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Nuclear forces in chiral EFT
3NF’s upto N4LO
PWD of the three-nucleon forces
Summary & Outlook

Outline



ChPT pros and cons
QCD ChPT 

T =
...

⇡

1

T
ChPT as an effective field theory of QCD

gives a unified description of ππ, πN, NN, 
(axial) vector currents etc. 

is systematically improvable

is the most general field theory with pions, nucleons
(deltas) as dofs in line with the symmetries of QCD

naturally explains the hierarchy 
V2N >> V3N >> V4N

allows doing precision physics with/from light nuclei

predicts the long range behavior of nuclear forces

number of free parameters (LEC) increases 
with increasing order in ChPT

does not provide an explanation on the
size of a particular LEC

is only applicable in the low energy region

convergence radius of ChPT is a priori
unknown



ChPT nuclear forces
VNN V3N V4N

Worked out up 
to the order

N4LO 
Evgeny’s talk

N3LO 
N4LO in progress

N3LO

Regularization 
used

Dim. Reg 
In combination with semi-local 
regularization in Schrödinger eq.

Dim. Reg. ——

Local regularization in coordinate space:
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By construction long - range physics is unaffected by this regulator

No additional SFR is needed

Novelties in NN sector (beside the construction of N4LO NN)

Theoretical uncertainty estimation due to chiral expansion for every fixed cutoff

Local regularization
Working with relatively low cut-offs                                 prevents appearance of NN deeply bound states ⇤ ⇠ 500 . . . 600MeV
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Absence of deeply bound states is advantageous for few- and many-body simulations 

Finite cut-off artefacts are manifested in residual cut-off dependence of nuclear observables

Reduce cut-off artefacts by efficient choice of regularization 

Standard non-local momentum space regulator:
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Affects the discontinuity across the left-hand cuts
9

Im E

Re EEπE2π

FIG. 2: Singularity structure of the partial-wave two-nucleon scattering amplitude in the complex energy plane. The solid
dot indicates the position of the S-wave (virtual) bound state. Elastic unitarity is satisfied on the right-hand cut, also called
unitarity cut. Left-hand cuts are caused by exchange processes in the potential. The first and second left-hand cuts due to
one- and two-pion exchange start at laboratory energy of E

⇡

= �M2
⇡

/(2m
N

) ⇠ 10MeV and E2⇡ = �2M2
⇡

/m
N

⇠ 40MeV,
respectively.

governed by contributions emerging from pion exchanges which are unambiguously4 determined by the chiral symmetry
of QCD and experimental information on the pion-nucleon system needed to pin down the relevant LECs. Secondly,
the short-range part of the potential is parametrized by all possible contact interactions with increasing number
of derivatives. It is desirable to introduce regularization in such a way that the long-range part of the interaction
including especially the OPEP, which is responsible for left-hand cuts in the partial-wave scattering amplitude as
visualized in Fig. 2 and thus governs near-threshold energy behavior of the S-matrix, is not a↵ected by the regulator.
Notice that the near-threshold left-hand singularities of the amplitude can be tested e.g. via the low-energy theorems
[27, 59].

The standard implementation of the regulator used e.g. in Refs. [1, 2] is as follows:
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where the power m is chosen su�ciently large in order that the cuto↵ artefacts V (~p 0
, ~p ) ⇥ O�

(Q/⇤)m
�
are beyond

the chiral order one is working at. Specifically, Ref. [1] used m = 6 while Ref. [2] employed di↵erent powers m  6 for
di↵erent terms in the potential, presumably in order to optimize the quality of the fit. It is clear that the multiplicative
regulator introduced above leads to distortions of the analytic structure of the partial-wave amplitude near threshold
as it a↵ects the discontinuity across the left-hand cuts, see also Refs. [60, 61] for recent studies of NN scattering
which explicitly exploit the analytic structure of the amplitude. While such distortions are small if ⇤ can be chosen
su�ciently large, they can lead to sizable e↵ects for the commonly adopted choices of ⇤ ⇠ 500MeV. It is easy to
avoid this unpleasant feature by exploiting the fact that long-range potentials derived in chiral EFT are nearly local,
i.e. depend only on momentum transfer ~q. In fact, the only source of non-locality is given by relativistic corrections
which, in the power counting scheme we are using, start to appear at N3LO, see the previous section. The feature
of locality naturally suggests to apply regularization in coordinate space similar to what was done in Refs. [57, 58]
by cutting o↵ short-range parts of the pion-exchange potentials, for which chiral expansion does not converge, see
Ref. [62] for a related discussion:
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where the regulator function f(x) is chosen such that its value goes to 0 (1) su�ciently fast for x ! 0 (exponentially
fast for x � 1). It is instructive to write this regularization in momentum space,

V (~q ) ! V

reg(~q ) = V (~q )�
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4
Strictly speaking, even the long-range tail of the potential is scheme-dependent as it can be a↵ected by unitary transformations. Notice,

however, that unitary ambiguity of the chiral nuclear forces was found to be strongly reduced in the static limit if one demands that

the corresponding potentials are renormalizable [32].

Cut-off artefacts can be partly reduced by additional introduction of SFR

Convenient for partial wave decomposition of nuclear force: simple multiplication

Local regularization in coordinate space:
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By construction long - range physics is unaffected by this regulator

No additional SFR is needed

Distortion of analytic structure of partial-wave amplitudes near threshold.
Effects proportional to inverse power of    . ⇤ ⇠ 500 . . . 600MeV
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
N3LO (filled triangles, color online: blue) and N4LO (filled
circles, color online: red) at the laboratory energies of 50,
96, 143 and 200 MeV for the di↵erent choices of the cuto↵:
R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm and
R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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Here, Q is the expansion parameter given by

Q = max

✓
p

⇤b
,
M⇡

⇤b
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. (4)

For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
N3LO (filled triangles, color online: blue) and N4LO (filled
circles, color online: red) at the laboratory energies of 50,
96, 143 and 200 MeV for the di↵erent choices of the cuto↵:
R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm and
R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at

R = 0.9 fm NLO N2LO N3LO N4LO

Good convergence of chiral expansion

Excellent agreement with NPWA data

Error bands are consistent with each other            strong support of chiral uncertainty estimation 

Epelbaum, HK, Meißner, arXiv: 1412.4623



Role of the 3NFs
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FIG. 2: Predictions for Nd total cross section based on the
NN potentials of Refs. [1, 15] for R = 0.9 fm without including
the 3NF. Theoretical uncertainties are estimated via Eqs. (6),
(7). Experimental data are from Ref. [16].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF (as a consequence of the Pauli principle).

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [1, 15] show clearly a smaller amount of finite-
cuto↵ artefacts as compared to the N3LO potentials of
Refs. [4, 5] and, in particular, do not lead to distortions
in the cross section minimum found in Ref. [19].

At this point, the discussion could naturally
move towards heavier systems. It would be nat-
ural to first briefly address Weinberg eigenvalue
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FIG. 3: Predictions for the di↵erential cross section and nu-
cleon A

y

in elastic Nd scattering based on the NN potentials
of Refs. [1, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [6].

analysis done by Dick (and maybe to show one
figure) and then present selected NCSM results.
For 4He, we could probably show the FY results
by Andreas. We could also put it earlier in the
text to the 3H BE and try to save space by ex-
tending Fig. 1. It would be interesting to see
results for the radii of 3H, 4He. For NCSM, we
could maybe concentrate on 6Li (if such calcula-
tions are possible without SRG). I think, it would
be very interesting to see the expected theoreti-
cal accuracy not only for the ground but also for
excited states.

If the NCSM calculations will be done with
R = 1 fm, we could choose the same cuto↵ for

Total cross section 
for Nd scattering

Significant discrepancy between experiment and theory

The discrepancy at 10 MeV is much lower than at other energies

Cross section at low energy is governed by S-wave spin-doublet 
and spin-quartet Nd scattering lengths: 

4a >> 2a (one order of magnitude) 
4a is much less sensitive to 3NF (Pauli principle)

Clear evidence of missing 3NFs at higher energy

LENPIC collaboration: Binder et al. arXiv:1505.07218

chiral predictions
without 3NF at R = 0.9 fm 
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Most general structure of a local 3NF

Epelbaum, Gasparyan, HK, PRC87 (2013) 054007

Up to N4LO, the computed contributions are local            it is natural to switch to r-space.  
A meaningful comparison requires a complete set of independent operators 

n

p

n

r12

r31

r23

Building blocks:
� 1, � 2, � 3, ⌅⇤1, ⌅⇤2, ⌅⇤3, ⌅r12, ⌅r23, ⌅r31 (1)

V (0)
2N = � g2A

4F 2
�

� 1 · � 2
⌅⇤1 · ⌅q ⌅⇤2 · ⌅q
⌅q 2 +M2

�

+ CS + CT⌅⇤1 · ⌅⇤2, (2)

T (⌅p 0, ⌅p)=V (0)
2N (⌅p 0, ⌅p) +

⌅ d3k

(2 ⇥)3
V (0)
2N (⌅p 0,⌅k)

mN

p2 � k2 + i �
T (⌅k, ⌅p) (3)

T (⌅p 0, ⌅p)=V (0)
2N (⌅p 0, ⌅p) +

m2
N

2

⌅ d3k

(2 ⇥)3
V (0)
2N (⌅p 0,⌅k)T (⌅k, ⌅p)

(k2 +m2
N) (E �

⇧
k2 +m2

N + i �)
, (4)

�⇧
(23 + 32)2 � 168� 1

⇥2

(5)

a+ = (7.6± 3.1)⇥ 10�3M�1
� (6)

a� = (86.1± 0.9)⇥ 10�3M�1
� (7)

m� �mN ⇤ M� (8)

V static
3N =

22⇤

i=1

Gi(⌅⇤1,⌅⇤2,⌅⇤3, � 1, � 2, � 3,⌅r12,⌅r23) Fi(r12, r23, r31) + permutations

(9)

c�3 = �2c�4 = � 4h2
A

9(m� �mN)
⌅ �2.7 GeV�1 (10)

Q ⇤ M� (11)

⇠ 1
m��mN

(12)

⇠ 1
(m��mN )2

, . . . (13)

⇠ 1
m��mN

, 1
(m��mN )2

, . . . (14)

1

Constraints:

Locality
Isospin symmetry
Parity and time-reversal invariance

Epelbaum, Gasparyan, HK, Schat, EPJA51 (2015) 3
Schat, Phillips, PRC88 (2013) 034002

G̃1 = 1

G̃2 = τ 1 · τ 3

G̃3 = σ⃗1 · σ⃗3

G̃4 = τ 1 · τ 3 σ⃗1 · σ⃗3

G̃5 = τ 2 · τ 3 σ⃗1 · σ⃗2

G̃6 = τ 1 · (τ 2 × τ 3) σ⃗1 · (σ⃗2 × σ⃗3)

G̃7 = τ 1 · (τ 2 × τ 3) σ⃗2 · (r̂12 × r̂23)

G̃8 = r̂23 · σ⃗1 r̂23 · σ⃗3

G̃9 = r̂23 · σ⃗3 r̂12 · σ⃗1

G̃10 = r̂23 · σ⃗1 r̂12 · σ⃗3

G̃11 = τ 2 · τ 3 r̂23 · σ⃗1 r̂23 · σ⃗2

G̃12 = τ 2 · τ 3 r̂23 · σ⃗1 r̂12 · σ⃗2

G̃13 = τ 2 · τ 3 r̂12 · σ⃗1 r̂23 · σ⃗2

G̃14 = τ 2 · τ 3 r̂12 · σ⃗1 r̂12 · σ⃗2

G̃15 = τ 1 · τ 3 r̂13 · σ⃗1 r̂13 · σ⃗3

G̃16 = τ 2 · τ 3 r̂12 · σ⃗2 r̂12 · σ⃗3

G̃17 = τ 1 · τ 3 r̂23 · σ⃗1 r̂12 · σ⃗3

G̃18 = τ 1 · (τ 2 × τ 3) σ⃗1 · σ⃗3 σ⃗2 · (r̂12 × r̂23)

G̃19 = τ 1 · (τ 2 × τ 3) σ⃗3 · r̂23 r̂23 · (σ⃗1 × σ⃗2)

G̃20 = τ 1 · (τ 2 × τ 3) σ⃗1 · r̂23 σ⃗3 · r̂12 σ⃗2 · (r̂12 × r̂23)

Cpp
1S0

̸= Cnp
1S0

dσ/dΩ

Ri = (0.7 + i× 0.1) fm

XN4LO

∆r2d ≃ 0.014 fm2

∆Q ≃ 0.008 fm2

Q+∆Q = 0.279 fm2

Λb ∼ 400 . . . 600MeV

k ∼ 500MeV

∼ (k/Λb)
n

1

VC,S(q) = −
2q6

π

∫

∞

2Mπ

dµ
ImVC,S(iµ− ϵ)

µ5(µ2 + q2)

VT (q) =
2q4

π

∫

∞

2Mπ

dµ
ImVT (iµ− ϵ)

µ3(µ2 + q2)

Ṽ =

{

√

p2 +m2
N

2mN

+ V

}

+
V 2

4mN

[

2
√

p2 +m2
N + V

]

Ψ = 2
√

k2 +m2
NΨ =⇒

[

p2

2mN

+ Ṽ

]

Ψ =
k2

2mN

Ψ

⟨m′

s|σ⃗ · p⃗ |ms⟩ =
1

∑

µ=−1

p Y ∗

1µ(p̂)

√

4π

3
⟨m′

s|σ⃗ · e⃗µ |ms⟩

⟨m′

s1
m′

s2
m′

s3
|V |ms1ms2ms3⟩ =

∑

µ′s

⟨m′

s1
m′

s2
m′

s3
|Spinmatrices& ẽµ

′s|ms1ms2ms3⟩(Y
′

1µs )

× V ((p⃗ ′ − p⃗ )2, (q⃗ ′ − q⃗ )2, (p⃗ ′ − p⃗ ) · (q⃗ ′ − q⃗ ))

⟨p′q′α′|V |p q α⟩ =
∑

ml...

( CG coeffs.)

∫

dp̂′dq̂′dp̂ dq̂ Y ∗

l′
1
m′

1
(p̂′ )Y ∗

l′
2
m′

2
(q̂′ )Y ∗

l1m1
(p̂ )Y ∗

l2m2
(q̂ )

× V ((p⃗ ′ − p⃗ )2, (q⃗ ′ − q⃗ )2, (p⃗ ′ − p⃗ ) · (q⃗ ′ − q⃗ ))

Jmax = 9/2 & Jmax
2 = 6

VChPT(p⃗, p⃗
′ ) → exp

(

−
p6

Λ6

)

VChPT(p⃗, p⃗
′ ) exp

(

−
p′6

Λ6

)

p⃗ − p⃗ p⃗ ′ − p⃗ ′ 2k⃗ q⃗

VChPT(p⃗, p⃗
′) =

∑

i

V (i)
local(p⃗−p⃗ ′) Polynomial(i)(p⃗, p⃗ ′) → Polynomial

(

1

i
∇⃗,

1

i
∇⃗ ′

)

δ(r⃗ ′−r⃗)Ṽlocal(r⃗)

Ṽ (i)
long(r⃗) → Ṽ (i)

long(r⃗)
(

1− exp
(

−(r/R0)
4
))

δ(r⃗) →
1

πΓ(3/4)R3
0

exp
(

−(r/R0)
4
)

R0 = 1.0 . . . 1.2 fm ↔ Λ = 450 . . . 600MeV

V (i)
local(p⃗− p⃗ ′) → δ(r⃗ ′ − r⃗)

[

Ṽ (i)
local(r⃗ ) = Ṽ (i)

long(r⃗ ) + Ṽ (i)
cont(r⃗ )

]

V3N =
20
∑

i=1

G̃iFi(r12, r23, r31) + 5 perm.
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Long-range 3NF up to N4LO
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FIG. 5: Chiral expansion of the profile functions Fi(r) in MeV emerging from all long-range 3NF topologies up to N4LO (in the

equilateral triangle configuration). Dashed-dotted, dashed and solid lines correspond to F (3)
i , F (3)

i +F (4)
i and F (3)

i +F (4)
i +F (5)

i ,
respectively.

11

 0

 0.5

 1
F1

 0

 0.0005

 0.001

 0.0015

 0.002

-10
-8
-6
-4
-2
 0

F2

-0.03

-0.02

-0.01

 0

 0

 0.5

 1

 1.5

 2 F3

 0
 0.005
 0.01
 0.015
 0.02
 0.025

-5

 0

 5

 10 F4

-0.05
-0.04
-0.03
-0.02
-0.01

-5
-4
-3
-2
-1
 0

F5

-0.006

-0.004

-0.002

 0

-2
 0
 2
 4
 6
 8 F6

 0.02

 0.04

 0.06

 0.08

 0

 0.5

 1

 1.5
F7

 0

 0.001

 0.002

 0.003

 0.004

-4
-2
 0
 2
 4
 6

F8

-0.06

-0.04

-0.02

 0

-5
-4
-3
-2
-1
 0

F9

-0.02

-0.015

-0.01

-0.005

 0

-10
-8
-6
-4
-2
 0

F10

-0.04

-0.03

-0.02

-0.01

 0

 0
 2
 4
 6
 8 F11

 0
 0.005
 0.01
 0.015
 0.02
 0.025

 0
 2
 4
 6
 8 F12

 0

 0.005

 0.01

 0.015

 0.02

 0

 5

 10

 15 F13

 0

 0.01

 0.02

 0.03

 0

 5
 10

 15

 20 F14

 0

 0.01

 0.02

 0.03

 0.04

-60
-40
-20

 0
 20
 40

F15

 0.1

 0.2

 0.3

 0.4

-20

 0

 20

 40 F16

-0.4

-0.3

-0.2

-0.1

 0

-40

-20

 0

 20

 40 F17

-0.4

-0.3

-0.2

-0.1

 0

 0.5

 1

 1.5

 2

1 1.5 2
r [fm]

F18

2 2.5 3  0

 0.002

 0.004

 0.006

r [fm]

-15
-10
-5
 0
 5

 10

1 1.5 2
r [fm]

F19

2 2.5 3

-0.1

-0.05

 0

r [fm]

-20

-10

 0

 10

1 1.5 2
r [fm]

F20

2 2.5 3
-0.25
-0.2
-0.15
-0.1
-0.05
 0

r [fm]

FIG. 5: Chiral expansion of the profile functions Fi(r) in MeV emerging from all long-range 3NF topologies up to N4LO (in the

equilateral triangle configuration). Dashed-dotted, dashed and solid lines correspond to F (3)
i , F (3)

i +F (4)
i and F (3)

i +F (4)
i +F (5)

i ,
respectively.

N2LO
N3LO
N4LO

Representative dominant contributions to profile functions

No statement about convergence possible  
explicit Δ treatment needed to clarify convergence issue

Quantitative statements are only possible once observables are calculated

Large N4LO contributions due to sizable ci´s (hidden Δ dofs)

All 22 profile functions start to contribute at N4LO

Epelbaum, Gasparyan, HK, Schat, EPJA51 (2015) 3



Partial wave decomposition
Golak et al. Eur. Phys. J. A 43 (2010) 241
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Faddeev equation is solved in the partial wave basis

can be reduced 
to 5 dim. integral depends on spin & isospin

Too many terms for doing PWD by hand Automatization

~matrix      105 x 105

Numerically expensive due to many channels and 5-dim. integration

PWD matrix-elements can be used to produce matrix-elements in harmonic oscillator basis

Straightforward implementation of high order 3nf‘s in many-body calc. 
within No-Core Shell Model
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can be reduced 
to 3 dim. integral
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Unregularized 3NF matrix elements can be used to generate locally regularized 3NFs
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Speed up factors > 1000



Summary
Chiral 3NF’s are studied up to N3LO / partly up to N4LO

Optimized version of PWD for local 3NF‘s 

Outlook
N4LO Δ-less/N3LO-Δ calc. of shorter range part of 3NF

Generation of matrix-elements for 3NF‘s up to N4LO Δ-less/N3LO-Δ
Due to optimized PWD should not cost much

Stored matrix elements can be used within local regularization


