Dispersive Treatment of K, Decays

Peter Stoffer
EPJC 75 (2015) 172, [arXiv:1501.05627 [hep-ph]]

in collaboration with G. Colangelo and E. Passemar

Helmholtz-Institut fir Strahlen- und Kernphysik
University of Bonn

29th June 2015

The 8" International Workshop on Chiral Dynamics 2015, Pisa


http://arxiv.org/abs/1501.05627

Outline

@ Introduction and Motivation

@ Decomposition of the Form Factors
@ Integral Equations

@ Fit to Data and Matching to YPT

@ Conclusion



@ Introduction and Motivation

@® Decomposition of the Form Factors
® Integral Equations

@ Fit to Data and Matching to xPT

@ Conclusion



@ Introduction and Motivation

Definition of the K4 decay

Decay of a kaon into two pions and a lepton pair:

K*(p) = 7" (p1)7~ (p2) 0 (pe)ve(py)

¢ € {e, u} is either an electron or a muon.



@ Introduction and Motivation

Importance of the K, decay

« provides information on wr-scattering lengths a), a2

e very precisely measured = test of yPT
— Geneva-Saclay, E865, NA48/2

e best source of information on some low-energy
constants of yPT



@ Introduction and Motivation

Advantages of dispersion relations

e resummation of rescattering
e connect different energy regions

e based on analyticity and unitarity = model
independence
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@ Decomposition of the Form Factors
Hadronic part of K4 as 2 — 2 scattering

Kt T

N /'m

~L P2

Mandelstam variables:
s=(p1+p2)? t=(k—p)* u=(k—p)?



@ Decomposition of the Form Factors

Form factors

e Lorentz structure allows four form factors in the
hadronic matrix element (P = p; + pa2, Q = p1 — p2):

1
(7" (p1)7 (p2)]AL(0 |K+k>:—iM—(P#F+Q#G+L#R)

< (pl P2 |V |K+ > = _M‘)’ E,u,upch PPQU

e R and H suppressed = focus on ' and G

e form factors are functions of the Mandelstam
variables s, ¢t and u



@ Decomposition of the Form Factors

Analytic properties

e F(s,t,u) and G(s,t,u) have a right-hand branch cut
in the complex s-plane, starting at the =r-threshold

e left-hand cut present due to crossing

e analogous situation in ¢- and u-channel



@ Decomposition of the Form Factors
Reconstruction theorem
— Stern, Sazdjian, Fuchs (1993), Ananthanarayan, Buettiker (2001), ...

e define a function that has just the right-hand cut of f;,
the first partial wave of F"

My(s) := P(s) + s /400 mfo(s) ds'

w2 (88— s —ie)s”

e similar functions take care of the right-hand cuts of all
the other S- and P-waves (also crossed channels)

e all the discontinuities are split up into functions of a
single variable

e neglect imaginary parts of D- and higher waves



@ Decomposition of the Form Factors

Reconstruction theorem
Form factors decomposed into functions of one
Mandelstam variable only:

u—t
M
G(s,t,u) = M(s) + (functions of ¢ or u).

F(s,t,u) = My(s) + M, (s) + (functions of ¢ or u),
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@ Integral Equations

Omnes representation

Function M, contains only right-hand cut of the partial
wave f,: difference is the ‘inhomogeneity’ M:

fols) = Mo(s) + Mo(s)
Inhomogeneous Omneés problem:
ImM,(s) = (Mo(s) + Mo(s))e 0 sin 63(s)

Watson’s theorem: 4 is elastic 7= phase shift



@ Integral Equations

Omnes representation

Omnés solution for the functions My(s), M(s), Mi(s),
etc.:

s A 1o (') sin 80(s'
MO(S)ZQg(S){P(S)+/4 e il )S,gds’},

7 Jaaz |Q9(s)|(s' — s — ie)

P: subtraction polynomial

6 elastic 7w or K7 phase shifts

Qf: Omnes function

M;: inhomogeneities, angular averages of all the
functions M;



@ Integral Equations

Intermediate summary

e problem parametrised by 9 subtraction constants
e input: elastic 77 and Kr-scattering phase shifts

e energy dependence fully determined by the
dispersion relation



@ Integral Equations

Intermediate summary

e set of coupled integral equations:
= My(s), My(s), ...: DRinvolving My(s), My(s), ...

= Moy(s), My(s), ...: angular integrals over My(s), Mi(s), ...

e system solved by iteration

e problem linear in the subtraction constants
= construct 9 basic solutions



@ Integral Equations

Determination of the subtraction constants

o fit to data of the high-statistics experiments E865 and
NA48/2

¢ soft-pion theorems as additional constraints

e chiral input for the subtraction constants that are not
well determined by data
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Fit to Data and Matching to xPT

Fit results for partial waves
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@ Fit to Data and Matching to xPT
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Fit results for partial waves

Gp(s,s0)
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@ Fit to Data and Matching to xPT

Matching to xPT

e matching to xPT at the level of subtraction constants
in Omnes form: separate rescattering effects

o fit to 2-dimensional data set of NA48/2

e L can be determined from dependence on s,

22



@ Fit to Data and Matching to xPT

23

Matching at NNLO

e many poorly known LECs C7 at NNLO

¢ include additional constraints in the fit: require good
chiral convergence

e input: C7 contribution to subtraction constants with
+50% uncertainty

e fit the C7 contribution

e not all sets of C7 input lead to a good chiral
convergence: prefer BE14 - Bijnens, Ecker (2014)



@ Fit to Data and Matching to xPT

24

Low-energy constants

Results for the LECs using xPT at NLO and NNLO.

NLO NNLO Bijnens, Ecker (2014)
10% - LY 0.51(2)(6) 0.69(16)(8) 0.53(6)
102 - L% 0.89(5)(7) 0.63(9)(10) 0.81(4)
102 - LY —2.82(10)(7)  —2.63(39)(24) —3.07(20)

x?2 /dof 141/116 =1.2  124/122=1.0
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@ Conclusion

Summary

parametrisation valid up to and including O(p°)

model independence

resummation of rescattering effects

very precise data available

determination of LECs from matching to xPT

better data on s,-dependence would enable
independent determination of Lj

26
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Backup
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Backup

Error budget: L}
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Backup

Error budget: L}
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@ Backup

Error budget: Lj
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