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Overview
D

Brief introductions to effective field theories (EFTs) and to
attice systematics.

Jses of EFTs in lattice QCD.
e ChPT, Symanzik effective theory, HQET.
¢ Discretization errors.

e Partial quenching.
¢ Finite volume effects and twisted boundary conditions; heavy quarks; ....

+ The payback: ChPT results from the lattice.
e Mesons, mainly SU(2).

e Nucleons (a little).
e Preliminary results: SU(3) and 3-flavor chiral limit.
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Effective Field Theories
D

+ Powerful tool to describe physics in some limited range of
scales.

e Useful when the fundamental theory is too difficult to handle (or
unknown).

o Typically:
1. “Integrate out” high energy modes of a theory (those above a cutoff A).

2. Expand the resulting non-local theory in inverse powers of A times
local operators (an OPE).

3. Left with a local effective field theory (EFT) at low energy.

—In rare cases (e.g. heavy quark effective theory), steps can actually be carried out
(perturbatively).

—Usually just imagine performing steps 1-3; use symmetries to constrain EFT.
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Effective Field Theories
D

+ These days, often said that all field theories are effective theories.
e Unknown new physics must kick in at some higher scale.

e .., QCD could be supplemented by higher dimension terms, such as:

1 —~ 1%
M QO-,UJ/G'UJ q

o M is mass scale of new physics.

¢ Distinction between renormalizable and unrenormalizable theories Is less
important than we used to think.

e Still, an important distinction:

o |f LO effective theory is nonrenormalizable (e.g. ChPT), it tells you the scale
at which new physics must enter (47 f. ), SO sets natural scale for NLO
terms.

e |f the LO effective theory is renormalizable (e.g., QCD), then scale of new
physics undetermined.

—must be found/bound by experiment,

—or by knowing/guessing the more fundamental underlying theory.
C. Bernard, CD15




Lattice QCD Systematic Errors

+ Lattice computation of QCD path integral inherently includes
systematic errors.

e Continuum extrapolation error: need to take lattice spacing a — O.

® (Residual) finite-volume errors: need to take space & time extent L, T — oo,

e Chiral extrapolation error: for practical reasons may choose my, mq larger than

physical; need to extrapolate to physical values.

» Even if near-physical values chosen (now possible), need to interpolate to
precise physical values (can only be found a posteriori): chiral interpolation
error.
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Use of EFTs in Lattice QCD

+ EFTs provide functional forms for relevant extrapolations/
interpolations.

¢ thereby reduce systematic errors.

+ First use: ChPT, to guide quark mass extrapolations.

e ChPT gives functional form of expansion in quark masses (and momenta).
e all dependence explicit.
e exactly as needed for extrapolations.

e Soon realized that ChPT also gives leading finite volume corrections.

e from pions, looping around the finite volume. [Gasser & Leutwyler, 1987, 1988; Neuberger,
1988; Hasenfratz & Leutwyler, 1990].
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Example of mass extrapolation

— BT

(:ontinuumI fit
_ 6= 3.90 fit
x?/dof = 19/17 - B =4.05 fit
6=390,L =24
CL =0.30 - 6 =3.90,L =32
6 =4.05, L = 32 data
6 = 4.05, L = 24 data

continuum fit

6 = 3.90 fit

B = 4.05 fit

6 =390, L = 24 data | ;

3 =3.90, L = 32 data x°/dof = 19/17
8 =4.05, L = 32 data ' - CL =0.30

0 =4.05, L = 24 data '

0.05 0.1 0.05 0.1
o MR o HR

ETM Collaboration [R Baron, et al.], JHEP 1008 (2010) 097, arXiv:0911.5061
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Example of mass extrapolation

———— BT

(:ontinuumI fit
_ 6= 3.90 fit
x?/dof = 19/17 - B =4.05 fit
6=390,L =24
CL =0.30 - 6 =3.90,L =32
6 =4.05, L = 32 data
6 = 4.05, L = 24 data

continuum fit
6 = 3.90 fit
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9 . . . . ] . . . . ]

0.05 0.1 0 0.05 0.1
o MR o HR

ETM Collaboration [R Baron, et al.], JHEP 1008 (2010) 097, arXiv:0911.5061
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Example of mass extrapolation

13

X2 /dof = 19/17

CL = 0.30

continuum fit

6 = 3.90 fit

6 = 4.05 fit

6 =3.90, L = 24 data
6 =3.90, L = 32 data
6 =4.05, L = 32 data

6 =4.05, L = 24 data

1a=0.08 fm

1a=0.06 fm

0.05 0.1

X
To HR

9

x?/dof = 19/17
CL = 0.30

é;onfinulumI fit |
6 = 3.90 fit
6 = 4.05 fit

0

0.05

0.1

X
To MR

ETM Collaboration [R Baron, et al.], JHEP 1008 (2010) 097, arXiv:0911.5061

e Discretization effects are fairly small, but clear.
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Example of mass extrapolation
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continuum fit

6 = 3.90 fit
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6 =3.90, L = 24 data
6 =3.90, L = 32 data
6 =4.05, L = 32 data

6 =4.05, L = 24 data

13

1a=0.08 fm
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0.05 0.1

X
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9

x?/dof = 19/17
CL = 0.30

;;onltinulumI ﬁtl
6 = 3.90 fit
6 = 4.05 fit

0

0.05

0.1

X
To MR

ETM Collaboration [R Baron, et al.], JHEP 1008 (2010) 097, arXiv:0911.5061

e Discretization effects are fairly small, but clear.

¢ a-dependence needs to be added to the continuum forms to fit lattice data.
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Example of mass extrapolation

———— BT

;;onltinulumI ﬁtl
_ 6 = 3.90 fit
x?/dof = 19/17 - B = 4.05 fit

CL = 0.30

continuum fit
6 = 3.90 fit
6 = 4.05 fit
6 =3.90, L = 24 data |
B =3.90, L = 32 data a=0.08 fm x*/dof = 19/17
8 =4.05, L = 32 data ' - CL =0.30
0 =4.05, L = 24 data 1a=0.06 fm

9 . . . . ] . . . . ]

0.05 01 0 0.05 01
Ty IR o HR
ETM Collaboration [R Baron, et al.], JHEP 1008 (2010) 097, arXiv:0911.5061
e Discretization effects are fairly small, but clear.

¢ a-dependence needs to be added to the continuum forms to fit lattice data.

e Here, simple analytic terms, const.x a2, do the trick.
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Example of mass extrapolation

———— BT

continuumI fit
_ 6 = 3.90 fit
x?/dof = 19/17 - B = 4.05 fit
6=3.90,L =24
CL =0.30 ] 6 =3.90,L =32
05, L = 32 data
.05, L = 24 data

continuum fit
6 = 3.90 fit
6 = 4.05 fit
6 =390, L = 24 data |
8 =3.90,L = 32 data _a—0.08 fm éi/i0f0§019/17
08 =4.05 L = 32 data = Y.
B =4.05, L = 24 data 1a=0.06 tm

0.05 0.1 0 0.05 0.1

X X
To PR To MR

ETM Collaboration [R Baron, et al.], JHEP 1008 (2010) 097, arXiv:0911.5061
e Discretization effects are fairly small, but clear.

¢ a-dependence needs to be added to the continuum forms to fit lattice data.
e Here, simple analytic terms, const.x a2, do the trick.

® |n some other cases (very precise lattice data, many degrees of freedom, larger discretization
errors...) this approach may not be adequate. C. Bernard, CD15 7




Use of EFTs in Lattice QCD

+ Key insight: ChPT can be modified to include lattice discretization
errors. [Sharpe & Singleton, 1998]

e Relates a-dependence to mass dependence, so better controlled extrapolations.
e Non-analytic terms in a arise from loops.
e Method uses another EFT: Symanzik Effective Theory (SET) [Symanzik, 1983].

e For SET, the lattice QCD theory at fixed lattice spacing a is taken as “fundamental.”

e SET is the EFT that describes the lattice theory at energy scales small compared to
the cutoff: p « 1/a.

| eading order Lagrangian is just the continuum QCD Lagrangian.
e Since ap « 1, need to keep only low powers of a as corrections:
—add on local operators with dimension > 4, multiplied by appropriate powers of a.

* Needed local operators — determined by the underlying lattice symmetries.

C. Bernard, CD175



Lattice QCD: Wilson quarks
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Lattice QCD: Wilson quarks

* Needed local operators for SET = determined by the underlying lattice symmetries.

e E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral
symmetry (even for m=0), so leading correction to continuum theory is Pauli operator:

Lsgr = Lo + Lxro + ...

1
Lio = ;GG +q(D+m)g

»CNLO — a q_O-,UJl/GIqu
e Once discretization effects are encoded as local operators in the SET, it’s easy to include
them in the corresponding ChPT at low physical energies.

* Method is standard “spurion” approach that tells how chiral-symmetry-breaking mass
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Lattice QCD: Wilson quarks

* Needed local operators for SET = determined by the underlying lattice symmetries.

e E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral
symmetry (even for m=0), so leading correction to continuum theory is Pauli operator:

Lsgr = Lo + Lxro + ...

1
Lio = ;GG +q(D+m)g

»CNLO — a q_O-,UJl/GIqu

e Once discretization effects are encoded as local operators in the SET, it’s easy to include
them in the corresponding ChPT at low physical energies.

* Method is standard “spurion” approach that tells how chiral-symmetry-breaking mass
terms are included in ChPT Lagrangian.

* For Wilson quarks it’s particularly simple, since mass and Pauli term transform same
way under chiral symmetry:
f2 Bf2

LonpT :gtr(E?MZ@MZT) — tr(MX + M)+
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—new LECs ¢s and ¢z encode leading discretization effects in ChPT.

C. Bernard, CD175



Lattice QCD: Wilson quarks

* Needed local operators for SET = determined by the underlying lattice symmetries.

e E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral
symmetry (even for m=0), so leading correction to continuum theory is Pauli operator:

Lsgr = Lo + Lxro + ...

1
Lio = ;GG +q(D+m)g

ENLO — a q_o-,ul/G'uyq
e Once discretization effects are encoded as local operators in the SET, it’s easy to include
them in the corresponding ChPT at low physical energies.

* Method is standard “spurion” approach that tells how chiral-symmetry-breaking mass
terms are included in ChPT Lagrangian.

* For Wilson quarks it’s particularly simple, since mass and Pauli term transform same
way under chiral symmetry:
f2 Bf2

LonpT :gtr(E?MZ@MZT) — tr(MX + M)+

—acitr(S+ 37 + a® cotr(T 4+ T + -

—new LECs ¢s and ¢z encode leading discretization effects in ChPT.

—Sharpe & Singleton showed from this ChPT that a new lattice-artifact phase (“Aoki
phase”) was possible at fixed a for very small m. C. Bernard, CD15




Lattice QCD: twisted-mass quarks
0000000000007

e Start with a doublet of Wilson quarks.
e Add a twisted mass [Frezzotti, Grassi, Sint & Weisz, 2001]:

qP+m)g — qD+m+ipysTs)g
¢ |[n continuum, u term can be rotated away by non-singlet SU(2) chiral rotation.

e But on lattice, since Wilson term (to remove doublers) is in “m direction”, twist is nontrivial:

» Avoid “exceptional configurations” in which statistical fluctuations from Wilson term
bring mass to zero.

e If m tuned to O, physical quantities have errors starting at O(@?), not O(a) [Frezzotti and
Rossi, 2004]. 0.40

 Price Is violation of isospin symmetry at nonzero a.

— twisted mass ChPT [Munster, Schmidt & Scholz, 2004; 5 |
Sharpe & Wu, 2004] '

= 0(a?) splitting of rr° from rr*.

ETM Collaboration [R Baron, et al.], 0.00
C. Bernard. CD15 JHEP 1008 (2010) 097, arXiv:0911.5061 0




Lattice QCD: staggered quarks
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Lattice QCD: staggered quarks

¢ |Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted)
degree of freedom, “taste.”
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Lattice QCD: staggered quarks

¢ |Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted)
degree of freedom, “taste.”

* Each flavor of quark comes in 4 tastes.
—taste Is unphysical: need to remove in simulation algorithm.
= “Fourth root procedure” (ChPT can help to understand & tame.)
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e SET is:
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* And staggered ChPT Lagrangian is [Lee & Sharpe, 1999; Aubin and CB, 2003]:
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Lattice QCD: staggered quarks

¢ |Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted)
degree of freedom, “taste.”

* Each flavor of quark comes in 4 tastes.
—taste Is unphysical: need to remove in simulation algorithm.
= “Fourth root procedure” (ChPT can help to understand & tame.)
—SU(4) taste symmetry exact in continuum, but violated on lattice at O(@?).

e SET is:
Lsgr = L10 + LNLo + - .

explicit taste-matrices,

L10 = EGMVG/W +q ($+ m so violates SU(4) taste
1

symmetry

LnLo = a’ 4V ®E5)q (Y ®E&s)q + -+

* And staggered ChPT Lagrangian is [Lee & Sharpe, 1999; Aubin and CB, 2003]:

2
- BI tr(MY + MET) — a? Citr(&53627) + - - -

—where 2 is now a 4n x 4n matrix.

C. Bernard, CD175



Lattice QCD: staggered quarks

Bf?

) = — (MY + MYV — a? Citr(&5265T) + - - -

C. Bernard, CD15



Lattice QCD: staggered quarks
)

2
BI tr(MY 4+ MET) — a? Citr(&53621) + - - -

(0,50,51) -

e Expanding as usual — 16 pions each (non-singlet) flavor combination.
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Lattice QCD: staggered quarks
)

2
Bf tr(MY 4+ MET) — a? Citr(&53621) + - - -

LonpT = 2 ) —

e Expanding as usual — 16 pions each (non-singlet) flavor combination.

* With one “Goldstone” pion whose mass vanishes in chiral limit (from the one
non-singlet chiral symmetry unbroken by discretization corrections).
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Lattice QCD: staggered quarks
)

2
BI tr(MY + MY — a? Crtr(€53E2T) + - -

LcnpT = 2 ) —

e Expanding as usual — 16 pions each (non-singlet) flavor combination.

* With one “Goldstone” pion whose mass vanishes in chiral limit (from the one
non-singlet chiral symmetry unbroken by discretization corrections).

* Rest are raised above Goldstone one by O(@?) terms [times powers of as].
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Lattice QCD: staggered quarks
)
Bf?

4

2
£ChPT — %tr(aluzaluz—r) — tI‘(MZ -+ MZT) — @2 Cltr(€5Z€5ET) -+ .-

e Expanding as usual — 16 pions each (non-singlet) flavor combination.

* With one “Goldstone” pion whose mass vanishes in chiral limit (from the one
non-singlet chiral symmetry unbroken by discretization corrections).

* Rest are raised above Goldstone one by O(@?) terms [times powers of as].

0.12 fm 0.15 frd

Pion taste splittings vs (asa)? for two versions
of staggered quarks: “asgtad” and newer,
more highly improved version, “HISQ”.

o:j  +:i0
0:05 X:i5 _| MILC [A. Bazavoy, et al.],

1 1 1 1 L1 11 | 1 1 1 1 L1 11 PRD 87, 054505 (201 3)
0.001 0.002 0.005 0.01 0.02 0.05 [arXiv:1212.4768]

2 2
ag” (a/ry) C. Bernard, CD15




ChPT and extrapolations to continuum
- )

4+ So lattice-spacing-dependent ChPT can explain/control lattice artifacts:

e Aoki phase (Wilson)
® piON isospin-violations (twisted mass)
e pion taste-splittings (staggered)
+ Another key use to is guide continuum extrapolations:

e it quark-mass dependence and lattice-spacing dependence together, using
expressions from the appropriate chpt.

e Can significantly reduce systematic errors.

e Such fits often done in partially quenched context: choose valence quarks to
have different masses than sea quarks.

» Useful because valence quarks are cheap compared to sea quarks: extract as much
as possible for a given configuration (generated with sea quark back-effects).

 “Partially quenched” because valence quarks are quenched: forbidden from appearing
In virtual loops, but sea quarks are not quenched.

* Add corresponding ghost (bosonic!) quarks, with same mass matrix as the valence

quarks, to cancel the virtual loops (determinant) of the valence quarks [Morel, 1987].
C. Bernard, CD15 13




Partial Quenching
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sea quarks \/ ghost és

valence quarks

e \When M’ = M, reduces to QCD.

 (More precisely, QCD Green’s function and physical quantities are a proper subset of
those possible in PQQCD in this limit.)
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Partial Quenching

+ Partially quenched QCD (PQQCD) Lagrangian (in continuum):
Lpoocp = —GWGW+CI(¢+M g +qP+ MG+ q(D+ Mg

sea quarks \/ ghost és

valence quarks

e \When M’ = M, reduces to QCD.

 (More precisely, QCD Green’s function and physical quantities are a proper subset of
those possible in PQQCD in this limit.)

+ Then partially guenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]:

f? i _ Bf” i
»CPQChPT = gtr(ﬁuzﬁuz ) 1 tI‘(MZ + M?> )

e | ooks standard but 2 is (Nsea+2nva)x(Nsea+2nva) Matrix, with pions of all
combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)
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e | ooks standard but 2 is (Nsea+2nva)x(Nsea+2nva) Matrix, with pions of all
combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)

e Mass matrix is M = diag(M, M’', M)
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4+ Recently revisited issue [CB & Golterman, 2013] to put PQCHhPT on firmer
footing.

e Based on Leutwyler’s justification for ChPT [Leutwyler, 1994], which emphasizes
clustering and locality (not unitarity).

e These are properties that can exist for Euclidean theory even if not unitary.

* \We showed™* that the Euclidean theory has a transfer matrix and hence a Hamiltonian.
—Hamiltonian is not Hermitian, but has a positive definite real part.
—Implies™ clustering.
—PQChPT follows.*
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modulo some (“mild”) assumptions C. Bernard, CD15 16
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e Even with current large volumes, L = 5 fm, momenta spaced by =250 MeV.
e Difficult, e.g., to compute momentum dependence of form factors.
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ChPT Results from the Lattice

+ Lattice allows first-principles computation of LECs of the effective theory
from fundamental QCD.

® |[n practice, is easiest for LECs affecting pseudoscalar meson masses and
leptonic decay constants.

e Can be calculated from quark-mass dependence of 2-point Euclidean Green'’s
functions.

e Nice complement to experiments, which give little constraint on quark-mass
dependence since quark masses fixed in Nature.

| ECs affecting momentum dependence of scattering amplitudes are just the opposite:

—Difficult on the lattice: n-point functions; must pull out (indirectly) Minkowski-space
amplitudes from Euclidean space calculations. [Maiani & Testa, 1990; Luscher, 1991].
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SU(2) LECs
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¢ In the two flavor chiral limit: my,mq — O.

¢ values quoted are for Nf = 2+1 theory.

1.00 1.04 1.08 1.12 1.16

F

Fr
—T = 1.0624(21)

e For Fr/F, looks like systematic errors of one or more calculations may be
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® Engel, et al. (2015)
calculate condensate from
eigenvalue density, a la
Banks-Casher.

e From GMOR, condensate
gives slope of M2 with
quark mass (green lines).

e Agreement with direct
lattice data for M2 is
excellent.

e Get |(au)|Y? = 263(3)(4) MeV

e FLAG, 2013 average is
[(Tu) |13 = 269(8) MeV
N=2; u =2 GeV).
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» constrained to go through physical point.

e c1 ~ -1.1Is large but not crazy: mn changes by ~40% from
physical point to mr = m«.
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Nucleon Chiral Extrapolation
)

C. Bernard, CD15 28



Nucleon Chiral Extrapolation

1.6

1.5¢

physical

LHPC 2008

xQCD 2012

RBC: Preliminary DSDR
RBC: a ! =1.75(3) GeV
RBC: a ! =2.31(4) GeV

0.8f

0.5 0.6 0.7

0.0 0.1 0.2 0.3 0.

4
m, /(2V27f,)
e \\Nalker-Loud, Lattice 13, arXiv:1401.8259.

C. Bernard, CD175



Nucleon Chiral Extrapolation

1.6

0.8f

physical

LHPC 2008

xQCD 2012

RBC: Preliminary DSDR
RBC: o' =1.75(3) GeV
RBC: a ! =2.31(4) GeV

0.0 0.1 0.2 0.3 0.

4
m, /(2V27f,)
e \\Nalker-Loud, Lattice 13, arXiv:1401.8259.

e “Ruler plot” [named by B. Tiburzi].

0.5 0.6 0.7

C. Bernard, CD175



Nucleon Chiral Extrapolation

1.6

1.5¢

1.4f

physical

LHPC 2008

xQCD 2012

RBC: Preliminary DSDR
RBC: o' =1.75(3) GeV
RBC: a ! =2.31(4) GeV

0.0 '. 0.2 0.3 014 0.5 0.6 0.7
m, /(2V27f,)
e \\alker-Loud, Lattice '13, arXiv:1401.8259.

* “Ruler plot” [named by B. Tiburzi).
e Update of RBC points.”

*thanks to T. Blum for unpublished data. C. Bernard, CD15



Nucleon Chiral Extrapolation

1.6

1.5¢

1.4f

physical

LHPC 2008

xQCD 2012

RBC: Preliminary DSDR
RBC: o' =1.75(3) GeV
RBC: a ! =2.31(4) GeV

0.0 '. 0.2 0.3 0.4 0.5 0.6 0.7
m, /(2V27f,)
e \\alker-Loud, Lattice '13, arXiv:1401.8259.

¢ “Ruler plot” [named by B. Tiburzi].
e Update of RBC points.”
e ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310.

*thanks to T. Blum for unpublished data. C. Bernard, CD15



Nucleon Chiral Extrapolation

1.6

1.5¢

1.4f

physical

LHPC 2008

xQCD 2012

RBC: Preliminary DSDR
RBC: o' =1.75(3) GeV
RBC: a ! =2.31(4) GeV

0.0 '. 0.2 0.3 0.4 0.5 0.6 0.7
m, /(2V27f,)
e \\alker-Loud, Lattice '13, arXiv:1401.8259.

¢ “Ruler plot” [named by B. Tiburzi].
e Update of RBC points.”
e ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310.

e Seems to be a curious accident; doesn’t contradict expected chiral behavior.
*thanks to T. Blum for unpublished data. C. Bernard, CD15




SU(3) LECs
.07
+ [ 10 from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

C. Bernard, CD15 29



SU(3) LECs
.07
+ [ 10 from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

e Combined NNLO study of lattice and continuum data for ud V—-A correlator, and chiral sum
rules for flavor-breaking ud — us combination.

C. Bernard, CD15 29



SU(3) LECs
.07
+ [ 10 from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

e Combined NNLO study of lattice and continuum data for ud V—-A correlator, and chiral sum
rules for flavor-breaking ud — us combination.

= Continuum determination of ud correlator precise in low-Q? region.

C. Bernard, CD15 29



SU(3) LECs
.07
+ [ 10 from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

e Combined NNLO study of lattice and continuum data for ud V—-A correlator, and chiral sum
rules for flavor-breaking ud — us combination.

= Continuum determination of ud correlator precise in low-Q? region.

= | attice (using RBC domain-wall configurations) allows determination of mass-
dependence, but mainly at higher Q2.

C. Bernard, CD15 29



SU(3) LECs
.07
+ [ 10 from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

e Combined NNLO study of lattice and continuum data for ud V—-A correlator, and chiral sum
rules for flavor-breaking ud — us combination.

= Continuum determination of ud correlator precise in low-Q? region.

= |_attice (using RBC domain-wall configurations) allows determination of mass-
dependence, but mainly at higher Q2.

0.1 ' | . | . 00l6F— T " T T T T
. o 1/a=137GeV,m =171 MeV| - ] o 1/a=137GeV,m =171 MeV| ]

008 | |— OPAL+DV model, central : — OPAL+DV model, central | -
I -- OPAL+DV model, 10 errors | | 0012 —- OPAL+DV model, 10 errors

“o 0.06
% | <

> > i
0.008
= 004 > _

0.004}

C. Bernard, CD15 29



SU(3) LECs
.07
+ [ 10 from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

e Combined NNLO study of lattice and continuum data for ud V—-A correlator, and chiral sum
rules for flavor-breaking ud — us combination.

= Continuum determination of ud correlator precise in low-Q? region.

= |_attice (using RBC domain-wall configurations) allows determination of mass-
dependence, but mainly at higher Q2.

0.1 . | . | . 00l6F— 1 " 1 T
- o 1/a=1.37 GeV, mn:171 MeV | - [ o 1/a=1.37 GeV, mn=171 MeV |

008 | |— OPAL+DV model, central : — OPAL+DV model, central | -
I -- OPAL+DV model, 10 errors | | 0012 —- OPAL+DV model, 10 errors

“o 0.06
% | <

> > i
0.008
= 004 > _

0.004}

Q' [GeV']
v Excellent agreement where both are precise.

C. Bernard, CD15 29



SU(3) LECs
.07
+ [ 10 from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

e Combined NNLO study of lattice and continuum data for ud V—-A correlator, and chiral sum
rules for flavor-breaking ud — us combination.

= Continuum determination of ud correlator precise in low-Q? region.

= |_attice (using RBC domain-wall configurations) allows determination of mass-
dependence, but mainly at higher Q2.

0.1 . | . | . 00l6F— 1 " 1 T
- o 1/a=1.37 GeV, mn:171 MeV | - [ o 1/a=1.37 GeV, mn=171 MeV |

008 | |— OPAL+DV model, central : — OPAL+DV model, central | -
I -- OPAL+DV model, 10 errors | | 0012 —- OPAL+DV model, 10 errors

“o 0.06
% | <

> > i
0.008
= 004 > _

0.004}

QU IGeV] Q" [GeV’]
v Excellent agreement where both are precise.

= Additional constraint from chiral sum rules (inverse moment finite energy)
[Golterman, Maltman & Peris, 2014].

C. Bernard, CD15 29



SU(3) LECs
.07
+ [ 10 from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

e Combined NNLO study of lattice and continuum data for ud V—-A correlator, and chiral sum
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= Continuum determination of ud correlator precise in low-Q? region.
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+ MILC “asgtad” simulations with 0.1 ms < ms’ < 0.6 ms (circa 2010).
e two very different fits for decay constant with fant.0 &= fr

i ! | ! ! | ! ! ! ! | ! ] i | | ! ! ! | ! !
. p = 0.26 i p =0.14

B data limit i data limit

+higher orders | See.

1 MILC,
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1 arXiv:1012.0868.
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e function of strange sea mass, with u,d mass at chiral limit (& extrapolated to continuum).
JNNLO = [fx (uu)a| 1.59(13) JNNLO = const. X fo & fr
fo/fo=126(4)  [(au)s] fx/fo = 1.09(2)

“Paramagnetic effect:” Descotes, Girlanda & Stern, 1999
Right-hand fits wants fy high to make fxnvLo high.

f fanLo fixed at fr, independent of fo (left fit), get something totally different:
ow fo: small LO, big NLO. C. Bernard, CD15 31
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e Now two versions of fit (fixing fNNLo

independently of fo, or fixing fxnvo/ fo) i — _
give very similar results. T - ]
S +higher orders —
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e And p=0.75, significantly larger than NLO
before.

data limit

LO
e Jaken at face value, would say 0.12

Fulfo = 127(a)(0); L2

= 1.34(10)(*¢)
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[(Gu)3]

: 0.0 0.5 1.0 1.5
- Ranges cover two other alternatives.

my/m,
e Somewhat surprising that fxnLo =~ fx SNNLO = const. X fo = [k

is needed for lattice data stopping at fr/fo=1.17(4)

ms’ = 0.6 ms. (intermediate value of fo)

- Concern: Variation with fnnz.o shows that NNNLO effects not
negligible. Or are discretization errors at NNLO to blame??

- Need data with smaller discretization errors and smaller ms’
(in progress). [Higher order staggered ChPT would also help.] C. Bernard, CD15
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e Now have physical mass ensembles, so chiral extrapolation less important.

* still, allows us to use other ensembles with higher mass, which often have smaller
statistical errors.

* And, as always, ChPT helps control finite volume effects.

e Highly improved actions + smaller lattice spacings: symmetry breaking effects small
enough that simple analytic expansions in a may be good enough: May not need to
include discretization errors in ChPT.

* Also, higher order terms in a (which are not in ChPT) may be comparable to the
symmetry-breaking terms kept.

e Condition for calculation of physical quantities not to need lattice ChPT is
M2 » breaking terms.

 For staggered, this is now satisfied for a < 0.06 fm (i.e., for some of the ensembles
MILC uses, but not yet for all the ensembles used in controlled calculations).

—If want interesting, but not experimentally accessible, quantities like fo, (decay
constant in 3-flavor chiral limit), staggered ChPT will still be needed for
foreseeable future.
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e New applications of ChPT, specifically, and EFTs in general, will always be required
as field develops.

e £.g.: gradient flow techniques for setting the lattice scale (Luscher, 2010; BMW,
2012).

e analyzed in ChPT by Bar & Golterman, 2014.

—can reduce already small sea-quark effect on scale even further by fitting to
their formula.
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e Especially for 3-flavor chiral limit quantities fo and Bo.
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e Many paybacks to come! C. Bernard, CD15
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QCD Simulations

- )
+ Generate an ensemble of gluon fields according to a probability distribution

given by the QCD gluon action and back-effect of sea quarks (virtual quark
loopSs).
e Expensive! (mainly because of sea quarks, whose effect is encoded in a determinant).

4+ In each gluon-field background (a “configuration”), calculate propagation of
valence guarks.

e Relatively cheap (for each quark, need one column of a matrix inverse).

®* E.g., for <O| A, |[m(0)> =ifzpy, in a given background:

+ Then average over the configurations ties together background gluon fields to

make: @Qﬁ?ﬁ%

u % W
d
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Some SU(2) Fits

ETM, a~0.08 fm

[R. Baron et a~0.09 fm
al.], JHEP

1006 (2010)
111, [arXiv:
1004.5284].

0.9

2

. mps/T2Botu)

2+1+1

x\x
2By [GeV?] 2By [GeV?]
| |

| | | | | | | |
®oA- 0.10 0.15 0.20 0.25 0.30 ‘ . 0.15 0.20 0.25 0.30

e Note: Borsanyi
186 [ LOTNLOANNLO— 7~ 777" T et al paper

, . only LO+NLO
S. Borsanyl et 184 % 7 -onI¥ LO+

A% B=3.77 _ iIncludes
1821 g ' B=3.792 _ _
180 F  Fp A B-3.85 physical quark
174 + RN ‘ ‘

e " SR 4 — | e Discretization

170 | i Y '

241 168 _Lo|+r\ﬂ|(_)olthLrel)Lo% Sk - errors small in

166 L only LO BTy | both cases.
a~0.12 fm 1% | 5377 / AN

- B=3.792 180
a~0.10 fm 162

al., Phys. Rev.
D88 (2013)
014513,
[arXiv:
1205.0788].

2 h 2 2
Mz / (am/amP™®) [10° MeV?]

B=3I .85 1 1 1 1 1

1 2 5 6
phys

am/am 3 8




Nucleon Chiral Extrapolation

1.6

1.4
1.2

BMW —aA— -
PACS-CS ——
LHPC —e—

MILC —v—
QCDSF-UKQCD ¢
| |

I
0.1 0.15 0.2 0.25
m2 (GeV?)

e Plot from: ETM [C. Alexandrou et al.], PoS LATTICE 2014, 100 [arXiv:1412.0925].

e Good agreement among groups.

e Note QCDSF point close to physical, with relatively small errors.
» G. Bali et al., NPB 866 (2013) 1 [arXiv:1206.7034].
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Nucleon 1sospin violation
(Slide from A.Walker-Loud)

C.Aubin,W.Detmold, E. Mereghetti, K.Orginos, S. Syrltsyn B.Tiburzi, A.Walker-Loud

b my ~ 241 MeV b ¢ me =244 MeV ||
m, ~ 422 MeV : j ¢ ¢ my 426 MeV |
my =~ 489 MeV G

o
NNLO xPT

2

(47Tf7r)
(ga=127,f, =130 MeV)  + B(1)

m?2 >] exclude heavy mass

5M,,T_dp_m“ :5{04[ (6gA+1)ln (,u_;
2m

(47 fr)?

point

2
T

x*/dof = 1.66/5 = 0.33

this 1s striking evidence of a chiral logarithm




FCAG2013

SU(3) LECs

our estimate for Ne=2+1+1

HPQCD 13A

our estimate for Ng =2 +1

MILC 10
MILC 09A
MILC 09
PACS-CS 08

RBC/UKQCD 08

Bijnens 11

Gasser 85

FLCAG2013

our estimate for N =2+1+1

HPQCD 13A

our estimate for Ny =2 +1

MILC 10
MILC 09A
MILC 09
PACS-CS 08

RBC/UKQCD 08

Bijnens 11

Gasser 85

® From decay constant.

Ls = 0.84(38) x 10~°

e Results quoted are for Nf = 2+1.

1

2

L, =0.04(14) x 1073

¢ | 5 controls valence mass dependence; L4 controls sea mass dependence.
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SU(3) LECs

3 3
FIAG2013 | 10 (2L8_L§) FTAG2013 | 10 (2L6—L4)

our estimate for N, =2+1+1 our estimate for Ne=2+1+1

HPQCD 13A HPQCD 13A

our estimate for Ny =2 +1 our estimate for Ny =2 +1

MILC 10 MILC 10
MILC 09A MILC 09A

MILC 09 MILC 09

PACS-CS 08 PACS-CS 08

RBC/UKQCD 08 RBC/UKQCD 08

Bijnens 11 ’ Bijnens 11

Gasser 85 : ’ Gasser 85

1 0 1 2 1 0 1 2

2Ls — Ls = —0.12(22) x 107° 2L¢ — Ly = 0.10(12) x 1073

e Results quoted are for Nr = 2+1.
e From meson mass.
e 2| sl 5 controls valence mass dependence; 2Les-L4 controls sea mass dependence.

2 . : : :
e Small because m . is nearly linear in quark mass (small NLO corrections).
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Meson (mass)?

2 2 .
*m_ and Mg vS. M

® shows how linear
the (mass)? is.

e old: from MILC,
2004!

e usually people divide
by 1M to show non-

CL=0.28; 0.28 | ineartty.

X <& coarse -
O O fine |
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