Search for the H-Dibaryon in two flavor Lattice QCD

Parikshit Junnarkar¹ Jeremy Green, Anthony Francis, Thomas Rae, Chuan Miao, Hartmut Wittig

¹Helmholtz-Institut Mainz,

Johannes Gutenberg Universität Mainz

 $8^{\rm th}$ International Workshop on Chiral Dynamics 2015, Pisa, Italy

Outline

- Brief Introduction
 - ▶ Experimental results and status of lattice calculations.
- Lattice methodology
 - Operators employed
 - ▶ Lattice set up
- Discussion of results

The H-dibaryon

Perhaps a Stable Dihyperon*

R. L. Jaffe†

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, 1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^P = 0^+$ dihyperon (*H*) at 2150 MeV. Another isosinglet dihyperon (*H**) with $J^P = 1^+$ at 2335 MeV should appear as a bump in $\Lambda\Lambda$ invariant-mass plots. Production and decay systematics of the *H* are discussed.

Predicted by R. L. Jaffe (1977) as a six quark bound state using MIT bag model as $[H \sim uuddss]$

$$J = I = 0, \ S = -2, \ m_H < 2m_\Lambda \sim -80 \ \text{MeV}$$

Experimental searches

Stongest Constraint comes from "Nagara" Event which found a double $^{6}_{\Lambda\Lambda}$ He double-hypernucleus with binding energy

 $B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$

The absence of a strong decay ${}^{6}_{\Lambda\Lambda}\text{He} \rightarrow^{4}\text{He} + H$ implies,

$$m_H > 2m_\Lambda - B_{\Lambda\Lambda}$$

FIG. 2. Photograph and schematic drawing of NAGARA event. See text for detailed explanation.

KEK-E176, Nucl.Phys. A835(207-214)2010

Lattice techinques offer first principle calculation of QCD observables. But ...,

Courtesy:USQCD

Lattice techinques offer first principle calculation of QCD observables. But ...,

Courtesy:USQCD

 Unphysical quarks, Continuum limit, Infinite volume limit.

Lattice techinques offer first principle calculation of QCD observables. But ...,

- Unphysical quarks, Continuum limit, Infinite volume limit.
- Exponential Signal/noise problem for baryon systems

Courtesy:USQCD

Lattice techinques offer first principle calculation of QCD observables. But ...,

- Unphysical quarks, Continuum limit, Infinite volume limit.
- Exponential Signal/noise problem for baryon systems
- ► No of contractions can be non-trivial $N = \prod_{i}^{N_f} N_{q_i}!$

Courtesy:USQCD

Lattice techinques offer first principle calculation of QCD observables. But ...,

- Unphysical quarks, Continuum limit, Infinite volume limit.
- Exponential Signal/noise problem for baryon systems
- ► No of contractions can be non-trivial $N = \prod_{i}^{N_f} N_{q_i}!$
- Multiple volumes necessary to get reliable results.

Courtesy:USQCD

Systems with shallow binding energy, for eg maybe : H^1 ? combined with the issues mentioned .. presents a formidable challenge !

Status of Lattice results

Early attempts (1985 ~ 2003) on quenched lattices gave mixed results.

[Mackenzie et al (1985), Pochinsky et al (1999), Wertzoke-Karsch (2003)]

Status of Lattice results

Early attempts (1985 ~ 2003) on quenched lattices gave mixed results.

[Mackenzie et al (1985), Pochinsky et al (1999), Wertzoke-Karsch (2003)]

Group	Method	N_{f}	Action	$\mathrm{N}_{\mathrm{Vol}}$	$m_{\pi}(\text{MeV})$	$B_H({ m MeV})$
	$2 \mathrm{pt}$	3	clover	3	806	74.6(3.3)(3.4)
NPLQCD		2 + 1	aclover	4	390	13.2(1.8)(4.0)
			aclover	1	230	-0.6(8.9)(10.3)
				1	1171	84(4)
	B-B			3	1015	32.9(4.5)(6.6)
HALQCD	Potential	3	clover	1	837	37.4(4.4)(7.3)
				1	672	35.6(7.4)(4.0)
				1	469	26(4)
Mainz	$2 \mathrm{pt}$	2	clover	1	1000	92(10)(7)
					450	77(11)(7)

Our methodology

Interpolating operators

 Positive parity projected six quark operators at source and sink

$$\begin{split} [abcdef] &= \varepsilon^{ijk} \varepsilon^{lmn} (b_i^T C \gamma_5 P_+ c_j) (e_l^T C \gamma_5 P_+ f_m) (a_k^T C \gamma_5 P_+ d_n) \\ H^1 &= \frac{1}{48} \big(\left[sudsud \right] - \left[udusds \right] - \left[dudsus \right] \big) \\ H^{27} &= \frac{1}{48\sqrt{3}} \big(2 \left[sudsud \right] + \left[udusds \right] + \left[dudsus \right] \big) \end{split}$$

Interpolating operators

 Positive parity projected six quark operators at source and sink

$$[abcdef] = \varepsilon^{ijk} \varepsilon^{lmn} (b_i^T C \gamma_5 P_+ c_j) (e_l^T C \gamma_5 P_+ f_m) (a_k^T C \gamma_5 P_+ d_n)$$
$$H^1 = \frac{1}{48} ([sudsud] - [udusds] - [dudsus])$$
$$H^{27} = \frac{1}{48\sqrt{3}} (2 [sudsud] + [udusds] + [dudsus])$$

▶ Momentum projected two-baryon operators at the sink

$$B_{\alpha} = [abc]_{\alpha} = \varepsilon^{ijk} (b_i^T C \gamma_5 P_+ c_j) a_{k\alpha}$$
$$B_1 B_2(\vec{p_1}, \vec{p_2}) = \sum_{\vec{x}, \vec{y}} e^{i\vec{p_1} \cdot \vec{x}} e^{i\vec{p_2} \cdot \vec{y}} B_1^T(\vec{x}) C \gamma_5 P_+ B_2(\vec{y})$$

Operators belonging to BB^1, BB^8, BB^{27}

Contractions

An efficient way to contract the six-quark operators into correlation functions is to use a blocking algorithm:

► Form blocks of three propagators contracted into a color-singlet at the sink

$$B(\alpha_1, \xi'_1, \xi'_2, \xi'_3) = \epsilon_{c_1, c_2, c_3}(C\gamma_5 P_+)_{\alpha_2 \alpha_3}$$
$$S_l(\xi_1, \xi'_1)S_l(\xi_2, \xi'_2)S_s(\xi_3, \xi'_3)$$

▶ Then sum over all permutations as,

$$sudsud] = (C\gamma_5 P_{+})_{\alpha\beta} \times \epsilon_{c'_{1},c'_{2},c'_{3}} \epsilon_{c'_{4},c'_{5},c'_{6}} (C\gamma_5 P_{+})_{\alpha'_{2}\alpha'_{3}} (C\gamma_5 P_{+})_{\alpha'_{5}\alpha'_{6}} \\ \sum_{\sigma_{u},\sigma_{d},\sigma_{s}} B(\alpha,\xi'_{\sigma_{u}(1)},\xi'_{\sigma_{d}(2)},\xi'_{\sigma_{s}(3)}) B(\beta,\xi'_{\sigma_{u}(4)},\xi'_{\sigma_{d}(5)},\xi'_{\sigma_{s}(6)})$$

All mode Averaging

Employ low precision propagator solves over multiple sources and compute observable as,

$$\mathcal{O}^{\text{AMA}} = \mathcal{O}^{\text{high prec}}_{\vec{x}_0} - \mathcal{O}^{\text{low prec}}_{\vec{x}_0} + \frac{1}{N_{\vec{x}}} \sum_{N_{\vec{x}}} \mathcal{O}^{\text{low prec}}_{N_{\vec{x}}}$$

Variance with AMA :

$$\sigma_{\rm AMA}^2 = \sigma^2 \left(2(1-r) + \frac{1}{N_{\vec{x}}} \right) \quad , \quad r = {\rm Corr}(\mathcal{O}_{\vec{x}_0}^{\rm high prec}, \mathcal{O}_{\vec{x}_0}^{\rm low prec})$$

All mode Averaging

Employ low precision propagator solves over multiple sources and compute observable as,

$$\mathcal{O}^{\text{AMA}} = \mathcal{O}^{\text{high prec}}_{\vec{x}_0} - \mathcal{O}^{\text{low prec}}_{\vec{x}_0} + \frac{1}{N_{\vec{x}}} \sum_{N_{\vec{x}}} \mathcal{O}^{\text{low prec}}_{N_{\vec{x}}}$$

Variance with AMA :

$$\sigma_{\rm AMA}^2 = \sigma^2 \left(2(1-r) + \frac{1}{N_{\vec{x}}} \right) \quad , \quad r = {\rm Corr}(\mathcal{O}_{\vec{x}_0}^{\rm high prec}, \mathcal{O}_{\vec{x}_0}^{\rm low prec})$$

Ensemble E1

- $m_{\pi} = 1000 \text{ MeV}$
- ► $L^3 = (2 \text{ fm})^3$
- $m_{\pi}L = 10$
- ▶ 1 high/low precision solve for AMA bias
- $N_{\rm srcs} = 128$ with low precision solves.
- ▶ Double statistics using P₊ and P₋ for forward/backward propagating states.
- Total measurements

 $168\times128\times2\sim43000$

- ▶ $\kappa_s = \kappa_{ud}$ implies no mixing between 1 and 27
- Two sets of smearing provide independent operators for GEVP.

Operators on Ensemble E1

- Operators at the source $H^1(N)$ and $H^1(M)$
- Operators choices at sink
 - Choice of smearings : Narrow and Medium (medium is noisy)
 - Choice of six-quark and two-baryon operators at different kinematics.
- ► Construct various 2 × 2 correlator matrices to explore ground state.
- Estimate systematic uncertainty as,

$$\chi^{2} = \sum_{t_{i}, t_{j}}^{N} (\overline{G}(t_{i}) - F(t_{i}, A)) C_{ij}^{-1} (\overline{G}(t_{j}) - F(t_{j}, A))$$

Generalized EigenValue Problem

We compute matrix of two point functions as,

$$C_{ij} = \sum_{\vec{x}} \langle \mathcal{O}_i(t_0 + t, \vec{x}) \mathcal{O}^{\dagger}(t_0, \vec{x}_0) \rangle,$$

and solve the generalized eigenvalue problem (GEVP),

$$C_{ij}(t + \Delta t)v_j(t) = \lambda(t)C_{ij}(t)v_j(t)$$

and compute effective masses as,

$$m_{\rm eff} = \frac{-{\rm log}\lambda(t)}{\Delta t}$$

Asymptotically dominated by a single exponential

GEVP on E1 $\,$

Scattering phase shift from Energy levels The two particle scattering/binding momenta,

$$p^2 = \frac{1}{4} \left(E^2 - \vec{P} \cdot \vec{P} \right) - M_{\Lambda}^2$$

is related to scattering phases in the continuum via,

$$p \cot \delta_0(p) = \frac{2}{\gamma L \sqrt{\pi}} \mathcal{Z}_{0,0}^d(1, q^2) \quad q = \frac{pL}{2\pi}$$

[Lüscher (1991), Rummukainen Gottlieb (1995)]

$$\mathcal{Z}^{d}_{0,0}(1,q^{2}) = \frac{1}{\sqrt{4\pi}} \bigg\{ \sum_{q^{2} \neq n^{2}}^{\Lambda} \frac{1}{q^{2} - n^{2}} - 4\pi\Lambda \bigg\}$$

Use scattering information to locate the pole in the scattering amplitude,

$$\mathcal{A} \propto \frac{1}{p \cot \delta_0(p) - ip} \qquad p \cot \delta_0(p) = -\frac{1}{a} + \frac{1}{2}r_0p^2 + \dots$$

Scattering phase shift of H^1 - Ensemble E1 (Preliminary)

15/22

GEVP for $\mathrm{H}^{\mathbf{27}}$ - Ensemble E1

Scattering phase shift of H^{27} - Ensemble E1 (Preliminary)

17/22

Ensemble E5

- $m_{\pi} = 451 \text{ MeV}$
- ► $L^3 = (2 \text{ fm})^3$
- $m_{\pi}L = 4.6$
- $N_{\rm cfgs} = 1990$ gauge configurations.
- ▶ 1 high/low precision solve for AMA bias
- $N_{\rm srcs} = 32$ with low precision solves.
- ▶ Double statistics using P₊ and P₋ for forward/backward propagating states.
- Total measurements

 $1990 \times 32 \times 2 \sim 125000$

• $\kappa_s > \kappa_{ud}$ implies mixing between 1 and 27

Operators on Ensemble E5

Solve a GEVP with the available operators:

- \blacktriangleright Four source operators Narrow (N) and Medium (M) smeared $H^{\bf 1}$ and $H^{\bf 27}$
- ▶ Choice of six-quark operators H^1 & H^{27} and BB^1, BB^8 & BB^{27} with different kinematic combinations. Employ only narrow smeared operators
- Construct various 4 × 4 correlator matrices to explore the ground state.

For scattering studies, this is coupled channel scattering problem requiring total 3 parameters.

GEVP on Ensemble E5 $\,$

Ground state scattering phase shift on E5 (Preliminary)

 $H^1 H^{27} BB_0^1 BB_0^{27}$ 0.5 $\Delta E|_{\vec{P}=0} = -7\vec{7} \pm 11 \pm 7 \text{ MeV}$ $p/m_{\pi} \cot \delta(p)$ 0.0 -0.5 -0.25 0.00 0.25 p^2/m_π^2

 Multi-baryon operators provide a better overlap to the ground state.

- Multi-baryon operators provide a better overlap to the ground state.
- At $m_{\pi} = 1000$ MeV, H¹ is bound in finite volume at $\vec{P} = 0$ with $B_H = 92(10)(7)$ MeV.

- Multi-baryon operators provide a better overlap to the ground state.
- At $m_{\pi} = 1000$ MeV, H¹ is bound in finite volume at $\vec{P} = 0$ with $B_H = 92(10)(7)$ MeV.
- ► At $m_{\pi} = 451$ MeV, H¹ is bound in finite volume at $\vec{P} = 0$ with $B_H = 77(11)(7)$ MeV.

- Multi-baryon operators provide a better overlap to the ground state.
- At $m_{\pi} = 1000$ MeV, H¹ is bound in finite volume at $\vec{P} = 0$ with $B_H = 92(10)(7)$ MeV.
- At $m_{\pi} = 451 \text{ MeV}$, H¹ is bound in finite volume at $\vec{P} = 0$ with $B_H = 77(11)(7)$ MeV.
- ▶ In both cases, the existence of the pole in the scattering ampltude is unclear.

Things to pursue...

- Understand the ground state contributions from BB^8 .
- ▶ Perform a systematic study of finite volume effects for a reliable determination on the fate of H^1