Studies of the decay $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{\pm}e^{\pm}at$ NA48

Jacopo Pinzino, INFN Pisa On behalf of the NA48/2 collaboration

Chiral Dynamics 2015, Pisa, Italy June 29, 2015

Outline

- the NA48/2 experiment: beam line and detector
 ChPT and chiral studies in NA48/2
- The new measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{\pm} e^{-}$ Conclusion

NA48/2 at SPS

Located at SPS north area A collaboration of 15 institutes from Austria, France, Germany, Italy, Russia, CERN, UK, USA

The NA48/2 experiment

Goals:

- Was designed for precision measurement of direct CP violation in K_{3π} decays.
- Tests of CKM unitarity, ππ scattering lengths, ChPT tests, lepton universality.

Data taking:

- 4 months in 2003 + 4 months in 2004 with simultaneous K^+ and K^- beam with $N_{K^+}/N_{K^-} \sim 1.8$
- $\sim 2 \times 10^{11} \text{ K}^{\pm} \text{ decays}$ in the fiducial decay region

The Beam Line

NA48/2 detectors

Magnetic Spectrometer

- 4 drift chambers and a dipole magnet
- σ(p)/p=1.02% + 0.044*p% [p in GeV/c]
- Hodoscope for charged particles
 - Fast for trigger
 - Time measurement ~ 150 ps

Liquid Krypton Calorimeter (Lkr)

- High granulatity (13248 cells of 2x2 cm²)
- Quasi-homegeneous (7 m³ liquid Kr, 28 X₀)
- σ(E)/E = 3.2%/√E + 9%/E + 0.42%
 [E in GeV]

The Chiral Perturbation Theory

- Effective field theory for the analysis of the low energy properties of the strong interaction.
- ChPT is an ideal framework to describe kaon decays.
- $\Delta S=1 O(p^4)$ chiral lagrangian can be written as: $L_{\Delta S=1} = L^2_{\Delta S=1} + L^4_{\Delta S=1} \simeq G_8 F^4 < \lambda_6 D_\mu U^\dagger D^\mu U > + G_8 F^2 \sum N_i W^i$ D'Ambrosio PoS(EFT09)061
- At this order 37 free coefficients N to be determined by measurements.
- Combinations of such couplings are accessible by measuring Kaon decays branching fractions and form factors.

ChPT and Kaon decay

- Kaon decays give a great opportunity to test the weak part of ChPT Lagrangian
- NA48/2 has access to all the charged Kaon decay

Decay	$\mathscr{L}^4_{\Delta S=1}$ counterte	erms	
$K^+ ightarrow \pi^+ l^+ l^-$	$N_{14}^r - N_{15}^r$	NA48/2 ee PL	B 677 (2009) 246-254 μμ PLB 697 (2011) 107-115
$K_S ightarrow \pi^0 l^+ l^-$	$2N_{14}^r + N_{15}^r$	NA48/1 ee Ph	ys.Lett. B576 (2003) 43-54 μμ PLB 599 (2004) 197-211
$K^{\pm} ightarrow \pi^{\pm} \gamma \gamma$	$N_{14} - N_{15} - 2N_{18}$	NA48/2 Phys.L	_ett. B730 (2014) 141-148
$K_S ightarrow \pi^+ \pi^- \gamma$	$N_{14} - N_{15} - N_{16} -$	· N ₁₇	
$K^{\pm} ightarrow \pi^{\pm} \pi^{0} \gamma$	$N_{14} - N_{15} - N_{16} -$	NA48/2 E	PJC 68 (2010) 75-87
$K_L \rightarrow \pi^+ \pi^- e^+ e^-$	$N_{14}^r + 2N_{15}^r - 3(N_{15}^r)$	$r_{16} - N_{17}$	NA48 Eur.Phys.J. C30 (2003) 33-49
$K^+ \rightarrow \pi^+ \pi^0 e^+ e^-$	$N_{14}^r + 2N_{15}^r - 3(N_{15}^r)$	${n_{16}} - N_{17}$	Still missing!
$K_S \rightarrow \pi^+ \pi^- e^+ e^-$	$N_{14}^r - N_{15}^r - 3(N_{16}^r)$	$(+N_{17})$	NA48 Eur.Phys.J. C30 (2003) 33-49

$K^{\pm} \longrightarrow \pi^{\pm} \pi^{0} \, \gamma^{*} \longrightarrow \pi^{\pm} \pi^{0} \, e^{+} \, e^{-}$

- This decay was never observed so far
- The y* is produced by two different mechanisms: Inner Bremsstrahlung (IB) and Direct Emission (DE)
- DE have electric and magnetic component

- It offers some opportunities for chiral theory tests:
 - Electric Interference ($\Gamma_{ib}\Gamma_{E}$) can confirm the discrepancy in sign with the theoretical prediction observed by NA48/2 in K[±] $\rightarrow \pi^{\pm}\pi^{0}\gamma$ EPJC 68 (2010) 75-87
 - Magnetic interference can be used to extract the sign of the magnetic term Γ_{M} (impossible to extract in K[±] $\rightarrow \pi^{\pm}\pi^{0}\gamma$)
 - Charge asymmetry not contaminated by indirect CP violation (as in K⁰)

Reconstruction Strategy

Selection:

- 2003 data sample
- 3 good tracks
- 2 electron and pion identification by E/p
- 2 photon clusters
- M_{vv} compatible with π^0 mass

Background Source

- $K^{\pm} \longrightarrow \pi^{\pm} \pi^{0}{}_{D}(\gamma) \longrightarrow \pi^{\pm} e^{+} e^{-} \gamma$ with an extra or radiated γ
- $K^{\pm} \longrightarrow \pi^{\pm} \pi^{0} \pi^{0}{}_{D}(\gamma) \longrightarrow \pi^{\pm} \pi^{0} e^{+} e^{-} \gamma$ with a lost or merged γ

Background Suppression

Normalization channel

The number of K^{\pm} decays is measured using the $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}(\gamma)$ reference channel (2003 data only)

 $N_{kdecays} = (7.97 \pm 0.03_{Stat} \pm 0.06_{Sys} \pm 0.24_{Ext}) \times 10^{10} = (7.97 \pm 0.25) \times 10^{10}$ Error completely dominated by external error

Table of errors of $\pi^{\pm} \pi^{0} e^{+} e^{-} BR$

Systematic	Value
N of signal events (1916)	2.35% sqrt(1916)/1860
Total Statistical	2.35%
Radiative correction on IB	0.5%
Signal total acceptance	0.34% (Stat err acc)
	1% systematic (fraction mixture)
Back ground subtraction	0.4% (error on BG 7.4/1860)
	0.05% (systematic due to Rad Cor pp_D)
Trigger efficiency	0.65% (statistical error)
Total systematics	1.40%
Kaon flux measurement	3.10% (from BR(K [±] $\longrightarrow \pi^{\pm} \pi^{0}_{D}(\gamma))$)
Total external	3.10%

- Systematic error dominated by model dependent acceptance
- External error from BR ($K^{\pm} \longrightarrow \pi^{\pm} \pi^{0}_{D}(\gamma)$) dominates the total error

The $\pi^{\pm} \pi^{0} e^{\pm} e^{-} BR$

Model dependent BR measurement:

- This sample of NA48/2 data is not sensitive to DE and INT
- Model dependent BR computed using total acceptance in which the relative weight of the 3 components are obtained from (Eur. Phys. J. C (2012) 72:1872) Acc(IR) + Frac(DE) + Acc(DE) + Frac(INT)Acc,

$$=\frac{Acc(IB) + Frac(DE)_{Th} \cdot Acc(DE) + Frac(INT)_{Th} \cdot Acc(INT)_{Th}}{1 + Frac(DE)_{Th} + Frac(INT)_{Th}}$$

• BR(
$$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{-}e^{+}$$
)_{Theory} = 4.0995x10⁻⁶x (1+ 1/71 + 1/128)=4.19x10⁻⁶

D'Ambrosio et al (private communication)

PRELIMINARY total branching ratio measurement:

$$BR(ppee) = \frac{N_{ppee} - N_{BG}}{K_{Flux} \cdot Acc_{ppee}^{TOT} \cdot \varepsilon_{ppee}} = (4.06 \pm 0.10_{stat} \pm 0.06_{sys} \pm 0.13_{ext}) \cdot 10^{-6}$$

Comparison with theory

Results are in good agreement within $<1\sigma$ even with missing radiative corrections

$$BR(ppee)_{Total}^{Theory} = 4.19 \cdot 10^{-6} \qquad BR(ppee)_{Total}^{NA48/2} = (4.06 \pm 0.17_{Tot}) \cdot 10^{-6}$$

L. Cappiello, O. Cata, G. D'Ambrosio, Dao Neng-Gao, Eur. Phys. J. C 72:1872 (2012) :

Isospin breaking (private communication) BR($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{-}e^{+}$)^{Theory} = 4.19 · 10⁻⁶

No isospin breaking (published) BR($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{-}e^{+}$) Theory = 4.29 \cdot 10⁻⁶

No radiative corrections in the theoretical predictions!

Rad. corr. is taken into account in the experimental result via Photos implementation in the MC simulaton.

Conclusion

- First observation of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{-}e^{+}$ by the NA48/2 Collaboration.
- Preliminary BR($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{-}e^{+}$) measurement based on 1860 candidates:

$$BR(ppee) = \frac{N_{ppee} - N_{BG}}{K_{Flux} \cdot Acc_{ppee}^{TOT} \cdot \varepsilon_{ppee}} = (4.06 \pm 0.10_{stat} \pm 0.06_{sys} \pm 0.13_{ext}) \cdot 10^{-6}$$

- Statistical precision can be reduced significantly including 2004 data
- Observation of DE and INT components requires radiative correction in theoretical model.
- Final result expected for the end of the year.