{F_{\pi}^6} \left(s - 2M_{\pi}^2 \right)^3 + \frac{\lambda_4}{F_{\pi}^6} \left[(t - 2M_{\pi}^2)^3 + (u - 2M_{\pi}^2)^3 \right] + U^{(2+4+6)}(s|t,u) + \mathcal{O}(p^8)$$

Values: $\alpha_{\pi\pi}^{\exp} = 1.381 \pm 0.242, \quad \beta_{\pi\pi}^{\exp} = 1.081 \pm 0.023$ (Stern et al.2002)

2 additional parameters: $\Delta_{\alpha_{\pi\pi}}$, $\Delta_{\beta_{\pi\pi}}$

E) Statistical analysis

Bayes' theorem

(Stern et al. 2004)

$$P(X_i|\text{data}) = \frac{P(\text{data}|X_i)P(X_i)}{\int dX_i P(\text{data}|X_i)P(X_i)}$$

 $P(X_i|\text{data})$ - probability density of X_i being true given data

 $P(\text{data}|X_i) = \prod_k \frac{1}{\sigma_k \sqrt{2\pi}} \exp\left[-\frac{(\mathsf{Q}_k^{\text{exp}} - \mathsf{Q}_k(X_i))^2}{\sigma_k}\right] - \text{experimental distribution}$

 $P(X_i)$ - probability distribution of X_i (prior)

- theoretical assumptions explicit and under control
- various assumptions testable

num.integration \rightarrow **Monte Carlo sampling**

- 10000 samples per grid element, $\sim 5\cdot 10^6$ total samples
- stability tested with smaller samples (1000 per grid element)
- larger samples and in depth statistical stability test in progress

E) Statistical analysis

Bayes' theorem

(Stern et al. 2004)

$$P(X_i|\text{data}) = \frac{P(\text{data}|X_i)P(X_i)}{\int dX_i P(\text{data}|X_i)P(X_i)}$$

 $P(X_i|\text{data})$ - probability density of X_i being true given data

 $P(\text{data}|X_i) = \prod_k \frac{1}{\sigma_k \sqrt{2\pi}} \exp\left[-\frac{(\mathsf{Q}_k^{\text{exp}} - \mathsf{Q}_k(X_i))^2}{\sigma_k}\right] - \text{experimental distribution}$

 $P(X_i)$ - probability distribution of X_i (prior)

- theoretical assumptions explicit and under control
- various assumptions testable

num.integration \rightarrow Monte Carlo sampling

- 10000 samples per grid element, $\sim 5\cdot 10^6$ total samples
- stability tested with smaller samples (1000 per grid element)
- larger samples and in depth statistical stability test in progress

$r = 27.5 \pm 0.4$: from lattice

(FLAG 2013)

 L_{1-3} : mean and spread of a set of standard χ PT fits:

 $L_1^r(M_{\rho}) = (0.57 \pm 0.18) \cdot 10^{-3}$ $L_2^r(M_{\rho}) = (0.82 \pm 0.28) \cdot 10^{-3}$ $L_3^r(M_{\rho}) = (-2.95 \pm 0.38) \cdot 10^{-3}$

weak dependence of the amplitude on L_{1-3}

 $\Delta_k: \text{ based on general arguments about the convergence of chiral series}$ $\Delta_G^{(4)} \approx \pm 0.3G, \quad \Delta_G^{(6)} \approx \pm 0.1G, \quad \Delta_G^{(\pi\pi)} \approx \pm 0.03G$ implementation - normal distribution $\mu=0, \sigma=0.1$ G or $\sigma=0.3$ G **X and Z:** $0 < X < X(2) = 0.89 \pm 0.01, \quad 0 < Z < Z(2) = 0.86 \pm 0.01$ **R:** free $\in (0, 60)$ or $R = 37.8 \pm 3.3$

r= **27.5** \pm **0.4:** from lattice

(FLAG 2013)

 L_{1-3} : mean and spread of a set of standard χ PT fits:

$$L_1^r(M_\rho) = (0.57 \pm 0.18) \cdot 10^{-3}$$

$$L_2^r(M_\rho) = (0.82 \pm 0.28) \cdot 10^{-3}$$

$$L_3^r(M_\rho) = (-2.95 \pm 0.38) \cdot 10^{-3}$$
(M.K. 2014)

weak dependence of the amplitude on L_{1-3}

 Δ_k : based on general arguments about the convergence of chiral series $\Delta_G^{(4)} \approx \pm 0.3G, \quad \Delta_G^{(6)} \approx \pm 0.1G, \quad \Delta_G^{(\pi\pi)} \approx \pm 0.03G$ implementation - normal distribution $\mu=0, \sigma=0.1$ G or $\sigma=0.3$ G X and Z: $0 < X < X(2)=0.89 \pm 0.01, \quad 0 < Z < Z(2)=0.86 \pm 0.01$

R: free \in (0, 60) or $R = 37.8 \pm 3.3$

r= **27.5** \pm **0.4:** from lattice

(FLAG 2013)

 L_{1-3} : mean and spread of a set of standard χ PT fits:

$$L_1^r(M_\rho) = (0.57 \pm 0.18) \cdot 10^{-3}$$

$$L_2^r(M_\rho) = (0.82 \pm 0.28) \cdot 10^{-3}$$

$$L_3^r(M_\rho) = (-2.95 \pm 0.38) \cdot 10^{-3}$$
(M.K. 2014)

weak dependence of the amplitude on L_{1-3}

$r = 27.5 \pm 0.4$: from lattice

(FLAG 2013)

 L_{1-3} : mean and spread of a set of standard χ PT fits:

$$L_1^r(M_\rho) = (0.57 \pm 0.18) \cdot 10^{-3}$$

$$L_2^r(M_\rho) = (0.82 \pm 0.28) \cdot 10^{-3}$$

$$L_3^r(M_\rho) = (-2.95 \pm 0.38) \cdot 10^{-3}$$
(M.K. 2014)

weak dependence of the amplitude on L_{1-3}

 $\Delta_{k}: \text{ based on general arguments about the convergence of chiral series}$ $\Delta_{G}^{(4)} \approx \pm 0.3G, \quad \Delta_{G}^{(6)} \approx \pm 0.1G, \quad \Delta_{G}^{(\pi\pi)} \approx \pm 0.03G$ implementation - normal distribution $\mu=0, \sigma=0.1$ G or $\sigma=0.3$ G
X and Z: $0 < X < X(2)=0.89 \pm 0.01, \quad 0 < Z < Z(2)=0.86 \pm 0.01$ (Bernard et al. 2012)

R: free \in (0,60) or $R = 37.8 \pm 3.3$
E) Assumptions

r= **27.5** \pm **0.4:** from lattice

(FLAG 2013)

 L_{1-3} : mean and spread of a set of standard χ PT fits:

$$L_1^r(M_\rho) = (0.57 \pm 0.18) \cdot 10^{-3}$$

$$L_2^r(M_\rho) = (0.82 \pm 0.28) \cdot 10^{-3}$$

$$L_3^r(M_\rho) = (-2.95 \pm 0.38) \cdot 10^{-3}$$
(M.K. 2014)

weak dependence of the amplitude on L_{1-3}

F) Results - R fixed

Constraints on X and Z: $R = 37.8 \pm 3.3$

 $\eta \rightarrow 3\pi$: $X = 0.57 \pm 0.21$ $Z = 0.40 \pm 0.17$ $Y = X/Z = 1.45 \pm 0.25$

 $\eta \rightarrow 3\pi$ and $\pi\pi$ scattering: (preliminary)

$$X = 0.59 \pm 0.21$$

- $Z = 0.46 \pm 0.17$
- $Y = X/Z = 1.30 \pm 0.25$

F) Results - R fixed

Constraints on X and Z: $R = 37.8 \pm 3.3$

- $\eta \rightarrow 3\pi$: $X = 0.57 \pm 0.21$ $Z = 0.40 \pm 0.17$ $Y = X/Z = 1.45 \pm 0.25$
- $\eta \rightarrow 3\pi$ and $\pi\pi$ scattering: (preliminary)

$$X = 0.59 \pm 0.21$$

- $Z = 0.46 \pm 0.17$
- $Y = X/Z = 1.30 \pm 0.25$

F) Results - R fixed

Constraints on X and Z: $R = 37.8 \pm 3.3$

- $\eta \rightarrow 3\pi$: $X = 0.57 \pm 0.21$ $Z = 0.40 \pm 0.17$ $Y = X/Z = 1.45 \pm 0.25$
- $\eta \rightarrow 3\pi$ and $\pi\pi$ scattering: (preliminary)

$$X = 0.59 \pm 0.21$$

- $Z = 0.46 \pm 0.17$
- $Y = X/Z = 1.30 \pm 0.25$

Constraints on R and Z: R free

 $\eta \to 3\pi$: $R = 38 \pm 10$ $Z = 0.42 \pm 0.18$

 $\eta \rightarrow 3\pi$ and $\pi\pi$ scattering: (preliminary) $R = 32 \pm 10$ $Z = 0.50 \pm 0.18$

Constraints on R and Z: R free

 $\eta \rightarrow 3\pi$: $R = 38 \pm 10$ $Z = 0.42 \pm 0.18$ $\eta \rightarrow 3\pi$ and $\pi\pi$ scattering: (preliminary) $R = 32 \pm 10$ $Z = 0.50 \pm 0.19$

Constraints on R and Y: R free

 $\eta \rightarrow 3\pi$: $R = 38 \pm 10$ $Y = 1.41 \pm 0.37$

 $\eta \rightarrow 3\pi$ and $\pi\pi$ scattering: (preliminary) $R = 32 \pm 9$ $Y = 1.10 \pm 0.38$

Constraints on R and Y: R free

- $\eta \rightarrow 3\pi$: $R = 38 \pm 10$ $Y = 1.41 \pm 0.37$
- $\eta \rightarrow 3\pi$ and $\pi\pi$ scattering: (preliminary) $R = 32 \pm 9$ $Y = 1.10 \pm 0.38$

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

- the $\eta \to 3\pi$ decays are sensitive to the value of the leading order low energy parameters F_0 and Σ_0
- a large portion of the parameter space can be excluded at 2σ C.L., given information about R, including $F_0 > 79$ MeV
- in those regions, a reasonable convergence of the chiral series might fail
- $Y = X/Z = (M_{\pi}^{LO}/M_{\pi})^2 \sim 1.5$ seems to be preferred, in contrast to other results
- constraints are weaker when releasing the assumption on R
- a low value of F_0 is still preferred and we found a strong correlation between R and Y
- $\pi\pi$ scattering does not seem to constrain the parameters very much

Thank you for your attention!