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Spontaneous chiral symmetry breaking: SU(Ny)xSU(Nf)p—SU(Ny¢)y
— pseudo-Goldstone bosons 7,79 (N;y=2) or m,K,n (N;=3)

SBYS order parameters:

F(Ny) - pseudoscalar decay constant in the chiral limit:
F(Ny) = Fplm,—0, ippl'p = (0|A,|P)
> (N¢) - quark condensate in the chiral limit:
> (Ny) = —(0[gq|0)|m,—0
Paramagnetic inequality: Fp=F(3)<F(2)=F, Sp0=23)<x(2)=x

Convenient reparameterization: (m=(my+my)/2)

F(Ng)? 2m>(Ny) X  2mB(Ny)
Z(Nf): 2 ’ X(Nf>: F2M2 ’ Y(Nf>:E: M2

Allowed range: X(Ny¢),Z(Ny) € (0,1)
Standard assumption: Z(Ny)~1, X(Ny¢)~1
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Two flavour values:

Z(2) X(2)
Descotes-Genon et al. 2001 | phenomenology 0.89+0.03 0.81+0.07
Bernard et al. 2012 lattice4+RexPT 0.86+0.01 | 0.8940.01
FLAG2013 Ny=2 lattice 0.87+£0.01 | 0.86+0.09
FLAG2013 Ny=2+1 lattice 0.8864+0.004 | 0.84+0.14
Three flavour values:
phenomenology Z(3) X (3)
Bijnens, Ecker 2014 NNLO xPT (main fit) 0.59 0.63
Bijnens, Ecker 2014 NNLO xPT (free fit) 0.51 0.48
Amoros et al. 2001 NNLO xPT ("fit 10") 0.89 0.66
Descotes-Genon 2007 RexPT mn4+nK >0.2 <0.8

lattice
Bernard et al. 2012 | RBC/UKQCD+RexPT || 0.54+0.06 | 0.384+0.05
Ecker et al. 2013 RBC/UKQCD+large N, || 0.91+0.08
MILC 2009 MILC 09A 0.724+0.06 | 0.62+0.07

-~ 3/1 Marian Kolesar, IPNP, Prague: QCD parameters from n — 37




Mass parameters (3 flavour):

m - light quark mass average
r - strange to light quark mass ratio
R - isospin violation (light quark mass difference)

may, + my Ms R = (ms —m)

2 ’ m  (myg — muy)

m =

Isospin breaking parameter R:

phenomenology R
Dashen’s theorem LO 44
Dashen’s theorem NNLO 37

Bijnens et al. 2007 | n — 3w NNLO xPT 41.3
Kampf et al. 2012 n — 3w dispersive 37.8+3.3
lattice
FLAG2013 N,=2 lattice average 40.7+4.3
FLAG?2013 Nf:2—|—1 lattice average 35.8+2.6




Chiral perturbation theory (Nf=3) (Gasser, Leutwyler 1985)

Generating functional:
eizeff[ﬂ',?},a,s,p] — /Dﬂ' eifdél-w ‘Ceff[ﬂ-av7a787p]
SBxS: SU(3);, xSU(3)p—SU(3)y, expansion in momenta and quark masses

Building blocks: 7% ~ 7, K, n

U(z) = epriwa(x)/\a, M = diag(mu, my, ms)
0

Effective Lagrangian: L. ;; = £ 4+ A 4+ £6) 4
2
£(2) = %Tr[DMUD“U++ (UTx + xT0)]
£(4) — £<4)(L1...L10) —+ ﬁ‘(/[é/t)z
£® = £O(Cy...Co0) + L,V ...cH)
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Chiral perturbation theory (N;=3) (Gasser, Leutwyler 1985)

Generating functional:
eiZeff[ﬂ'a’Uaa,S,p] — /Dﬂ' e'l:fd4$ [,eff[ﬂ',’v,a,,s,p]
SBxS: SU(3),xSU(3)p—SU(3)y expansion in momenta and quark masses

Building blocks: 7% ~ 7, K, n

U(z) = epriw%)Aa, M = diag(mu, my, ms)
0

Effective Lagrangian: L. ;; = £ 4+ A 4+ £6) 4
2
£(2) = %Tr[DMUD”U++ (UTx + xT0)]
£(4) — £<4)(L1...L10) —+ ﬁI(/IZ/L)Z
£® = £O)(cy...Coy) + E%@Z(C{/{/ng)



Chiral perturbation theory (N;=3) (Gasser, Leutwyler 1985)

Generating functional:
e’l:Zeff[’iT,'U,CL,S,p] — /Dﬂ- e’ifd4$ Eeff[w,’v,a,s,p]
SBxS: SU(3),xSU(3)p—SU(3)y expansion in momenta and quark masses

Building blocks: ¢ ~n, K,n

U(x) = eXpFLWa(a:))\a, M = diag(my, mg, ms)
0

Effective Lagrangian: L. ;; = £ 4+ 4 4+ £6) 4
2
£(2) = ITTOTr[DMUD“U_F-I— (UTx + xT0)]
£(4) — £<4>(L1...L10) —+ ﬁI(/IA/L)Z
£® = £O(Cy...Co0) + £ (V...



Chiral perturbation theory (N;=3) (Gasser, Leutwyler 1985)

Generating functional:

e’l:Zeff[’iT,'U,a,,S,p] — /Dﬂ' e’ifd4$ ‘C’eff[ﬂav7a'787p]
SBxS: SU(3);,xSU(3)r—SU(3)y  expansion in momenta and quark masses

Building blocks: ¢ ~ 7, K,n

U(x) = epriwa(a:))\a, M = diag(my, mg, ms)
0

Effective Lagrangian: L.¢s = £ 4 @) 4 £06) 4

cQEHD) 2kl — 2B M

2

£® = BTDUDHUF 4 (U x+ X))

r4) — £(4)(L1---L10) + K’I(/[L})Z
£® = £O(Cy...Co0) + LS,V ...CH)



Resummed xPT - a special treatment of the chiral expansion
(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series

- traditional approach to yPT implicitly assumes good convergence, hides
uncertainties

Summary of the method

- Standard xPT Lagrangian and power counting

- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way

- explicitly to NLO, higher orders collected in remainders

- remainders not neglected, estimated and treated as sources of error
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O(p?): Fy - pseudoscalar decay constant in the chiral limit left free
>0 - duark condensate in the chiral limit (g = BoFg)

r - strange to light quark ratio
R - isospin violation (light quark mass difference)

B Fg _ 2mXy M _ (ms—m)

Z = FrPk — DAz r ==
F?2 F2M?2 m

where m=(mqy + my)/2

O(p*): L4-Lg - in terms of F3,M3 reparametrized
- algebraically, indirect remainders generated

O(p®) and higher: C;'s etc. implicit in remainders
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Decay widths: M = 300+£12eV, Q. =428+17 eV (PDG 2014)

Dalitz plot parameters: aexp = —1.091+0.02 (KLOE 2008)

The charged decay amplitude in terms of 4-point Green functions:

F%O)Fn A(57 t, U) — Ggfzg:g o 57TG$Z33 T 877GE|fL188 T Aé?g

- to first order in isospin breaking, EM effects neglected
- physical mixing angles to all chiral orders and first in 1/R

Direct remainder expansion around the Dalitz plot center
Ag, = A4+ Ap(s—s0) + Ac(s —s0)* + Apl(t —s0)* + (u— s0)7]

19 parameters:

-LO: X, Z, r, R

- NLO: Ly, Lo, L3

- direct rem.: Ay, Ap, Aq, Ap

- indirect rem.: Ay, Ap, Apg, ADpy, AMn' AFn' AN Dz,



Decay widths: Fdp = 300+£12eV, [, =428+17eV (PDG 2014)

Dalitz plot parameters: aexp = —1.0940.02 (KLOE 2008)

The charged decay amplitude in terms of 4-point Green functions:

F2Ey AGs,t) = G gy — exG® s + 2000 gy + AD

- to first order in isospin breaking, EM effects neglected (Ditsche et al. 2009)
- physical mixing angles to all chiral orders and first in 1/R

Direct remainder expansion around the Dalitz plot center
Ag, =D+ Ap(s—s0) + Ac(s — s0)° + Apl(t — s0)? + (u— s0)?]

19 parameters:

-LO: X, Z, r, R

- NLO: L4, Lo, L3

- direct rem.: Ay, Apg, Ao, Ap

- indirect rem.: Ay, Ap, ADprp, Apg, AMn' AFn' Apggr D zag



Decay widths: Fdp = 300+£12eV, [, =428+17eV (PDG 2014)

Dalitz plot parameters: aexp = —1.0940.02 (KLOE 2008)

The charged decay amplitude in terms of 4-point Green functions:

F2Ey AGs,t) = G gy — exG® s + 2000 gy + AD

- to first order in isospin breaking, EM effects neglected (Ditsche et al. 2009)
- physical mixing angles to all chiral orders and first in 1/R

Direct remainder expansion around the Dalitz plot center
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19 parameters:
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Decay widths: Fdp = 300+£12eV, [, =428+17eV

Dalitz plot parameters: aexp = —1.0940.02

The charged decay amplitude in terms of 4-point Green functions:

F3F, A(s,tu) = G gy — exG Y 55 + 4G g + Y

- to first order in isospin breaking, EM effects neglected
- physical mixing angles to all chiral orders and first in 1/R

Direct remainder expansion around the Dalitz plot center
Ag, = Ax+ Ap(s—s0) + Ac(s — s0)° + Apl(t — s0)? + (u— s0)?]

19 parameters:

-LO: X, Z, r, R

- NLO: Ly, Lo, L3

direct rem.: Ay, Apg, Ac, Ap

indirect rem.: Ay, Ap., Dy, Apg, AMn' AFn' Apagr Dzag



Subthreshold parameters:

Oé7r7rM2 BWT S—4M7% +
F2 3 F?2 3

T

+7g (6= 2M2)2 + (u - 2M3)%] +
A3 23 >\4 213 213
+F—(s—2M) ﬁ[(t— 2M2) + (u—2M3)3| +
+UCTAHO) (5L, u) + O(®)

Values: aaP = 1.38140.242, BxP = 1.0814+0.023 (Stern et al.2002)

2 additional parameters: A, ., Agm




Bayes’ theorem

(Stern et al. 2004) P(Xz-ldata) — P(data|Xi)P(Xi)

f dX; P(data |XZ)P(XZ)

P(X;|data) - probability density of X; being true given data
(QTP-Qp(Xy))?

Ok

P(data|X;) =1k L_exp|— - experimental distribution

oLV 2T

P(X;) - probability distribution of X; (prior)
- theoretical assumptions explicit and under control

- various assumptions testable

num.integration — Monte Carlo sampling
- 10000 samples per grid element, ~ 5- 10° total samples
- stability tested with smaller samples (1000 per grid element)
- larger samples and in depth statistical stability test in progress



Bayes’ theorem
Y P(data|X;)P(X;)

f dX; P(data |X@)P(XZ)

P(X;|data) =

P(X;|data) - probability density of X; being true given data

exp N\ 2
P(data|X;) =1k L exp (R QX)) - experimental distribution

oLV 2T Ok

P(X;) - probability distribution of X; (prior)
- theoretical assumptions explicit and under control

- various assumptions testable

num.integration — Monte Carlo sampling
- 10000 samples per grid element, ~ 5.10° total samples
- stability tested with smaller samples (1000 per grid element)
- larger samples and in depth statistical stability test in progress



r =27.5+0.4: from lattice (FLAG 2013)

Lqi_3: mean and spread of a set of standard xP T fits:

L5 (M,)=(0.5740.18)-103
r(M,)=(0.8240.28)-10~3
L(M,) = (—2.95+0.38)-103

weak dependence of the amplitude on Lq_3

Ap: based on general arguments about the convergence of chiral series

A ~ 1036, AP ~t01G6, AU x 10036

implementation - normal distribution =0, 0=0.1G or ¢=0.3G
Xand Z: 0<X<X(2)=0.89+£0.01, 0<Z<Z(2)=0.86+0.01

R: freee (0,60) or R=37.84+3.3
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r(M,) = (0.82+0.28)-10~3 (M.K. 2014)
£(Mp) =(—2.954+0.38)-103

weak dependence of the amplitude on Lq_3
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implementation - normal distribution =0, 6=0.1G or ¢=0.3G
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r =27.5+0.4: from lattice (FLAG 2013)

L1_3: mean and spread of a set of standard xyPT fits:

"(M,)=(0.5740.18)-1073
r(M,) = (0.82+0.28)-10~3 (M.K. 2014)
£(Mp) =(—2.954+0.38)-103

weak dependence of the amplitude on Lq_3

Ap: based on general arguments about the convergence of chiral series
(Stern et al. 2004)

A ~ 103G, A ~+016, AU ~ 10036
implementation - normal distribution =0, 6=0.1G or ¢=0.3G
Xand Z: 0<X<X(2)=0.89+0.01, 0<Z<Z(2)=0.86+0.01

(Bernard et al. 2012)
R: freee (0,60) or R=37.84+3.3



r =27.51+0.4: from lattice

L1_3: mean and spread of a set of standard xyPT fits:

L5 (M,)=(0.5740.18)-1073
L(M,) = (0.82+0.28)-10~3
£(Mp) =(—2.954+0.38)-103

weak dependence of the amplitude on Lq_3

Ap: based on general arguments about the convergence of chiral series

A ~ 103G, A ~+016, AU ~ 10036

implementation - normal distribution =0, 6=0.1G or ¢=0.3G
Xand Z: 0<X<X(2)=0.89+0.01, 0<Z<Z(2)=0.86+0.01

R: freee (0,60) or R=37.8+3.3



Constraints on X and Z: R=37.8+ 3.3

l' .
0 ol n — 37!
0.8l X = 0.57+0.21
0.7 Z =0.40+0.17
0.6 >30 Y =X/Z=145+0.25
< 0.5}
0.4} n — 3w and wr scattering:
0.3 (preliminary)
0.2 <lo
- X =0.5940.21
| 7 =0.46 +0.17

0 0.2 0.4 0.6 0.8 1 Y = X/Z =1.3040.25
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Constraints on X and Z: R=37.8+ 3.3

X
O O O O O O O O O

O FF DD W b U1 0 1 o O =
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Constraints on R and Y: R free
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Our results have shown:

e the n — 37w decays are sensitive to the value of the leading order low
energy parameters Fp and > g

e a large portion of the parameter space can be excluded at 20 C.L.,
given information about R, including Fp>79MeV

e in those regions, a reasonable convergence of the chiral series might fail

o Y =X/Z=(MLO/M;)? ~1.5 seems to be preferred, in contrast to other
results

e constraints are weaker when releasing the assumption on R

e a low value of Fp is still preferred and we found a strong correlation
between R and Y

e 7 SCattering does not seem to constrain the parameters very much
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Our results have shown:

e the n — 37w decays are sensitive to the value of the leading order low
energy parameters Fp and > g

e a large portion of the parameter space can be excluded at 20 C.L.,
given information about R, including Fp>79MeV

e in those regions, a reasonable convergence of the chiral series might fail

o Y =X/Z=(MLO/M;)? ~1.5 seems to be preferred, in contrast to other
results

e constraints are weaker when releasing the assumption on R

e a low value of Fp is still preferred and we found a strong correlation
between R and Y

e 7 SCattering does not seem to constrain the parameters very much

Thank you for your attention!




