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UNCERTAINTY QUANTIFICATION

Physical Review A Editorial, 29 April 201 |

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving
theoretical calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for
numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be
considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties
involved in the measurements....

The question is to what extent can the same high standards be applied to papers reporting the results of
theoretical calculations.....There are many cases where it is indeed not practical to give a meaningful error
estimate for a theoretical calculation....However, there is a broad class of papers where estimates of theoretical
uncertainties can and should be made.

Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the
calculations whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.

2. If the primary motivation for the paper is to make comparisons with present or future high precision
experimental measurements.

3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

Realizing full promise of yEFT requires quantification of theory uncertainties.

These arise from: truncation of H at finite order in EFT expansion,
computational/many-body technique, input parameters in H.

Multiple sources of theory uncertainty that are connected in complicated ways.

Goal: ability to propagate uncertainties to predictions.
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Chiral EFT predictions for p-d spin observables

. 2 | This talk: truncation errors
with theory errors from cutoff variation
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This talk: truncation errors

Standard technique in few-nucleon
YEFT calculations had been to vary

cutoff in reasonable range.

PROBLEMS WITH
CUTOFF VARIATION

Size of error depends on how smart
you are choosing regulator function;

Depends on range of cutoffs chosen;

Error does not necessarily decrease
order-by-order;

Only captures errors from even
orders in the EFT;

Statistical interpretation is not clear.
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IFICATION IN yEF

This talk: truncation errors

Standard technique in few-nucleon
YEFT calculations had been to vary

cutoff in reasonable range.

PROBLEMS WITH
CUTOFF VARIATION

Size of error depends on how smart
you are choosing regulator function;

Depends on range of cutoffs chosen;

Error does not necessarily decrease
order-by-order;

Only captures errors from even
orders in the EFT;

Statistical interpretation is not clear.

Cutoff variation is a regulator artefact which may or may
not reflect full size of theory uncertainty
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“HAVIOUR OF A yEFT SERIES

Consider yEFT as an expansion in mn/(Ma-Mn)=Ma-Mn/Axsg=0.4

Take the example of an observable, X, whose terms are:

el adre= Aol =g — T

What is the theoretical uncertainty of this result?
Rewrite as X = X1,0[1 + ¢1(0.4) + c3(0.4)° + ¢3(0.4)°]
We cannot know the result for c3 before we compute it.

Two questions:
What is a priori expectation for c3?

In fact {c,}={1,-0.46,0.75}. What then is expectation for c3?

Epelbaum, Krebs, Meissner (2014)

One POSSI bl I |t)’: C3 —maX{CO,C | ’CZ}' cf. McGovern, Griesshammer, Phillips (2013); many others.
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Furnstahl, Klco, Phillips, Wesolowski, arXiv:1506.0314:3
L after Cacciari and Houdeau, JHEP, 2011

General EFT series to order k: X = X, Z cn Q"

n=0

Compute conditional probability distribution: pr(cy+i|co,...,Cil).

|=information about yEFT, e.g. naturalness.

1 : 1 s x
“Prior A™: pr(enle) = -0(¢ — ¢a); pr(c) = QIH(E)EH (; = C> b(c—¢)

Uniformly distributed coefficients up to maximum, maximum distributed
uniformly in its logarithm. €0+ at end.

Prior expectations will guide result, but they are not be all and end all.

Maximum of coefficients informed by known coefficients.
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Bayes’ theorem: pr(c|cg,C1,...,Ct) =
Y p ( | 0,1, 9 ) pr(Co,C1,---,Ck)

— Npr(E)Hle:opr(Cn‘é)

Marginalization:
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pr(COv Cly.- - Ck'|5)pr(5)

Bayes’ theorem: pI‘(E|Co, Cly.--, Ck) =
PRCHICT e Cr)

— Npr(E)Hle:opr(Cn‘é)

Marginalization:
©. @)
pr(ck—l—llc()a C1,- - - 7Ck) = / dépr(ck+1‘5)pr(é‘607 C1,- - - Ck)
0

This is generic, but the integrals are simple in the case of “Prior A”

. T 0 e Smallcs
p Bl ot on Gy e el tre e e L

lf Ck_|_1 < Cmax

1
pf(Ck+1‘Coa Cly-.-, Ck) X Crts: b
Ck41 L Ch41 > Cmax
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THE CANONICAL PROCEDURE
pr (Ax) & Xo Q"' pr(cis+1)

68%, 95% DOB intervals from integration of probability distribution

pr(A0 I co) pr(A2 I Cyr €y 02) pr(A " I €y Cp3Cp C3n € 4)

Q=0.33; cmax=|I

_ T | ! | ) gl s
-1.000 -0.500 0.000 0.500 1.000 -0.100 -0.050 0.000 0.050 0.100 -0.010 -0.005 0.000 0.005 0.010

A, A, A,

Main feature is reduction by factor of Q for each order; but tails also
become steeper as more information on coefficients acquired

Not Gaussian!
A= |

['Cmax Xo Qkﬂ’cmax Xo Qk+|] s a R

* 100% DOB interval




| DON'T LIKE THAT PRIOR!

Modify Set A to restrict cbar to a finite range, e.g. Aj0.25,4]

1
\ 2mco

Set G prle o — — e~¢n/28": pr(e) o« 10(c —e<)b(c> — ¢)

TG

Set B: give cbar a log-normal prior: pr(c) = o—(loge)* /20°

Same formulas as before can be invoked. Now numerical.
@)
pI’(Ck_|_1|C(), Cl,y-.-- ,Ck) e / dépr(ck+1|5)pr(5|cg, C1y.-. Ck)
0
4 i e o
pr(¢|co, c1,...,cx) = Npr(e)ll7 _,pr(c,|c)
You don’t like these? Pick your own and follow the rules...

First omitted term approximation
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pr(A2 Ic0=l.0. cl=l.0, c2=l.()) pr(A2 Ic0=l.0. cl=().5, c2=0.l) pr(A2 Ic0=l.O. c]=0.|. c2=0.l)
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2 Az A
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A

Set C differs from Set A in that entire distribution of {c,} matters.
Set A¢ and Set C. DOB intervals closest for most uniform {c,}.

Choice of prior matters less and less at higher orders. At and beyond k=2
different choice of priors affect 68% DOB interval by at most 10-15%.

Updating refines knowledge of coefficients: Bayesian convergence.

Bigger effect on 95% DOB interval.
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NN cross section at T,,=50,
96, 143,200 MeV

Local regulator,
parameterized by R.

EKM identify A,=600 MeV
for smaller R values.

Here | examine R=0.9 fm
data.

Results at LO, NLO, NLO,
N°’LO, N*LO (k=0, 2, 3, 4, 5).

One outlier. Fitting
procedure?

k n
Onp(Elab) — OLO Z Cn(prel) (ZXZI)

Tlab

200 MeV
143 MeV
96 MeV
50 MeV

n=0
Q_prel
Ay
| LO lllllllllllllllllllllllllllllllllllll
— R=0.9fm
® NLO Ori= Lo
= N0 ¢ A, =600 MeV
3 e® & -
® N'LO
A N'LO 1
& -
® B -
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Epelbaum, Krebs, Meissner, arXiv:1412,0412; arXiv:1412.4623

prel
307 MeV

259 MeV
212 MeV
153 MeV
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CONSISTENCY?

100

0 20 40 60 80 100

Furnstahl, Klco, Phillips, Wesolowski, arXiv:1506.03143

after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015

Now we consider predictions at
each order, with their error bars,
as data and test them to see if the
procedure is consistent.

Fix a given DOB interval, compute
actual success ratio and compare.

Look at this over EKM predictions
at four different orders and four
different energies.

Interpret in terms of rescaling of
Ao by a factor A.

No evidence for significant rescaling of Ay
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Treat |9 coefficients as data and test for naturalness.
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NORMAL NATURALNESS!

Treat |9 coefficients as data and test for naturalness.

Approach |: coefficients should be normally distributed around a mean [

with a variance O
Forte, Isgro, Vita, PLB, 2014

Approach 2: see if ¥ has size expected, assuming Y=0 and a particular G.

No k ) N 2
XQ_S:S:(% | M)

: O
1=1 n=0
Examine y?as a function of rescaling parameter A (we also included a

Jeffreys prior for A).

Approach | (0%=1): X = 101113

Approach 2 (02=1): A=1.09 gives y*=19.A=1.01—=1.15 consistent.

No evidence for significant rescaling of A,



ANV EALD

Naturalness of coefficients in Q-expansion for NN cross section

assumed. Justified for perturbative process, but justification not so clear
for NN.

m not included in Q (anticipate this is only a small effect).

We looked at results only for one R;at larger Rs the regulator effects
dominate and:

The distribution {c,} is qualitatively different;

Np is identified as lower by EKM. Cutoff artefact, not true EFT breakdown scale.

We took EKM’s LECs as given. LECs themselves have statistical errors,
but we did not incorporate those in our analysis.

LECs also have truncation errors, which should be included in their
quoted errors.
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Original application of Bayesian
methods in EFT was to
stabilize LEC extraction and
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:\\Q [ Schindler and Phillips (2009)
N Impose prior on higher-order
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with A. Thapaliya

Original application of Bayesian
methods in EFT was to
stabilize LEC extraction and
Incorporate truncation error

therein.
Schindler and Phillips (2009)

Impose prior on higher-order
terms in EFT expansion, via,
e.g.augmented y*: remedies

over-fitting.

Numerous diagnostics
developed to ensure that prior

does not bias final result for
LECs.



CONCLUSION

A Bayesian analysis of truncation error
makes explicit assumptions about the
pattern of EFT LECs, allowing rigorous
consequences to be derived.

The “Set A¢” prior justifies the standard
EFT error estimation procedure.

Theory uncertainties quite stable under
choice of other (reasonable) priors.

Resulting error bars have a statistical
interpretation.

Permits to combine errors in a
consistent way.
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CICF LIRS

Goal |: provide clear guidance on how to extract yEFT parameters;

Goal 2:facilitate tests of whether yEFT is working as advertised;

Goal 3: theory predictions with well-understood and motivated error bars
that incorporate ALL sources of uncertainty in the calculation.

Robust guidance regarding new measurements that refine and test the theory

ON THE MENU:
B Fror

a1 . c s
B Posterior Understanding truncation errors

® Truevalue

LEC extractions with truncation errors included

Analyze systematics of residuals: Bayesian model
selection for EFT testing

Theory predictions with full error bars

BUQEYE collaboration



