EFFECTIVE THEORY FOR LATTICE NUCLEI

Lorenzo Contessi

Nuclear challenge

- > Make precise predictions
- > Understand the origin of the interaction:

From QCD (Quarks)

To Nuclear physics (Nucleons)

Lorenzo Contessi

29/06/2015

Nuclear challenge

- > Make precise predictions
- > Understand the origin of the interaction:

From QCD (Quarks)

To Nuclear physics (Nucleons)

Keystone:

Use the correct **powercounting** and **degrees of freedom**

Lorenzo Contessi

29/06/2015

Start with a contact EFT (PionLess approach)

> It is relatively **easy**: Only δ interactions

- Simplest theory under control: Not too many scales enter in the powerconting
- Best way to understand powercounting: That applies what we learn to pionful theories

 No pions included: the theory will break at some point. (Not reliable for predictions)

Lorenzo Contessi

29/06/2015

$$V_{2b} = C_0 + C_1(\sigma_1 \cdot \sigma_2) + C_2(P_1^2 + P_2^2) + C_3(P_1^2 + P_2^2)(\sigma_1 \cdot \sigma_2) + \cdots$$

+
$$V_{3b} = D_0 + \cdots$$

Lorenzo Contessi

29/06/2015

Lorenzo Contessi

29/06/2015

After **regolarization** in the coordinate space:

$$\begin{split} V^{LO} &= \sum_{ij} \left[C_0^{\Lambda} e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} + C_1^{\Lambda} e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} \big(\overrightarrow{\sigma_i} \cdot \overrightarrow{\sigma_j} \big) \right] \\ &+ D_0^{\Lambda} \sum_{ijk} \left[e^{-\frac{\Lambda^2}{2} \big(|r_{ij}|^2 + |r_{ik}|^2 \big)} + e^{-\frac{\Lambda^2}{2} \big(|r_{ij}|^2 + |r_{jk}|^2 \big)} + e^{-\frac{\Lambda^2}{2} \big(|r_{ij}|^2 + |r_{ik}|^2 \big)} \right] \end{split}$$

Lorenzo Contessi

29/06/2015

$Contact \ EFT \ \textbf{-} \ \mathsf{Two} \ \mathsf{possible} \ \mathsf{applications}$

Start from **LQCD** data:

- Input from $m_{\pi} = (500 \text{ and } 800) \text{ MeV}$.
- ✓ Extension of LQCD in low bound systems.
- ✓ **Very heavy pions** (less severe computational problems).

Start from **Experimental** data:

- Pions can be neglected only for light nuclei (in LO at least).
- ✓ Many experiments to fit LECs.
- ✓ Many observables to guide powercounting.

Nature	$m_{\pi}=510~MeV~[1]$	$m_{\pi}=805~MeV~[2]$
939.6	1320.0	1634.0
938.3	1320.0	1634.0
2.224	11.5(1.3)	19.5(4.8)
	7.4(1.4)	15.9(3.8)
8.482	20.3(4.5)	53.9(10.7)
7.718	20.3(4.5)	53.9(10.7)
28.296	43.0(14.4)	107.0(24.2)
	Nature 939.6 938.3 2.224 8.482 7.718 28.296	Nature $m_{\pi} = 510 \ MeV$ [1]939.61320.0938.31320.02.22411.5(1.3)7.4(1.4)8.48220.3(4.5)7.71820.3(4.5)28.29643.0(14.4)

[1] - Takeshi Yamazaki, Ken-ichi Ishikawa and al.
[2] - S. R. Beane, E. Chang and al.
[Phys. rev. D 86, 074514 (2012)]
[Phys. rev. D 87, 034506 (2013)]

Lorenzo Contessi

29/06/2015

Nucleus	Nature	$m_{\pi}=510~MeV~[1]$	$m_{\pi}=805~MeV~[2]$	
N (mass)	939.6	1320.0	1634.0	
P (mass)	938.3	1320.0	1634.0	
n-p	2.224	11.5(1.3)	19.5(4.8)	
n - n		7.4(1.4)	15.9(3.8)	2b LECs
³ H	8.482	20.3(4.5)	53.9(10.7)	3b LEC
³ He	7.718	20.3(4.5)	53.9(10.7)	
⁴ He	28.296	43.0(14.4)	107.0(24.2)	Benchmark
	1	I		

[1] - Takeshi Yamazaki, Ken-ichi Ishikawa and al.[Phys. rev. D 86, 074514 (2012)][2] - S. R. Beane, E. Chang and al.[Phys. rev. D 87, 034506 (2013)]

Lorenzo Contessi

29/06/2015

	$m_{\pi} = 510$) MeV		$m_{\pi} = 805$	MeV
Λ [fm ⁻¹]	⁴ He Energy [MeV]	⁵ He Energy [MeV]	Λ [fm ⁻¹]	⁴ He Energy [MeV]	⁵ He Energy [MeV]
2	-31,1(1)	-31,2(1)	2	-87,9(2)	-93,7(1)
4	-34,8(2)	-32,1(3)	4	-91,3(3)	-87,4(2)
6	-36,7(2)	-32,4(4)	6	-96,4(4)	-88,6(2)
8	-38,1(3)	-32,5(4)	8	-101,3(5)	-92,9(3)
∞	-40.4(1.5)	-30.0(1)	∞	-114(15)	-120(25)
LQCD	-43(14)		LQCD	-107(24)	

Lorenzo Contessi

29/06/2015

Lorenzo Contessi

29/06/2015

Lorenzo Contessi

29/06/2015

THE 8TH INTERNATIONAL WORKSHOP ON CHIRAL DYNAMICS 2015 (CD2015)

Physical M_{π}

Lorenzo Contessi

29/06/2015

Overwiev

Contact theory is very good for fewbody system.

x Give wrong results in heavier nuclei.

What happens in betweens? When does the theory break and why?

Oxygen is not bound for high M_{π} too.
Powercount breaking.
LQCD physics does not bind Oxygen.

Thanks for your attention

29/06/2015

References

[3] A. Nogga, R. G. E. Timmermans and U. van Kolck, Phys. Rev. C 72, 054006 (2005) [arXiv:nucl-th/0506005].

[4] S. Fleming, T. Mehen and I. W. Stewart, Nucl. Phys. A 677, 313 (2000) [arXiv:nucl-th/9911001].

[5] L.H.Thomas, Phys.Rev. 47 (1935) 903.

Contact EFT - 3b force contribution

Lorenzo Contessi

29/06/2015

Calcium

Lorenzo Contessi

29/06/2015

Helion

	$m_{\pi} = 140$) Mev
Λ	⁴ He Energy	⁵ He Energy
$[fm^{-1}]$	[MeV]	[MeV]
2	-23.3(1)	-19.8(2)
4	-23.4(2)	-17.8(4)
6	-24.8(3)	-17.9(4)
8	-26.0(3)	-18(1)
∞	-28.3(5)	-22(3)
Exp	-28.296	27.406

T 7

Lorenzo Contessi

29/06/2015

Oxygen convergence in LQCD

Lorenzo Contessi

29/06/2015

Physical M_{π}

Lorenzo Contessi

29/06/2015

Lorenzo Contessi

29/06/2015

Lorenzo Contessi

29/06/2015

Results

29/06/2015

Data and parameters

The parameters shown are:

$$C_{1}^{\sim} = C_{1} \cdot \frac{m_{N}}{\Lambda^{2}}$$
$$C_{2}^{\sim} = C_{2} \cdot \frac{m_{N}}{\Lambda^{2}}$$
$$D^{\sim} = D \cdot \frac{m_{N}}{\Lambda^{4}}$$

Lorenzo Contessi

29/06/2015