Dispersive Treatment of $K_{\ell 4}$ Decays

Peter Stoffer

EPJC 75 (2015) 172, [arXiv:1501.05627 [hep-ph]]

in collaboration with G. Colangelo and E. Passemar

Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn

29th June 2015

The 8th International Workshop on Chiral Dynamics 2015, Pisa

- **2** Decomposition of the Form Factors
- **3** Integral Equations
- 4 Fit to Data and Matching to χ PT

1 Introduction and Motivation

- 2 Decomposition of the Form Factors
- **3** Integral Equations
- 4 Fit to Data and Matching to χ PT

Definition of the $K_{\ell 4}$ decay

Decay of a kaon into two pions and a lepton pair:

$$K^+(p) \to \pi^+(p_1)\pi^-(p_2)\ell^+(p_\ell)\nu_\ell(p_\nu)$$

 $\ell \in \{e, \mu\}$ is either an electron or a muon.

Importance of the $K_{\ell 4}$ decay

- provides information on $\pi\pi$ -scattering lengths a_0^0 , a_0^2
- very precisely measured \Rightarrow test of χ PT
 - \rightarrow Geneva-Saclay, E865, NA48/2
- best source of information on some low-energy constants of χPT

Advantages of dispersion relations

- resummation of rescattering
- connect different energy regions
- based on analyticity and unitarity ⇒ model independence

Introduction and Motivation

2 Decomposition of the Form Factors

3 Integral Equations

4 Fit to Data and Matching to χ PT

Hadronic part of $K_{\ell 4}$ as $2 \rightarrow 2$ scattering

Mandelstam variables:

$$s = (p_1 + p_2)^2, \quad t = (k - p_1)^2, \quad u = (k - p_2)^2$$

Form factors

 Lorentz structure allows four form factors in the hadronic matrix element (P = p₁ + p₂, Q = p₁ - p₂):

$$\langle \pi^{+}(p_{1})\pi^{-}(p_{2}) | A_{\mu}(0) | K^{+}(k) \rangle = -i \frac{1}{M_{K}} \left(P_{\mu} F + Q_{\mu} G + L_{\mu} R \right)$$

$$\langle \pi^{+}(p_{1})\pi^{-}(p_{2}) | V_{\mu}(0) | K^{+}(k) \rangle = -\frac{H}{M_{K}^{3}} \epsilon_{\mu\nu\rho\sigma} L^{\nu} P^{\rho} Q^{\sigma}$$

- R and H suppressed \Rightarrow focus on F and G
- form factors are functions of the Mandelstam variables *s*, *t* and *u*

Analytic properties

- F(s,t,u) and G(s,t,u) have a right-hand branch cut in the complex *s*-plane, starting at the $\pi\pi$ -threshold
- left-hand cut present due to crossing
- analogous situation in *t* and *u*-channel

Reconstruction theorem

 \rightarrow Stern, Sazdjian, Fuchs (1993), Ananthanarayan, Buettiker (2001), \ldots

 define a function that has just the right-hand cut of f₀, the first partial wave of F:

$$M_0(s) := P(s) + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\mathrm{Im}f_0(s')}{(s' - s - i\epsilon){s'}^2} ds'$$

- similar functions take care of the right-hand cuts of all the other *S* and *P*-waves (also crossed channels)
- all the discontinuities are split up into functions of a single variable
- neglect imaginary parts of *D* and higher waves

Reconstruction theorem

Form factors decomposed into functions of one Mandelstam variable only:

$$F(s,t,u) = M_0(s) + \frac{u-t}{M_K^2}M_1(s) + (\text{functions of } t \text{ or } u),$$

$$G(s,t,u) = \tilde{M}_1(s) + (\text{functions of } t \text{ or } u).$$

Introduction and Motivation

2 Decomposition of the Form Factors

3 Integral Equations

4 Fit to Data and Matching to χ PT

Omnès representation

Function M_0 contains only right-hand cut of the partial wave f_0 : difference is the 'inhomogeneity' \hat{M}_0 :

$$f_0(s) = M_0(s) + \hat{M}_0(s)$$

Inhomogeneous Omnès problem:

$$\mathrm{Im}M_0(s) = (M_0(s) + \hat{M}_0(s))e^{-i\delta_0^0(s)}\sin\delta_0^0(s)$$

Watson's theorem: δ_0^0 is elastic $\pi\pi$ phase shift

Omnès representation

Omnès solution for the functions $M_0(s)$, $M_1(s)$, $\tilde{M}_1(s)$, etc.:

$$M_0(s) = \Omega_0^0(s) \left\{ P(s) + \frac{s^3}{\pi} \int_{4M_\pi^2}^{\Lambda^2} \frac{\hat{M}_0(s') \sin \delta_0^0(s')}{|\Omega_0^0(s')| (s' - s - i\epsilon) {s'}^3} ds' \right\},\$$

P: subtraction polynomial

- δ_l^I : elastic $\pi\pi$ or $K\pi$ phase shifts
- Ω_l^I : Omnès function

 $\hat{M}_i:$ inhomogeneities, angular averages of all the functions M_i

Intermediate summary

- problem parametrised by 9 subtraction constants
- input: elastic $\pi\pi$ and $K\pi$ -scattering phase shifts
- energy dependence fully determined by the dispersion relation

Intermediate summary

• set of coupled integral equations:

 $\Rightarrow M_0(s), M_1(s), \ldots$: DR involving $\hat{M}_0(s), \hat{M}_1(s), \ldots$

 $\Rightarrow \hat{M}_0(s), \hat{M}_1(s), \ldots$: angular integrals over $M_0(s), M_1(s), \ldots$

- system solved by iteration
- problem linear in the subtraction constants
 ⇒ construct 9 basic solutions

Determination of the subtraction constants

- fit to data of the high-statistics experiments E865 and NA48/2
- soft-pion theorems as additional constraints
- chiral input for the subtraction constants that are not well determined by data

Introduction and Motivation

- 2 Decomposition of the Form Factors
- Integral Equations
- 4 Fit to Data and Matching to χ PT

Fit results for partial waves

S-wave of F

$$F_s(s, s_\ell)$$

Fit results for partial waves

P-wave of G

Matching to χPT

- matching to \(\chi PT\) at the level of subtraction constants in Omnès form: separate rescattering effects
- fit to 2-dimensional data set of NA48/2
- L_9^r can be determined from dependence on s_ℓ

Matching at NNLO

- many poorly known LECs C_i^r at NNLO
- include additional constraints in the fit: require good chiral convergence
- input: C_i^r contribution to subtraction constants with $\pm 50\%$ uncertainty
- fit the C_i^r contribution
- not all sets of C^r_i input lead to a good chiral convergence: prefer BE14 → Bijnens, Ecker (2014)

Low-energy constants

Results for the LECs using χ PT at NLO and NNLO.

	NLO	NNLO	Bijnens, Ecker (2014)
$10^3 \cdot L_1^r$	0.51(2)(6)	0.69(16)(8)	0.53(6)
$10^3 \cdot L_2^r$	0.89(5)(7)	0.63(9)(10)	0.81(4)
$10^3\cdot L_3^r$	-2.82(10)(7)	-2.63(39)(24)	-3.07(20)
$\chi^2/{ m dof}$	141/116 = 1.2	124/122 = 1.0	

Introduction and Motivation

- 2 Decomposition of the Form Factors
- **3** Integral Equations
- 4 Fit to Data and Matching to χ PT

Summary

- parametrisation valid up to and including $\mathcal{O}(p^6)$
- model independence
- resummation of rescattering effects
- very precise data available
- determination of LECs from matching to χPT
- better data on s_l-dependence would enable independent determination of L^r₉

Backup

Backup

Error budget: L_2^r

Backup

Error budget: L_3^r

Backup

