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UNCERTAINTY QUANTIFICATION

Realizing full promise of 𝜒EFT requires quantification of theory uncertainties.

These arise from: truncation of H at finite order in EFT expansion, 
computational/many-body technique, input parameters in H.

Multiple sources of theory uncertainty that are connected in complicated ways.

Goal: ability to propagate uncertainties to predictions.

Physical Review A Editorial, 29 April 2011
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Chiral EFT predictions for p-d spin observables 
with theory errors from cutoff variation

Size of error depends on how smart 
you are choosing regulator function;
Depends on range of cutoffs chosen;
Error does not necessarily decrease 
order-by-order;
Only captures errors from even 
orders in the EFT;
Statistical interpretation is not clear.

This talk: truncation errors
Standard technique in few-nucleon 
𝜒EFT calculations had been to vary 

cutoff in reasonable range.

Cutoff variation is a regulator artefact which may or may 
not reflect full size of theory uncertainty

Epelbaum, Hammer,Meissner,RMP, 2009
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BEHAVIOUR OF A 𝜒EFT SERIES
Consider𝜒EFT as an expansion in mπ/(MΔ-MN)≃MΔ-MN/Λ𝞆SB≃0.4

Take the example of an observable, X, whose terms are:  

What is the theoretical uncertainty of this result?

Rewrite as

We cannot know the result for c3 before we compute it.

Two questions: 

What is a priori expectation for c3?

In fact {cn}={1,-0.46,0.75}.  What then is expectation for c3?

One possibility: c3=max{c0,c1,c2}.

X = XLO[1 + c1(0.4) + c2(0.4)
2 + c3(0.4)

3]

Epelbaum, Krebs, Meissner (2014)
cf. McGovern, Griesshammer, Phillips (2013); many others. 

X = 12.5� 2.3 + 1.5 = 11.7



PROBABILITY FOR EFT COEFFICIENTS

General EFT series to order k: 

Compute conditional probability distribution: pr(ck+1|c0,…,ck,I).

I=information about 𝜒EFT, e.g. naturalness.

“Prior A”: 

Uniformly distributed coefficients up to maximum, maximum distributed 
uniformly in its logarithm. ϵ→0+ at end. 

Prior expectations will guide result, but they are not be all and end all.

Maximum of coefficients informed by known coefficients. 

X = X0

kX

n=0

cnQ
n

Furnstahl, Klco, Phillips, Wesolowski, arXiv:1506.03143

after Cacciari and Houdeau, JHEP, 2011

pr(cn|c̄) =
1

2c̄
✓(c̄� cn); pr(c̄) =

1

2 ln(✏)c̄
✓

✓
1

✏
� c̄

◆
✓(c̄� ✏)
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Bayes’ theorem: 

Marginalization: 

This is generic, but the integrals are simple in the case of  “Prior A”

pr(c̄|c0, c1, . . . , ck) =
pr(c0, c1, . . . , ck|c̄)pr(c̄)

pr(c0, c1, . . . , ck)

= Npr(c̄)⇧k
n=0pr(cn|c̄)

pr(ck+1|c0, c1, . . . , ck) =
Z 1

0
dc̄ pr(ck+1|c̄)pr(c̄|c0, c1, . . . ck)

pr(c̄|c0, c1, . . . , ck) /
⇢

0 if c̄ < max{c0, . . . , ck}
1/c̄k+2

if c̄ > max{c0, . . . , ck}
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|c
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, c
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, . . . , ck) /
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1 if ck+1
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THE CANONICAL PROCEDURE
pr (Δk) α X0 Qk+1 pr(ck+1)

68%, 95% DOB intervals from integration of probability distribution

Main feature is reduction by factor of Q for each order; but tails also 
become steeper as more information on coefficients acquired

Not Gaussian!

[-cmax X0 Qk+1,cmax X0 Qk+1] is a                     DOB interval

Q=0.33; cmax=1

k + 1

k + 2
⇤ 100%



I DON’T LIKE THAT PRIOR!
Modify Set A to restrict cbar to a finite range, e.g. A[0.25,4]

Set B: give cbar a log-normal prior: 

Set C:

Same formulas as before can be invoked. Now numerical.

You don’t like these? Pick your own and follow the rules… 

First omitted term approximation

pr(c̄) =
1p
2⇡c̄�

e�(log c̄)2/2�2

pr(cn|c̄) = 1p
2⇡c̄

e�c2n/2c̄
2

; pr(c̄) / 1
c̄ ✓(c̄� c̄<)✓(c̄> � c̄)

pr(ck+1|c0, c1, . . . , ck) =
Z 1

0
dc̄ pr(ck+1|c̄)pr(c̄|c0, c1, . . . ck)

pr(c̄|c0, c1, . . . , ck) = Npr(c̄)⇧k
n=0pr(cn|c̄)



REPRESENTATIVE EXAMPLES

Set C differs from Set A in that entire distribution of {cn} matters.

Set Aϵ and Set Cϵ DOB intervals closest for most uniform {cn}.

Choice of prior matters less and less at higher orders. At and beyond k=2 
different choice of priors affect 68% DOB interval by at most 10-15%.

Updating refines knowledge of coefficients: Bayesian convergence.

Bigger effect on 95% DOB interval.

Q=0.33



EKM’S NN SCATTERING ANALYSIS
NN cross section at Tlab=50, 
96, 143, 200 MeV

Local regulator, 
parameterized by R.

EKM identify Λb=600 MeV 
for smaller R values. 

Here I examine R=0.9 fm 
data.

Results at LO, NLO, N2LO, 
N3LO, N4LO (k=0, 2, 3, 4, 5).

One outlier. Fitting 
procedure?

�np(Elab) = �LO

kX

n=0

cn(prel)

✓
prel
⇤b

◆n

Q =
prel
⇤b

Epelbaum, Krebs, Meissner, arXiv:1412,0412; arXiv:1412.4623
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CONSISTENCY?

Now we consider predictions at 
each order, with their error bars,  
as data and test them to see if the 
procedure is consistent. 

Fix a given DOB interval, compute 
actual success ratio and compare. 

Look at this over EKM predictions 
at four different orders and four 
different energies.

Interpret in terms of rescaling of 
Λb by a factor λ.

No evidence for significant rescaling of Λb

after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015

Furnstahl, Klco, Phillips, Wesolowski, arXiv:1506.03143



NORMAL NATURALNESS?
Treat 19 coefficients as data and test for naturalness. 

Approach 1: coefficients should be normally distributed around a mean μ 
with a variance σ2.

Approach 2:  see if 𝜒2 has size expected, assuming μ=0 and a particular σ. 

Forte, Isgro, Vita, PLB, 2014
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Treat 19 coefficients as data and test for naturalness. 

Approach 1: coefficients should be normally distributed around a mean μ 
with a variance σ2.

Approach 2:  see if 𝜒2 has size expected, assuming μ=0 and a particular σ. 

Forte, Isgro, Vita, PLB, 2014

�2 =
NOX

i=1

kX

n=0

 
|c(i)n |�n � µ

�
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Examine 𝜒2 as a function of rescaling parameter λ (we also included a 
Jeffreys prior for λ).

Approach 1 (σ2=1):

Approach 2 (σ2=1): λ=1.09 gives 𝜒2=19. λ=1.01→1.15 consistent.

� = 1.01+0.18
�0.19

No evidence for significant rescaling of Λb



CAVEATS
Naturalness of coefficients in Q-expansion for NN cross section 
assumed.  Justified for perturbative process, but justification not so clear 
for NN. 

mπ not included in Q (anticipate this is only a small effect).

We looked at results only for one R; at larger Rs the regulator effects 
dominate and:

The distribution {cn} is qualitatively different;

Λb  is identified as lower by EKM. Cutoff artefact, not true EFT breakdown scale.

We took EKM’s LECs as given. LECs themselves have statistical errors, 
but we did not incorporate those in our analysis. 

LECs also have truncation errors, which should be included in their 
quoted errors. 



IN PROGRESS: LEC EXTRACTION
with A. Thapaliya



IN PROGRESS: LEC EXTRACTION

Original application of Bayesian 
methods in EFT was to 
stabilize LEC extraction and 
incorporate truncation error 
therein. 

with A. Thapaliya

Schindler and Phillips (2009)



IN PROGRESS: LEC EXTRACTION

Original application of Bayesian 
methods in EFT was to 
stabilize LEC extraction and 
incorporate truncation error 
therein. 

Impose prior on higher-order 
terms in EFT expansion, via, 
e.g. augmented 𝜒2: remedies 
over-fitting.

with A. Thapaliya

Schindler and Phillips (2009)



IN PROGRESS: LEC EXTRACTION

Original application of Bayesian 
methods in EFT was to 
stabilize LEC extraction and 
incorporate truncation error 
therein. 

Impose prior on higher-order 
terms in EFT expansion, via, 
e.g. augmented 𝜒2: remedies 
over-fitting.

with A. Thapaliya

Schindler and Phillips (2009)



IN PROGRESS: LEC EXTRACTION

Original application of Bayesian 
methods in EFT was to 
stabilize LEC extraction and 
incorporate truncation error 
therein. 

Impose prior on higher-order 
terms in EFT expansion, via, 
e.g. augmented 𝜒2: remedies 
over-fitting.

Numerous diagnostics 
developed to ensure that prior 
does not bias final result for 
LECs.

with A. Thapaliya

Schindler and Phillips (2009)



CONCLUSION
A Bayesian analysis of truncation error 
makes explicit assumptions about the 
pattern of EFT LECs, allowing rigorous 
consequences to be derived.

The “Set Aϵ” prior justifies the standard 
EFT error estimation procedure.

Theory uncertainties quite stable under 
choice of other (reasonable) priors.

Resulting error bars have a statistical 
interpretation.

Permits to combine errors in a 
consistent way.



OUTLOOK

Robust guidance regarding new measurements that refine and test the theory

Understanding truncation errors

LEC extractions with truncation errors included

Analyze systematics of residuals: Bayesian model 
selection for EFT testing

Theory predictions with full error bars

ON THE MENU:

Goal 1: provide clear guidance on how to extract 𝜒EFT parameters;

Goal 2: facilitate tests of whether 𝜒EFT is working as advertised;

Goal 3: theory predictions with well-understood and motivated error bars 
that incorporate ALL sources of uncertainty in the calculation.


