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The puzzle

• Measure charge radius of the proton different ways, 
get different answers 

• Difference is 7 s.d.  
(was 5 s.d. when first announced, 2010) 

• Why?  Don’t yet know.
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This talk
1. The measurements:   

where the differences came from 

2. Suggested explanations 

A. Ordinary explanations 

• Somebody screwed up 

B. Exotic explanations 

• Physics Beyond the Standard Model (BSM) 

3. Highlight: List of coming relevant data
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Measuring proton radius
• Use lepton-proton scattering or use atomic spectroscopy 

• Use electrons or muons
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SCORECARD lepton 
scattering

atomic 
energy 

splittings

electrons
done—but 

more 
coming

done—but 
more 

coming

muons not done—
but coming

done—one 
experiment



e-p scattering
• Measure differential cross section, fit results to form 

factors,  
 
 
 

• Low Q2, mainly sensitive to GE. 

• Extrapolate to Q2 = 0, whence 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Low-Q2 scattering data
• Mainz has Gutenberg plus an electron accelerator  
 
 
 
 
 
 
 

• Great data, Jan Bernauer et al., PRL 2010 (and later articles). 

• Q2 range 0.004 to 1 GeV2 
• From their analysis,
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RE = 0.879(8) fm



Atomic energy level splittings
• Basic: Schrödinger equation, H-atom, point protons 

• plus QED corrections 

• plus finite size proton, pushing energy upward a bit.  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measure energy accurately  
⟺ measure radius

• Reminder, H-atom energy levels (diagram not to scale)
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Atomic results
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All electron results

• Consistent 

• Combined by Committee on Data in Science and 
Technology (CODATA),
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RE = 0.8775(51) fm



Then in 2010
• CREMA = Charge Radius Experiment with Muonic Atoms  
 
 
 
 
 
 

• Did atomic physics, specifically Lamb shift, with muons (muon= 
electron, but weighs 200 times more). 

• Orbits 200 times closer: proton looks 200 times bigger 

• Goal: measure proton radius with factor 10 smaller uncertainty
11



CREMA
• 2S-2P Lamb shift in µ-H. 
• Measured two lines,  
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ca. 206 meV

F=2

F=1
F=1

F=0

F=1

F=0

finite size effect
3.7 meV HFS  23 meV

FS 8.4 meV
2P3/2 

2P1/2

2S1/2

• pubs: 
upper line, Pohl et al.,  
Nature 2010  
lower line Antognini et al., 
Science 2013

• Interpreting finite size effect in terms of proton radius,  

• Whoops: result 4% or 7σ small
RE = 0.84087(39) fm



Other data-deuteron
• Reported at conferences 2013 

• 2015 experimenters circulate draft of theory paper! 

• Measured three lines
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ca. 215 meV

F=3/2

F=1/2

F=3/2

F=1/2

F=3/2

F=1/2

2P1/2

F=5/2

2P3/2

2S1/2

• Quick summary: if proton 
radius is shrunken, the 
deuteron radius is also.



Other data — Helium

• New 2013/2014 data 

• µ-4He at Mainz Proton Radius Workshop, 2014 

• µ-3He at Gordon Conference, N.H., 2014 

• Quick summary:  He radii from µ Lamb shift in 
accord with electron scattering radii.
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Explanations?
• Hard to see problems with µ experiment 

• Hard to get working 
• But once working, easy to analyze 

• Problems with analysis of electron experiments?  
Theorists are chipping in here! 
But there are a lot of expeirments. 

• BSM explanations? 

• If so, further tests?
15



Review e-p scattering data
• Point: Measurements at finite Q2.  Need to extrapolate to Q2 = 0 

to obtain charge radius.  (Mainz group itself: RE = 0.879(8) fm.) 

• Others have tried different analyses regarding the extrapolation 

• Graczyk & Juszczak (2014), using Bayesian ideas and pre-
Mainz world data, obtained 
                           RE = 0.899(3) fm. 

• Lee, Arrington, & Hill (2015) using Mainz data and neat 
mapping ideas to ensure convergence of expansions, obtained  
                            RE = 0.895(20) fm. 

• Arrington & Sick found  
                             RE = 0.879(11) fm.
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Contrarian view
• Can also obtain “low” values of RE from e-p scattering data 

• Lorenz, Meißner, Hammer, & Dong (2015), used dispersive 
ideas to obtain their fit functions, and also used timelike 
data, and obtained  
               RE = 0.840(15) fm. 

• Griffioen, Maddox, and me (coming)  
believe that one should be able to  
obtain accurate RE from just lower-Q2  
data, finding 
                 RE = 0.840(5) fm.
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More scattering coming
• Further experiments lower lowest Q2, and will do µ scattering 

• PRad at JLab:  Just target and detector screen, allowing very 
small scattering angles.  Anticipate Q2|low ≈ 0.0002 GeV2.  Hope 
running soon. 

• ISR (Initial State Radiation) at Mainz.  Photon radiation 
takes energy out of electron, allowing lower Q at given 
scattering angle.  Anticipate Q2|low ≈ 0.0001 GeV2.   
Data for preliminary experiment taken; under analysis;  
will obtain further data 

• MUSE = Muon scattering experiment at the PSI.  
Anticipate Q2|low ≈ 0.002 GeV2.   Production runs 2017/2018.
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Back to atomic spectroscopy

• Same plot, but µ-H value added 

• Possible: correlated systematic errors.  There are more 
measurements than independent expt’l groups.
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µp : 0.84087 (39) fm
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Short term future
• Independent groups are doing more precise experiments 

that will individually get the proton radius to under 1%. 

• York University (Canada): Ordinary hydrogen 2S-2P 
Lamb shift 

• MPI Quantum Optics (Garching): 2S-4P transition 

• Laboratoire Kastler Brossel (Paris): 1S-3S transition 

•  Under way, may see results soon. (All had hoped for 
delivery before end of 2014.)
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Exotic possibilities
• Breakdown of Lorentz invariance? (Gomes, Kostelecky, & Vargas, 2014) 

• Unanticipated QCD corrections? (G. Miller, 2013) 

• Will consider breakdown of muon-electron universality. New particle 
coupling to muons and protons.  Small or no coupling to other particles. 

• References (positive or neutral side): Tucker-Smith & Yavin (2011), 
Batell, McKeen, & Pospelov (2011), Brax & Burrage (2011), Rislow & 
Carlson (2012, 2014), Marfatia & Keung (2015), Pauk & Vanderhaeghen 
(2015) 

• References (less positive): Barger, Chiang, Keung, Marfatia (2011, 
2012), Karshenboim, McKeen, & Pospelov (2014)

21



µ-H Lamb shift
• Point: Experimenters do not directly measure 

proton radius.  Measure energy deficit, 320 µeV.  
Interpret as proton radius deficit. 

• Idea: Proton radius unchanged.  Energy deficit due 
to new force, carried by exchange of new particle.  

• New particle is scalar or vector.  Pseudoscalar or 
axial vector have little effect on Lamb shift for 
similar couplings. 
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Energy shift
• e.g., scalar case  
 
 
 
 
 

• Pick CSµ CSp to give  
320 µeV for given m𝜙. 
(Plot for CSµ = CSp.)
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Other muon processes
• Worry about other processes where new particle couples to 

muons.  First: 

• Loop corrections to µ magnetic moment 

• (Reminder: 3 discrepancy between measured and 
standard model calculated (g-2)µ.  But only at ppm level.) 

• If new exchange particle light, effect on (g-2)µ small 
enough (Tucker-Smith & Yavin).  Otherwise, need to fix 
adding second new particle and fine tuning.  Well 
understood: Batell, McKeen, Pospelov, or Rislow and me.  
Couplings still fixed.
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New force seen elsewhere?
• Recent suggestion: µ-p scattering at JLab or Mainz  

a.k.a., lepton pair photoproduction,  
𝛾 p → ℓ+ ℓ– p. 
(Pauk & Vanderhaeghen, 2015) 

• Extra force, even coupling only  
to µ and p will affect muons production.  Get 
normalization by comparing µ+µ– to e+e– production. 

• Believe 2% measurement will show effect of extra 
force consistent with proton radius conflict.
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𝛾 p → ℓ+ ℓ– p
• Gap between lines corresponds 

to difference in GEp suggested by 
electron- and muon-measured 
charge radii at Q2 of 0.02 GeV2. 
 

• Contribution from timelike  
Compton process small at  
this kinematics
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FIG. 2: Upper panel: comparison of the (lepton pair) invariant mass
dependence of the �p ! e�e+p process (upper three curves) vs the
�p ! µ�µ+p process (lower three curves) at E� = 0.5 GeV, and
for three values of the momentum transfer t as indicated. The lower
panel shows the corresponding kinematic relation between the lepton
pair invariant mass and the recoiling proton lab angle.

the electric FF value entering the µ�µ+ production process,
denoted by Gµ

Ep. We compare the case of lepton universality
Gµ

Ep = Ge
Ep, with a lepton universality violation scenario in

which Gµ
Ep/G

e
Ep = 1.01. The latter value is motivated by the

around 1% larger value of Gµ
Ep at �t = 0.02 GeV2, resulting

from the proton radius as extracted from the muonic hydrogen
Lamb shift: Rµ

E = 0.8409± 0.0004 fm [1, 2], in comparison
with the proton radius as extracted from ep scattering or elec-
tronic hydrogen Lamb shift : Re

E = 0.8770±0.0045 fm [4, 5].
We notice from Fig. 3 that these two scenarios can be tested by
measuring the cross section ratio Rµ/e of Eq. (8) to 0.2 %, cor-
responding with a 2 % relative accuracy of this ratio measure-
ment. Although hadronic backgrounds have been eliminated
by our choice of the kinematical range in M2

ll, the remaining
concern is the physical background due to the indistinguish-
able timelike Compon scattering process, which results in the
same final state. We estimate this timelike Compton process
at the relatively low energy and momenta considered here by
its Born contribution, corresponding to a nucleon intermedi-
ate state [22]. The inclusion of the timelike Compton Born
contribution is also shown in Fig. 3. We found that the effect
due to the interference between the Born and BH contribu-
tions is around a factor of 15 smaller than the effect due to the

1 % variation in the value of Gµ
Ep, shown in Fig. 3. We are

therefore confident that the ratio of Eq. (8) is a promising ob-
servable for a lepton universality test at the 1 % level between
Gµ

Ep and Ge
Ep. Besides providing such a test, a measurement

of the absolute �p ! (e�e+)p cross section below µ�µ+

threshold has the added benefit that it will provide a useful
cross-check on the extraction of GEp from elastic ep scatter-
ing. As the systematics involved in both reactions are quite
different, an independent measurement of GEp may yield a
valuable further clue to shed light on the “proton radius puz-
zle”.
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FIG. 3: Ratio Rµ/e (in %), according to Eq. (8), of the differential
cross sections for the �p ! (e�e+ + µ�µ+) p vs �p ! (e�e+) p
processes. The lower (blue) curve corresponds with the lepton uni-
versality result, for which Gµ

Ep = Ge
Ep. The upper (red) curve as-

sumes a violation of lepton universality, for which Gµ
Ep/G

e
Ep = 1.01.

The difference between the lower solid (blue) curve and the dotted
(black) curve, is an estimate of the physical background due to the
interference with the timelike Compton process.

Besides the unpolarized cross section for the �p ! l�l+ p
process, we may also consider the sensitivity of polarization
observables to distinguish between the e�e+ and µ�µ+ pro-
duction processes. We will consider here the case of the linear
photon asymmetry defined as:

AlU =

d�k � d�?

d�k + d�?
, (9)

where d�k ( d�? ) stands for the differential cross section for a
photon with linear polarization parallel (perpendicular) to the
plane spanned by the photon and recoiling proton momenta.
When measuring the recoiling proton only, the asymmetry
above µ�µ+ threshold is given by the following weighted
sum of the asymmetries of the e�e+ and µ�µ+ channels:

AlU (e
�e+ + µ�µ+

) =

1

1 +Rµ/e

⇥
�
AlU (e
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Helium Lamb shift
• 3He & 4He give non-contradictory results. 

• He radii measured in electron scattering, to about 
1/4%.  These radii go into prediction for Lamb shift. 

• Preliminary data on µ-He Lamb shift agrees with 
prediction, to about 1σ.  If due to heavy BSM particle 
exchange, should disagree by about 5σ. 

• Mass problem! 

• How does mass creep in?
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Heavy atom Lamb shift
• Physics:  Range of potential is controlled by mass.  

Light mass, long range, like Coulomb potential, 
does not split S and P states. 

• Application: Z=2 helium has orbital muons closer to 
nucleus than Z=1 hydrogen.  What looks like long 
range to helium is short range to hydrogen, if mass 
chosen correctly. 

• Quick bottom line: Get result for proton big enough 
and for He small enough if m𝜙 ≈ 1 MeV.
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High energy decay problem
• New particle coupling to 𝝁 gives radiative 

correction to W decay: W → 𝝁 𝝂 V or W → 𝝁 𝝂 𝝓. 

• Given mass, couplings known.  Hence calculate. 

• Ugh: Result larger than uncertainty in width of W 

• Plot from Karshenboim et al., 
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need for a consistent SM embedding at the level of the very
starting point (4).

VI. COMBINATION OF ALL CONSTRAINTS

Having performed the required calculations of the
muonium HFS, atomic PNC, and W decays, we are now
ready to compile the constraints on the parameters of our
model. We separate all constraints into low-energy and
high-energy ones.
Addressing the low-energy constraints first, it is useful

to recall that our model has four parameters, fmV; κ; gV;
gAg, which enter in the observables in the following
combinations:

ae½mV; κ2"; aμ½mV; ðeκ þ gVÞ2; g2A";
Δr2p½mV; κgV "; ΔEhfs½mV; κðeκ þ gVÞ";
ΔQW ½mV; κgA"; ΔEμMgðSiÞ½mV; κðeκ þ gVÞ": ð24Þ

The last entry here is the constraint imposed by the
agreement of the measured 2p − 3d transition frequencies
in muonic magnesium and silicon with the corresponding
QED predictions [35].
Besides the indirect constraints on the model via effects

induced by virtual V, there are, of course, direct constraints
from the production of V with subsequent decay into eþe−

pairs, either from eþe− colliders or in experiments with
fixed targets. Thus, searches for unexpected spikes in the
invariant mass of pairs impose additional constraints on κ.
The latest compilations [36] show that below mV of
40 MeV, which is the region of the most interest for us,
g − 2 of the electron still provides the dominant limits.
To present our results in the most concise form, we

choose to saturate the constraint coming from g − 2 of the
electron combined with atomic determination of α. Taking
the 2σ limit on the maximal deviation of ae (see, e.g.,
Ref. [37]), we arrive at the maximum allowed κ for a given
value of mV , Currently, this constraint is given by

jΔaej ≤ 1.64 × 10−12 ⇒ jκmaxj ¼ 1.8 × 10−3
mV

20 MeV
:

ð25Þ

The latter equation is valid in the scaling regimemV ≫ me,
but we use the full expression in our numerical treatment.
Using this value of κmax, we determine the required value

of gV that solves the Δr2p discrepancy according to Eq. (5).
Specifically, we require that the new physics effect inter-
preted as Δr2jμH − Δr2jH is bounded by 2σ of the
CODATA value,

−0.081 fm2 ≤ Δr2jμH − Δr2jH ≤ −0.045 fm2: ð26Þ

This creates the preferred value for gV, pictured as the upper
shaded band with solid borders in Fig. 6. For definiteness

we take κ to be positive and for our numerical treatment do
not assume αmμ ≪ mV .
As already stated, such values of gV are in contradiction

with the muon g − 2 constraints if gA ¼ 0. Requiring the
axial-vector and vector contributions to cancel within the
2σ band around the experimental mean,

1.27 × 10−9 ≤ ΔaμðgV þ eκÞ þ ΔaμðgAÞ ≤ 4.47 × 10−9;

ð27Þ

we plot the required values of jgAj as the lower shaded band
with dashed borders in Fig. 6.
As expected, rather small values of the axial-vector

couplings, gA ≪ gV , are capable of adjusting the muon
g − 2. However, it must be noted that, despite the pos-
sibility of cancellation, the values of gA are finely tuned to
the values of gV . In other words, to every point in the upper
band on Fig. 6, there is exactly one in the lower band in
correspondence. The degree of fine-tuning is relatively
modest at low values of mV (e.g., ∼5% at mV ¼ 3 MeV)
but quickly becomes rather extreme as mV is increased
(∼1 part in 1000 at mV ¼ 30 MeV).
Besides the gV and gA bands, Fig. 6 also shows three

low-energy exclusion lines: (1) the atomic PNC constraint
on gA, (2) the muonium HFS constraint on gV , and (3) the
combination of muonic Mg and Si constraints on gV .
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g 2
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BR W
V
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gV s.t. rp 2

Muonium HFS

QW
133 Cs

Mg, Si
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A

FIG. 6 (color online). Parameter space of the model, when κ is
chosen as a function of mV to saturate the ae constraint. Solid
curves are limits on gV , while dashed ones are limits on gA. The
upper green shaded band shows the range of values of gV that
alleviate the rp discrepancy. The lower green shaded band shows
values of gA required so that ðg − 2Þμ theory and experiment
agree to 2σ, given values of gV in the upper band. We show
constraints on gV from muonium HFS, muonic Si and Mg, and
W → μνV decays (solid curves) and on gA from PNC in 133Cs
(dashed curve).
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Hope
• But new particle not yet part of complete renormalizable model. 

• Analog from past:  with just  
massive vector boson,  
𝝂 𝝂 → W W has excessive  
high energy growth 

• Fixed by complete (Weinberg-Salam) theory 

• Similar here: needs further  
Weinberg-Salam-like W 
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and Schroeder [18], an amplitude in a single partial wave
must not grow with energy at high energy (i.e., if the
amplitude grows like (energy)n for large energies, then
n  0). Nonrenormalizable theories are known for their
ultraviolet divergences in loops, but their excessive en-
ergy dependence can also appear at tree level in the form
of unitarity violations. A known historical example is
the amplitude for ⌫e⌫̄e ! W+W� in a simple vector bo-
son theory [19]. The calculation from just diagram 1(a)
gives an amplitude that is asymptotically in a single par-
tial wave that grows like E2 as the center-of-mass energy
E ! 1. The Weinberg-Salam extension of the theory
also has a Z-boson diagram, 1(b), which is significantly
smaller than 1(a) at threshold but asymptotically cancels
the o↵ending energy behavior and restores perturbative
unitarity [20]. A general study by Llewellyn Smith has
shown that the need to satisfy unitarity bounds leads to
a Yang-Mills structure for many theories involving vector
bosons [21].

(a)

⌫e

⌫̄e W�

W+

e� +

(b)

⌫e

⌫̄e
Z

W�

W+

FIG. 1. The illustrative process ⌫⌫̄ ! W+W�.

In this paper, we consider new vector and (when
needed) axial-vector bosonic interactions that couple to
the muon and the proton but do not couple or couple
weakly to the electron and most other particles. Again, if
this is all we have, the result of Karshenboim et al. shows
that the region of parameter space which solves the pro-
ton radius problem does not occur in the allowed param-
eter space given by the known decay of the W . Inspired
by [20, 21], we add an additional triple boson vertex in
the Lagrangian, giving an interaction involving the stan-
dard W -boson, the new vector particle �V , and a fur-
ther vector boson with the same mass as the W . We
call this newest boson a “shadow W ,” denoted Ws with
m(Ws) = mW . We also include, when needed, a corre-
sponding axial vector triple boson interaction, involving
the shadow Ws, the ordinary W , and the �A. The inclu-
sion of the Ws makes the � interactions gauge invariant
or current conserving, arguably fixes the nonrenormaliz-
ability of the original interaction, and, as we shall show,
definitively pushes the constraints on the couplings due
to W decay far away from the coupling strength param-
eter region necessary to solve the proton radius problem.
Thus it can be a plausible candidate for a BSM solution
to the proton radius problem.

We note that a current conserving theory with mas-
sive bosons (�V and �A) and shadow W ’s, gives high
energy results, e.g. for radiative corrections to W decay,
very much like a theory with a massive scalar boson �s
plus, when needed, a corresponding pseudoscalar boson

�p. We briefly display such a scalar theory, and show
that decays of the W involving such a scalar and pseu-
doscalar do not restrict the necessary parameter space
needed for solving the proton radius problem with scalar
exchanges.
We should also note that though our theory is well-

behaved and seems likely to be renormalizable (as argued
by Llewelyn Smith [21]), it is not yet a full theory em-
bedded into the standard model (SM). Further work will
be required to show how such a theory can be embed-
ded into the SM. For now, we simply consider our theory
as a phenomenological application of some BSM physics,
containing features that a full theory must contain and
controlling the high energy behavior of scattering and
decay amplitudes.
In the following, the bulk of our work concerns the

new vector or axial vector bosons, and is described in
Sec. II. We also include some comments on why the cor-
responding radiative corrections to Z ! µ+µ� decay are
innocuous. Results for the scalar case are given in a short
Sec. III, and conclusions are o↵ered in Sec. IV.

II. VECTOR THEORY

We start with an interaction Lagrangian similar to [12]
where �V interacts with a muon (and proton) via the the
explicit vector coupling Cµ

V (Cp
V ) and where �A interacts

with a muon (and proton) through the axial vector cou-
pling Cµ

A (Cp
A). For brevity of notation, it is understood

that � without a subscript represents either �V or �A in
this section. We also include an additional 3-boson inter-
action [21] term involving the �, the ordinary W , and a
third boson, with coupling strength equal to Cµ

V (or Cµ
A)

as is necessary to make the decay W ! µ⌫� gauge in-
variant. The third boson is the shadow W , denoted Ws,
which couples to the muon in the same manner as the W
and has mWs = mW .
The new interaction terms in the Lagrangian are,
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where in the Cµ
V terms,

W 1
↵ $ W�

↵ ,

W 2
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s,↵ ,

W 3
↵ $ �V↵ , (2)

with V ! A for the Cµ
A terms; ✏ijk is the totally anti-

symmetric Levi-Civita symbol. Note that we could use
two shadow W ’s (one vector and one axial vector), but
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appear to need only one. Further note the di↵erent signs
of the Cµ

V and Cµ
A Yang-Mills terms necessary for gauge

invariance, and that we have included an interaction of
the Ws with the charge changing muon current.

If the Cµ
V and Cp

V have the opposite sign then there
exists an additional attractive force between the muon
and the proton through the interaction with the �V . This
additional force will create a di↵erence between the 2S-
2P Lamb shift in muonic hydrogen and hydrogen as [10–
12]

�E(2S-2P ) = � |Cµ
V C

p
V |

4⇡

m2
�(mr↵)3

2(m� +mr↵)4
(3)

where mr is the reduced mass of the (muonic) hydrogen
system. The contribution to �E(2S-2P ) from the axial
coupling Cµ

A is very small.

To account for the energy di↵erence that can be inter-
preted as a proton radius di↵erence, there must be an
extra 310µeV in the 2S-2P Lamb shift of muonic hydro-
gen [1, 2]. The parameter CV necessary to satisfy this
constraint is plotted as the green band outlined by solid
lines in Fig. 3 where |Cµ

V | = |Cp
V | = CV .

Furthermore, the introduction of new �V and �A in-
teractions with the muon will shift the muon anomalous
magnetic moment. The vector and axial vector couplings
a↵ect the anomalous moment with opposite signs and can
be tuned to account for the known discrepancy between
theory and experiment of muonic g � 2 [12]. If Cµ

V is set
to satisfy the proton radius problem, then the allowed
region for Cµ

A from the muon g � 2 constraint is shown
by the green band outlined by dashed lines in Fig. 3.

We now move on to consider a constraint emphasized
by Karshenboim et al. [15], that the branching ratio of
W ! µ⌫�V plus W ! µ⌫�A must be less than 4 per-
cent (twice the error in the W width as measured by the
Tevatron). Without the inclusion of a 3-boson interac-
tion, this constraint eliminates the region of the (Cµ

V ,m�)
parameter space required to explain the proton radius
puzzle. This decay is calculated from the Feynman dia-
grams given in Fig. 2.
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FIG. 2. W ! µ⌫�

From (1) we can derive the necessary Feynman rules
to compute this decay amplitude as
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where k is the W 4-momentum, p1 is the muon 4-
momentum, p2 is the neutrino 4-momentum, and p3 is
the �V 4-momentum. Here we have focused on the vec-
tor contribution to the W decay, but one can easily show
that the axial vector contribution is equivalent up to an
overall minus sign (which is irrelevant to the decay am-
plitude squared).
Letting the muon and neutrino mass be zero, we find

(to leading order in m�/mW )
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Keeping the muon mass would only give multiplicative
corrections to the coe�cients like (1 +O(m2

µ/m
2
W )).

This decay width has a strikingly di↵erent dependence
on m� compared to [15]. The 1/m2

� dependence found
there that came from the longitudinal component of the �
polarization is canceled by the inclusion of the Ws prop-
agator in the second diagram of Fig. 2. Thus at lead-
ing order in m�/mW , the mass divergence is logarithmic
and not inverse polynomial. This logarithmic dependence
pushes the constraints from W decay far away from the
desired parameter space of Cµ

V and m�.
The contribution of Cµ

A in (5) can be obtained in terms
of Cµ

V using the constraint from (g � 2)µ [12]. The con-
straint from W decay eliminates the region of (Cµ

V ,m�)
above the top curve, the shaded red area, in Fig. 3. The
values of Cµ

V below this area are allowed by this con-
straint.
Another constraint on Cµ

V occurs from transitions be-
tween 3d and 2p orbitals in muonic 24Mg and 28Si [13,
15, 22]. At two standard deviations, this constraint is
plotted as the shaded orange area bordered below by a
solid black line in Fig. 3 where allowed values of Cµ

V exist
on and below this line.
Note that an additional constraint due to muonium

hyperfine splitting discussed in [15] is not relevant here
since � does not couple to the electron (or the coupling
can be kept quite small). For similar reasons, we do not
have a constraint on Cµ

A from a new parity nonconserv-
ing interaction contributing to the weak charge in 133Cs,
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Lots of new data coming
• New CREMA measurements 

(out at conferences, 2013/14) 

• MUSE (2017/2018) 

• PRad (run 2015) 

• ISR form factor meas. (data 
taken) 

• Electron deuteron scattering 
(Griffioen et al., Mainz) (data 
taken)
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• High precision Lamb shift in e-
H (York, 2014) 

• 2P-4P e-H splitting at 
Garching (2014) 

• 1S-3S e-H splitting at LKB, 
Paris (2014) 

• TREK at JPARC 

• Alternative measurements of 
the Rydberg (NIST, 2018) 

• Trumuonium (µ+µ-) at JLab



End
• 5 years after the first announcement, the problem persists. 

• Interestingly little discussion of the correctness of the µ-H Lamb shift 
data. 

• Extrapolations that obtain the charge radius from scattering data are 
unsettled.  Theorists should settle.  Additionally, more data coming. 

• Serious new Hydrogen energy level splitting experiments are in progress. 

• Exotic or beyond the standard model explanations face serious 
constraints, particularly mass contains.  But windows are still open. 

• One impact: the theory for (g-2)µ cannot be considered settled until the 
proton radius problem is settled.  Further, there may be striking 
corrections to other processes that involve muons.
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The end—for this talk!



Extras



New force seen elsewhere?
• Older suggestion: correction  

to K-decay,  viz., K →µ 𝜈 e+e–  
as correction to K →µ 𝜈. 

• Of course, QED gives same final state, with smooth 
(calculable) spectrum of e+e-. 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A’ visible?
• A’ (name of new particle here) 

will give bump.  Size  
calculable.  

• Is it observable?  
Wow, Yes.  (If it exists.) 

• Note: TREK experiment (E36) at JPARC (Japan) will observe 1010 
kaon decays, or about 200,000 K→µ𝜈e+e- events, about 1000 per 
MeV bin in the mass range we are considering.  (Thanks to M. 
Kohl)
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Fixing (g-2)µ

• Will need extra particle and fine tuning 

• Lucky break: corrections to (g-2) from regular 
vector and axial vector have opposite sign.  
Same is true of scalar and pseudoscalar. 

• With extra particle, have new coupling, say CPi.  Choose 
coupling to cancel in (g-2)µ.  Does not much affect Lamb 
shift. 

• Couplings now fixed, albeit mass sensitive.  Hence 
predictions for other processes fixed.
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Mass problems
• Recall measured HFS of 2S state of µ-H measured in 

agreement with standard theory.  Data number was,  

• Any HFS from exotics must be small, say below 5.1 µeV. 

• Axial vector—if needed for fine tuning (g-2)—now 
problem.  Gives contribution to HFS in leading order in 
NR expansion. 

• Straightforward atomic physics 
calculation
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HFS and mass limits

• Conclude: HFS agreement with SM calculation compatible 
with new particle exchange if new particle light enough. 

• Axial case o.k. if mass below about 13 MeV. 

• Analogous pseudoscalar/scalar case has mass limit 35 MeV.
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Numbers note
• Take 1S-3S as example (the LKB measurement) 

• splitting about 2.9 x 1012 kHz 

• difference due to CODATA vs. µ-H proton radii 
difference about 7.2 kHz 

•  ∴ need ppt accuracy.  Wow. 

• Already have (2010) measurement with 13 kHz 
error bar.
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Lamb shift
• Measure well 

• Calculate point proton QED part well 

• Difference is due to proton size 

• Need to know Rydberg well enough.  Do know it. 

• Get proton radius to few %.
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Details

• Splittings between different principal QN (e.g., 2S-3P) 
• finite size term about 10-10 of Ryd term 
• need to know Rydberg very well.  Don’t. 
• no problem: Take pairs of splittings instead 

• Splittings within one energy level (i.e., Lamb shift), 
finite size term about 10-6 of Lamb shift, no problem 
with knowing value of Rydberg accurately enough.
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Electron scattering data

• Mainz 2010 measures differential cross section, 
has 1422 data points, about 0.3% relative error, 
about or below 2% absolute error. 

• Want slope of GE at Q2 = 0. Cannot measure to  
Q2 =0, so extrapolate. 

• Mainz data has 0.004 < Q2 < 1 GeV2.
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Mainz’s own fit
• The experimenters fit GE and GM to their data using 

polynomials or modified polynomials in Q2. 

• Results have small error limits compared to other data. 

• Extrapolation to Q2 = 0 gave “big” result quoted 
already.
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problems in the data or by higher-order processes like TPE.
At the level of the uncertainty of the measurements no
systematic deviations from straight lines were found.

As the direct fits of models are nonlinear, standard error
estimation techniques for the fit are not guaranteed to be
exact. Therefore, the confidence bands were calculated
with the Monte Carlo technique including the errors of
the normalizations. We find that Monte Carlo and the
linearization used in standard error propagation yield al-
most identical results for all but one model. The confidence
bands presented here are the widely used pointwise bands,
meaning that one expects the true curve to be with 68%
probability within the band at any given single Q2, but not
necessarily at all Q2 simultaneously. The Monte Carlo
approach also allows one to construct simultaneous bands
meaning that with 68% probability the true curve does not
leave the band for the full range of Q2. It is somewhat
involved to treat this problem with standard analytical
methods [14]. The simultaneous bands can be obtained
from the pointwise bands shown here by scaling the latter
by a factor of around 2.3 for the Q2 range up to
0:6 ðGeV=cÞ2.

The form factors extracted with the flexible models
agree among each other to better than 0.25% in the Q2

range up to 0:5 ðGeV=cÞ2. They all fit the data equally well
with !2=d:o:f: # 1:14 for d:o:f: # 1400. However, includ-
ing the less flexible models one obtains 1:16 $
!2=d:o:f: $ 1:29 and the agreement is only better than
0.6%. In Fig. 2 the results of the spline model for GE,
GM and their ratio are shown, together with previous
measurements and fits. The error bars of the previous
data shown for GE and GM are statistical only, normaliza-
tion uncertainties are typically of the order of a few per-
cent. Since TPE corrections are not applied to any of the
data, the corresponding non-TPE-corrected fit of Ref. [13]
is shown. In the plot of the ratio the fit to the TPE-corrected
data of Ref. [13] is also included.

The results for GE exhibit a large negative slope relative
to the standard dipole at Q2 # 0 giving rise to the signifi-
cantly larger charge radius. This slope levels out around
0:1 ðGeV=cÞ2 and remains constant up to 0:55 ðGeV=cÞ2
when the slope again becomes larger. In that region, how-
ever, only measurements at large scattering angles for only
two beam energies contribute so that the fit becomes less
reliable and more sensitive to systematic errors such as the
neglect of TPE. For even higher Q2 measurements have
been taken only at one energy and a separation of GE and
GM is not possible. In the close-up for GE there is an
indication of a bump around 0:15 ðGeV=cÞ2, however, at
the limit of significance.

The magnetic form factor GM deviates from earlier
measurements. This may be related to the normalization
at Q2 ! 0 ignoring the wiggle seen by this experiment.
The maximum and the minimum of the wiggle structure
depend, of course, on the parameter of the dipole form.

Also, it is not clear whether the older experiments include
the proton contribution to the radiative corrections.
The structure at small Q2 seen in both form

factors corresponds to the scale of the pion of about

 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01
 1.02
 1.03
 1.04

 0  0.05  0.1  0.15  0.2

G
E
/G

st
d.

 d
ip

ol
e

[13]
[2]
Simon et al.
Price et al.

Borkowski et al. [15]
Janssens et al.
Murphy et al. [16]

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  0.2  0.4  0.6  0.8  1

G
E
/G

st
d.

 d
ip

ol
e

[13]
[2]
Christy et al.
Simon et al.
Price et al.
Berger et al.
Hanson et al.

Borkowski et al. [15]
Janssens et al.
Murphy et al. [16]

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  0.2  0.4  0.6  0.8  1

G
M

/(
µ p

G
st

d.
 d

ip
ol

e)

[13]
[2]
Christy et al.
Price et al.
Berger et al.

Hanson et al.
Borkowski et al. [15]
Janssens et al.
Bosted et al.
Bartel et al.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0  0.2  0.4  0.6  0.8  1

µ p
G

E
/G

M

Q2 / (GeV/c)2

[13] w/o TPE
[13] w/ TPE
[2]
Crawford et al.

Gayou et al.
Milbrath et al.
Punjabi et al.
Jones et al.

Pospischil et al.
Dieterich et al.
Ron et al. [17]

FIG. 2 (color). The form factors GE and GM normalized to the
standard dipole and GE=GM as a function of Q2. Black line: best
fit to the data, blue area: statistical 68% pointwise confidence
band, light blue area: experimental systematic error, green outer
band: variation of the Coulomb correction by%50%. The differ-
ent data points depict previous measurements, for Refs. see
[2,13]; we added the data points of [15–17]. Dashed lines are
previous fits to the old data in [2,13].
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On the other hand
• There is reason to believe polynomial expansion 

don’t converge for Q2 beyond 4mπ2 ≈ 0.08 GeV2. 

• Lorenz and Meissner did a conformal 
transformation to a new variable in terms of which a 
polynomial expansion would be convergent. 

• They fit the Mainz data and got  

• hmm
44
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MUSE
• Muon scattering experiment at the PSI. 

• Proton radius measurement table 
 
 
 
 
 
 

• MUSE will fill in table.  Anticipate Q2|low ≈ 0.002 GeV2. 
Production runs 2017/2018.
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atomic 
spectroscopy scattering

electron yes yes

muon yes no



But still

• Hill and Paz also did a fit over a wide range of Q2 
using the variable that should allow convergence.  

• But they did not use the Mainz 2010 data, only a 
collection of older data.
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RE = 0.870(23)(12) fm



And then there is
• A fit using only low Q2 data, where convergence of 

a polynomial expansion should not be a problem. 

• Low Q2, but still a long enough range to well 
determine the charge radius upon extrapolation. 

• Local product: Griffioen, Maddox, me. 

• Conclusion: a bit up in the air.
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