

Studies of Λn Interaction Through Polarization Observables for Final-State Interactions in $\gamma d \rightarrow K^+ \Lambda n$

Yordanka Ilieva⁽¹⁾, Tongtong Cao⁽¹⁾, Nick Zachariou⁽²⁾

⁽¹⁾University of South Carolina ⁽²⁾University of Edinburgh

for the CLAS Collaboration

Research suported in part by the U.S. National Science Foundation

Introduction

YN interaction not well known

- not all free parameters of the YN potential can be obtained from the NN potential via flavor SU(3) symmetry
- example: large uncertainties of YN scattering lengths: $a(^{1}S_{0}) = -0.7 - -2.6 \text{ fm},$

 $a(^{3}S_{1}) = -1.7 - 2.15 \text{ fm}$

- YN elastic scattering database poor
- alternative approaches:
 - hypernuclear spectroscopy
 - studies of FSI in production reactions:

 $\gamma d \to K^+ \Lambda n \qquad pp \to K^+ \Lambda p$ $\gamma d \to K^0 \Lambda p$

YN Interaction and Exclusive Hyperon Photoproduction off Deuteron

Nucleus used as a laboratory

- Hyperon Beam produced in first step
- Hyperons scatter off neutrons in a second step

Theoretical Studies

- Observables sensitive to YN
 potentials at certain kinematics at a
 level of ~10% (K. Miyagawa et al., Phys. Rev. C 74,
 034002 (2006); A. Salam et al., Phys. Rev. C 74, 044004
 (2006); H. Yamamura et al., Phys. Rev. C 61, 014001 (1999))
- Spin-averaged scattering length can be extracted from data close to threshold (A. Gasparian et al., Phys. Rev. C 69, 034006 (2004))

Exclusive Hyperon Photoproduction off Deuteron Background Mechanisms

Exclusive Hyperon Photoproduction off Deuteron Polarization Observables

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_0} \Big[1 - P_{lin} \sum \cos 2\varphi - \alpha \cos \theta_x (P_{lin} O_x \sin 2\phi + P_{circ} C_x) - \alpha \cos \theta_z (P_{lin} O_z \sin 2\phi + P_{circ} C_z) + \dots \Big]$

 Λ self-analysing power: $\alpha = 0.642 \pm 0.013$

Relevant Kinematic Variables:

- From $\Lambda n \rightarrow \Lambda n$: $\Theta_{\Lambda'}$, $W_{\Lambda n} = IM_{\Lambda n}$

- From $\gamma p \rightarrow K^{+} \Lambda$: E_{γ} , p_{K} , Θ_{K}

 $\Sigma(E_{Y}, p_{K}, \theta_{K}, \theta_{\Lambda}', W_{\Lambda n})$ $C_{x}(E_{Y}, p_{K}, \theta_{K}, \theta_{\Lambda}', W_{\Lambda n})$ $C_{z}(E_{Y}, p_{K}, \theta_{K}, \theta_{\Lambda}', W_{\Lambda n})$

Circularly Polarized Photons (g13a)

- E_e = 2 GeV; 2.65 GeV
- electron polarization: ~ 80%
- triggers: ~20×10⁹ triggers

Linearly Polarized Photons (g13b)

- E_e = 3.3 5.2 GeV
- coherent edge at: 1.3, 1.5, 1.7, 1.9,
 2.1, 2.3 GeV
- $P\gamma = 70\% 90\%$
- ~30×10⁹ triggers

Circularly Polarized Photons (g13a)

- E_e = 2 GeV; 2.65 GeV
- electron polarization: ~ 80%
- triggers: ~20×10⁹ triggers

Linearly Polarized Photons (g13b)

- E_e = 3.3 5.2 GeV
- coherent edge at: 1.3, 1.5, 1.7, 1.9,
 2.1, 2.3 GeV
- Pγ = 70% 90%
- ~30×10⁹ triggers

Circularly Polarized Photons (g13a)

- E_e = 2 GeV; 2.65 GeV
- electron polarization: ~ 80%
- triggers: ~20×10⁹ triggers

Linearly Polarized Photons (g13b)

- E_e = 3.3 5.2 GeV
- coherent edge at: 1.3, 1.5, 1.7, 1.9,
 2.1, 2.3 GeV
- $P\gamma = 70\% 90\%$
- ~30×10⁹ triggers

Event Distribution over Missing Momentum

 $P_x (\gamma d \to K^+ \Lambda X)$

Event Distribution over Missing Momentum

 $P_x (\gamma d \to K^+ \Lambda X)$

Event Distribution over Missing Momentum

 $P_x (\gamma d \to K^+ \Lambda X)$

Event Distribution over Missing Momentum

 $P_x (\gamma d \to K^+ \Lambda X)$

The removal of events with Px < 0.2 GeV/c provides a sample that is by far dominated by FSI events. Standard analysis procedure.

⁴⁰⁰ Selection of Exclusive 200 Events

Event Distribution over Missing Momentum P_{r} ($\gamma d \rightarrow K^{+}\Lambda X$)

Event Distribution over Missing Mass $M_x (\gamma d \rightarrow K^+ \Lambda X) \qquad \text{mm(GeV/c}^2)$

Õ

The removal of events with Px < 0.2 GeV/c provides a sample that is by far dominated by FSI events. Standard analysis procedure.

Figure from Nick Zachariou

⁴⁰⁰ Selection of Exclusive 200 Events

Event Distribution over Missing Momentum P_{r} ($\gamma d \rightarrow K^{+}\Lambda X$) Event Distribution over Missing Mass $M_x (\gamma d \rightarrow K^+ \Lambda X) \qquad \text{mm(GeV/c}^2)$

Õ

The removal of events with Px < 0.2 GeV/c provides a sample that is by far dominated by FSI events. Standard analysis procedure.

Figure from Nick Zachariou

⁴⁰⁰ Selection of Exclusive 200 Events

Event Distribution over Missing Momentum P_{r} ($\gamma d \rightarrow K^{+}\Lambda X$) Event Distribution over Missing Mass $M_x (\gamma d \rightarrow K^+ \Lambda X) \qquad \text{mm(GeV/c}^2)$

Õ

The removal of events with Px < 0.2 GeV/c provides a sample that is by far dominated by FSI events. Standard analysis procedure.

⁴⁰⁰ Selection of Exclusive 200 Events

Event Distribution over Missing Momentum P_{r} ($\gamma d \rightarrow K^{+}\Lambda X$)

Event Distribution over Missing Mass $M_x (\gamma d \rightarrow K^+ \Lambda X) \qquad \text{mm(GeV/c}^2)$

Õ

The removal of events with Px < 0.2 GeV/c provides a sample that is by far dominated by FSI events. Standard analysis procedure.

Figure from Nick Zachariou

⁴⁰⁰ Selection of Exclusive 200 Events

Event Distribution over Missing Momentum P_{r} ($\gamma d \rightarrow K^{+}\Lambda X$)

Event Distribution over Missing Mass $M_x (\gamma d \rightarrow K^+ \Lambda X) \qquad \text{mm(GeV/c}^2)$

Õ

The removal of events with Px < 0.2 GeV/c provides a sample that is by far dominated by FSI events. Standard analysis procedure.

Removal of physics background based on ³⁰⁰ realistic simulation of reactions, detector, and accidentals, followed by histogram or event-by-event fits for each kinematic bin. ²⁰⁰

Figure from Nick Zachariou

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} = \frac{\sigma}{d\Omega} = \frac{\sigma}{$

Linearly Polarized Photons:
$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_0} \left[1 - P_{lin} \frac{P_{lin}}{P_{lin}} \frac{P_{lin}}{P_{lin$$

Theoretical Prediction

K. Miyagawa et al., Phys. Rev. C 74, 034002 (2006);

/ e

Figure from Nick Zachariou

- Single-polarization observable, i.e. smallest statistical uncertainties
- For the K⁺Λn final state, φ is not uniquely defined: φ_K, φ_Λ, φ_n, <u>φ</u>_{KΛ}, φ_{Λn}, φ_{Kn}
- Observable can be used as a probe for dominance of various FSI mechanisms

Theoretical Prediction

K. Miyagawa et al., Phys. Rev. C 74, 034002 (2006);

Preliminary Results: Beam Spin Asymmetry

Work by Nick Zachariou

Preliminary Results

Observables for Linearly-Polarized Photons

$$\vec{\gamma}d \to \frac{d\sigma}{d\Omega} = \frac{d\sigma}{\Lambda(\Omega_{u})_{np}} \left[1 - P_{lin} \sum \cos 2\varphi - P_{lin} O_x \alpha \cos \theta_x - P_{lin} O_z \alpha \cos \theta_z + \dots \right]$$

Preliminary Results **Observables for Circularly-Polarized Photons** $\frac{d\sigma^{\pm}}{d\Omega} = \frac{d\sigma}{d\Omega_{unp}} \Big[1 \pm P_{circ}C_x\alpha\cos\theta_x \pm P_{circ}C_z\alpha\cos\theta_z + \alpha P_y\cos\theta_y \dots \Big]$

Work by Tongtong Cao

Model Comparison: Perspectives

Model Comparison: Perspectives

- one-, ..., four-fold
 differential observables
 will be extracted
- experimental observables are integrated over the CLAS acceptance
- direct comparison with models is not trivial
 - collaboration with theorists
 - use the model as event generator and process through CLAS simulation
 - provide a sample of FSI events that can be binned in any way

Suppression of Background Mechanisms

Summary

First estimates of a large set of polarization observables for FSI in the reaction $\gamma d \rightarrow K^+ \Lambda n$ have been obtained from JLab g13 experiment.

- One-, two-, three-, and four-fold differential estimates can be obtained with adequate statistical uncertainty.
- Beam-spin asymmetry provides indication that $\Lambda n \rightarrow \Lambda n$ mechanism may be dominant at large θ_{Λ}' .
- Beam-spin asymmetry can be binned sufficiently fine at low $W_{\Lambda n}$ to be suitable for extraction of the Λn scattering length.
- Extraction of helicity asymmetries and Λ induced polarization is underway.
- Data have sufficient coverage and statistical significance to impact YN.
- Work in progress on data interpretation (YN interaction).

The End