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Overview

✦Brief introductions to effective field theories (EFTs) and to 
lattice systematics.

✦Uses of EFTs in lattice QCD.
• ChPT, Symanzik effective theory, HQET.
• Discretization errors.
• Partial quenching.
• Finite volume effects and twisted boundary conditions; heavy quarks; ....

✦The payback: ChPT results from the lattice.
• Mesons, mainly SU(2).
• Nucleons (a little).
• Preliminary results: SU(3) and 3-flavor chiral limit.
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Effective Field Theories

✦Powerful tool to describe physics in some limited range of 
scales.
• Useful when the fundamental theory is too difficult to handle (or 

unknown).
• Typically:

1. “Integrate out” high energy modes of a theory (those above a cutoff Λ).
2. Expand the resulting non-local theory in inverse powers of Λ times 

local operators (an OPE).
3. Left with a local effective field theory (EFT) at low energy.

– In rare cases (e.g. heavy quark effective theory), steps can actually be carried out 
(perturbatively).  

– Usually just imagine performing steps 1-3; use symmetries to constrain EFT.
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Effective Field Theories
✦ These days, often said that all field theories are effective theories.

• Unknown new physics must kick in at some higher scale.
• E.g., QCD could be supplemented by higher dimension terms, such as: 

•       is mass scale of new physics.
• Distinction between renormalizable and unrenormalizable theories is less 

important than we used to think.
• Still, an important distinction:

• If LO effective theory is nonrenormalizable (e.g. ChPT), it tells you the scale 
at which new physics must enter (         ), so sets natural scale for NLO 
terms.

• If the LO effective theory is renormalizable (e.g., QCD), then scale of new 
physics undetermined.  

– must be found/bound by experiment, 
– or by knowing/guessing the more fundamental underlying theory.
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 Lattice QCD Systematic Errors

✦ Lattice computation of QCD path integral inherently includes 
systematic errors.
• Continuum extrapolation error:  need to take lattice spacing  a → 0.   
• (Residual) finite-volume errors:  need to take space & time extent L, T → ∞.
• Chiral extrapolation error:  for practical reasons may choose mu, md larger than 

physical; need to extrapolate to physical values.   
‣ Even if near-physical values chosen (now possible), need to interpolate to 

precise physical values (can only be found a posteriori ): chiral interpolation 
error.
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Use of EFTs in Lattice QCD

✦ EFTs provide functional forms for relevant extrapolations/
interpolations.
• thereby reduce systematic errors.

✦ First use: ChPT, to guide quark mass extrapolations.
• ChPT gives functional form of expansion in quark masses (and momenta).

• all dependence explicit.
• exactly as needed for extrapolations.

• Soon realized that ChPT also gives leading finite volume corrections. 
• from pions, looping around the finite volume.  [Gasser & Leutwyler, 1987, 1988; Neuberger, 

1988; Hasenfratz & Leutwyler, 1990].
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Example of mass extrapolation
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• Discretization effects are fairly small, but clear.
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• Discretization effects are fairly small, but clear.
• a-dependence needs to be added to the continuum forms to fit lattice data.
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• Discretization effects are fairly small, but clear.
• a-dependence needs to be added to the continuum forms to fit lattice data.
• Here, simple analytic terms,  const.× a2, do the trick.
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Example of mass extrapolation

• Discretization effects are fairly small, but clear.
• a-dependence needs to be added to the continuum forms to fit lattice data.
• Here, simple analytic terms,  const.× a2, do the trick.
• In some other cases (very precise lattice data, many degrees of freedom, larger discretization 

errors...) this approach may not be adequate. 7
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Use of EFTs in Lattice QCD

✦ Key insight:  ChPT can be modified to include lattice discretization 
errors. [Sharpe & Singleton, 1998] 
• Relates a-dependence to mass dependence, so better controlled extrapolations.
• Non-analytic terms in a arise from loops.
• Method uses another EFT:  Symanzik Effective Theory (SET) [Symanzik, 1983].

• For SET, the lattice QCD theory at fixed lattice spacing a is taken as “fundamental.”
• SET is the EFT that describes the lattice theory at energy scales small compared to 

the cutoff:   p ≪ 1/a.
• Leading order Lagrangian is just the continuum QCD Lagrangian.
• Since ap ≪ 1, need to keep only low powers of a as corrections:

– add on local operators with dimension > 4, multiplied by appropriate powers of a.
• Needed local operators  ➞  determined by the underlying lattice symmetries. 
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Lattice QCD: Wilson quarks
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Lattice QCD: Wilson quarks
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symmetry (even for m=0), so leading correction to continuum theory is Pauli operator:

• Once discretization effects are encoded as local operators in the SET, it’s easy to include 
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terms are included in ChPT Lagrangian.

• For Wilson quarks it’s particularly simple, since mass and Pauli term transform same 
way under chiral symmetry:

– new LECs  c1  and c2 encode leading discretization effects in ChPT.
– Sharpe & Singleton showed from this ChPT that a new lattice-artifact phase (“Aoki 
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Lattice QCD: twisted-mass quarks
• Start with a doublet of Wilson quarks.
• Add a twisted mass [Frezzotti, Grassi, Sint & Weisz, 2001]:

• In continuum, μ term can be rotated away by non-singlet SU(2) chiral rotation.
• But on lattice, since Wilson term (to remove doublers) is in “m direction”, twist is nontrivial: 

• Avoid “exceptional configurations” in which statistical fluctuations from Wilson term 
bring mass to zero.

• If m tuned to 0,  physical quantities have errors starting at O(a2), not O(a)  [Frezzotti and 
Rossi, 2004].

• Price is violation of isospin symmetry at nonzero a.  
– twisted mass ChPT [Munster, Schmidt & Scholz, 2004;                                                     

Sharpe & Wu, 2004]
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⇒   O(a2) splitting of π0 from π+.
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Lattice QCD: staggered quarks
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Lattice QCD: staggered quarks
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non-singlet chiral symmetry unbroken by discretization corrections).
• Rest are raised above Goldstone one by O(a2) terms  [times powers of 𝛼s].

12

LChPT =
f2

8
tr(@µ⌃@µ⌃

†)� Bf2

4
tr(M⌃+M⌃†)� a2 C1tr(⇠5⌃⇠5⌃

†) + · · ·

Pion taste splittings vs (𝛼s  a)2 for two versions 
of staggered quarks:  “asqtad” and newer, 
more highly improved version, “HISQ”.

MILC [A. Bazavov, et al.],  
PRD 87, 054505 (2013) 
[arXiv:1212.4768]
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ChPT and extrapolations to continuum

✦ So lattice-spacing-dependent ChPT can explain/control lattice artifacts: 
• Aoki phase (Wilson)
• pion isospin-violations (twisted mass)
• pion taste-splittings (staggered)

✦ Another key use to is guide continuum extrapolations:
• Fit quark-mass dependence and lattice-spacing dependence together, using 

expressions from the appropriate chpt.
• Can significantly reduce systematic errors.
• Such fits often done in partially quenched context:  choose valence quarks to 

have different masses than sea quarks.
• Useful because valence quarks are cheap compared to sea quarks:  extract as much 

as possible for a given configuration (generated with sea quark back-effects).
• “Partially quenched” because valence quarks are quenched: forbidden from appearing 

in virtual loops, but sea quarks are not quenched.
• Add corresponding ghost (bosonic!) quarks, with same mass matrix as the valence 

quarks, to cancel the virtual loops (determinant) of the valence quarks [Morel, 1987].
13
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• Mass matrix is
• Chiral symmetry group is graded group SU(nsea+nval l nval) × SU(nsea+nval l nval) 

instead of usual  SU(nsea) × SU(nsea).
• graded group has some Grassman generators, because some transformations take 
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Partial Quenching

✦ Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer 
footing.
• Based on Leutwyler’s justification for ChPT [Leutwyler, 1994], which emphasizes 

clustering and locality (not unitarity).
• These are properties that can exist for Euclidean theory even if not unitary.
• We showed* that the Euclidean theory has a transfer matrix and hence a Hamiltonian.

–Hamiltonian is not Hermitian, but has a positive definite real part.
–Implies* clustering.
–PQChPT follows.*

16*modulo some (“mild”) assumptions
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Using Staggered ChPT

17

MILC [A. Bazavov et al.], 
PoS(LAT2010), 074 
(2010), arXiv:1012.0868.

• Same color and shape: changing valence mass for fixed a and sea-quark mass.
• Extrapolation to physical masses & continuum gives ~1% errors.

- Even though bulk of lattice data have ~10% discretization or mass corrections.
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• Fit to partially 
quenched data 
shown. 

• χ2/d.o.f. = 347/339, 
p = 0.36.
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• Fit to partially 
quenched data 
shown. 

• χ2/d.o.f. = 347/339, 
p = 0.36.

• Orange band gives 
result after setting 
sea and valence 
masses equal, and 
extrapolating to 
continuum. 
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• Fit to partially 
quenched data 
shown. 

• χ2/d.o.f. = 347/339, 
p = 0.36.

• Orange band gives 
result after setting 
sea and valence 
masses equal, and 
extrapolating to 
continuum. 

• Get: 

Fermilab/MILC [A. Bazavov et al.], PRD 90, 074509 (2014)

fD+ = 212.6(0.4)(+1.0
�1.2) MeV

fDs = 249.0(0.3)(+1.1
�1.5) MeV
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ChPT Results from the Lattice

✦ Lattice allows first-principles computation of LECs of the effective theory 
from fundamental QCD.
• In practice, is easiest for LECs affecting pseudoscalar meson masses and 

leptonic decay constants.
• Can be calculated from quark-mass dependence of 2-point Euclidean Green’s 

functions.
• Nice complement to experiments, which give little constraint on quark-mass 

dependence since quark masses fixed in Nature.
• LECs affecting momentum dependence of scattering amplitudes are just the opposite: 

–Difficult on the lattice: n-point functions; must pull out (indirectly) Minkowski-space 
amplitudes from Euclidean space calculations. [Maiani & Testa, 1990;  Lüscher, 1991].
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� � |⇥ūu⇤| = (271(15) MeV)3

C. Bernard, CD15

SU(2) LECs

• in the two flavor chiral limit: mu,md → 0.
• values quoted are for Nf  = 2+1 theory.
• For Fπ /F, looks like systematic errors of one or more calculations may be 

underestimated. 
22
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• FLAG, 2013 average is              

(Nf=2;  μ = 2 GeV).
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SU(2) LECs
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RBC [T. Blum et al.], arXiv:1411.7017;  physical quark masses;  Nf=2+1:
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�̄3 = 2.73(13) �̄4 = 4.113(59) C. Bernard, CD15

SU(2) LECs

• from quark mass dependence of pion (mass)2 and decay constant, respectively.
• values quoted are for Nf  = 2+1 theory;   
• for     , again may be some underestimates of systematic errors.

24

¯̀
4

RBC [T. Blum et al.], arXiv:1411.7017;  physical quark masses;  Nf=2+1:
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Convergence of ChPT: SU(2)

• Convergence 
good for      and 
reasonable 
for            .       
• up to limit of 

lattice data     
(~7 or  8 times 
physical      ).
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Convergence of ChPT: SU(2)

• Convergence 
good for      and 
reasonable 
for            .       
• up to limit of 

lattice data     
(~7 or  8 times 
physical      ).

• Reasonable 
agreement 
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Nucleon Chiral Extrapolation

• Walker-Loud, Lattice ’13, arXiv:1401.8259.
• “Ruler plot” [named by B. Tiburzi].
• Update of RBC points.* 
• ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310.
• Seems to be a curious accident; doesn’t contradict expected chiral behavior.

28*thanks to T. Blum for unpublished data.
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➡ Continuum determination of ud correlator precise in low-Q2 region.
➡ Lattice (using RBC domain-wall configurations) allows determination of mass-

dependence, but mainly at higher Q2.

✓ Excellent agreement where both are precise.
➡ Additional constraint from chiral sum rules  (inverse moment finite energy)                                

[Golterman, Maltman & Peris, 2014]. 
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• “Coupling constant” is                     , but for highest order terms (NNLO in practice), it is 
consistent (and even sensible) to replace      (decay constant in the 3-flavor chiral limit)                  
by a physical decay constant,  e.g.      , or even       (if data runs up to the kaon mass).         

• This makes a big difference in size of NNLO terms!
• Reliable control of the SU(3) ChPT seems only possible for the simulated strange-quark mass, 

ms′, chosen less than its physical value,  ms.
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|�ūu⇥3|

= 1.59(13)

C. Bernard, CD15 31

fNNLO

fNNLO f⇡

f0

f0
f0

“Paramagnetic effect:”  Descotes, Girlanda & Stern, 1999

see:                    
MILC,                              
[A. Bazavov et al.], 
Lattice 2010,                 
arXiv:1012.0868.

fNNLO ⇡ f⇡

SU(3): chiral limit & convergence



C. Bernard, CD15 32

SU(3): chiral limit & convergence



• Suggests choosing             still larger, 
say                     .

C. Bernard, CD15 32

fNNLO ⇡ fK

fNNLO

SU(3): chiral limit & convergence



• Suggests choosing             still larger, 
say                     .

C. Bernard, CD15 32

fNNLO ⇡ fK

fNNLO

SU(3): chiral limit & convergence



• Suggests choosing             still larger, 
say                     .

fNNLO = const.⇥ f0 ⇡ fK

f⇡/f0 = 1.17(4)

C. Bernard, CD15 32

(intermediate value of     ) 

fNNLO ⇡ fK

fNNLO

SU(3): chiral limit & convergence

f0



• Suggests choosing             still larger, 
say                     .

• Now two versions of fit (fixing            
independently of    , or fixing                 )   
give very similar results.  

f0 fNNLO/f0

fNNLO = const.⇥ f0 ⇡ fK

f⇡/f0 = 1.17(4)

C. Bernard, CD15 32

(intermediate value of     ) 

fNNLO ⇡ fK

fNNLO

fNNLO

SU(3): chiral limit & convergence

f0



• Suggests choosing             still larger, 
say                     .

• Now two versions of fit (fixing            
independently of    , or fixing                 )   
give very similar results.  

• And p=0.75, significantly larger than 
before.

f0 fNNLO/f0

fNNLO = const.⇥ f0 ⇡ fK

f⇡/f0 = 1.17(4)

C. Bernard, CD15 32

(intermediate value of     ) 

fNNLO ⇡ fK

fNNLO

fNNLO

SU(3): chiral limit & convergence

f0



• Suggests choosing             still larger, 
say                     .

• Now two versions of fit (fixing            
independently of    , or fixing                 )   
give very similar results.  

• And p=0.75, significantly larger than 
before.

• Taken at face value, would say

f0 fNNLO/f0

fNNLO = const.⇥ f0 ⇡ fK

f⇡/f0 = 1.17(4)

f⇡/f0 = 1.17(4)(9);
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- Concern: Variation with            shows that NNNLO effects not 
negligible. Or are discretization errors at NNLO to blame??

- Need data with smaller discretization errors and smaller ms′ 
(in progress).  [Higher order staggered ChPT would also help.] 
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• still, allows us to use other ensembles with higher mass, which often have smaller 

statistical errors.
• And, as always, ChPT helps control finite volume effects.

• Highly improved actions + smaller lattice spacings:  symmetry breaking effects small 
enough that simple analytic expansions in a may be good enough: May not need to 
include discretization errors in ChPT.  

• Also, higher order terms in a (which are not in ChPT) may be comparable to the 
symmetry-breaking terms kept.

• Condition for calculation of physical quantities not to need lattice ChPT is                
Mπ

2  ≫ breaking terms.
• For staggered, this is now satisfied for a ≤ 0.06 fm  (i.e., for some of the ensembles 

MILC uses, but not yet for all the ensembles used in controlled calculations).
– If want interesting, but not experimentally accessible, quantities like f0, (decay 

constant in 3-flavor chiral limit), staggered ChPT will still be needed for 
foreseeable future.
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as field develops.

• E.g.:  gradient flow techniques for setting the lattice scale (Lüscher, 2010;  BMW, 
2012).

• analyzed in ChPT by Bär & Golterman, 2014.
–can reduce already small sea-quark effect on scale even further by fitting to 

their formula.
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improve.
• Straightforward to reduce errors on simple mass-dependent SU(2) LECs,      

and     .
• Small discrepancies should go away as more and more calculations have 

masses down to (or even below) the physical light quark masses.
• NNLO LECs can also be extracted as precision improves.

• In SU(3), generation of dedicated ensembles with  ms′ <  ms  seems necessary to 
get good control.

• Especially for 3-flavor chiral limit quantities f0 and B0. 
– also probably for NLO sea-quark LECs,  L4  and 2L6 - L4.

• Such ensembles (especially if ms′ ≪ ms )  are not particularly useful for most other 
lattice QCD calculations (e.g., flavor physics).

– Lattice groups will only generate them if there is strong demand from ChPT 
community.

35

¯̀
4

¯̀
3



C. Bernard, CD15

Future prospects
✦ Determination of LECs:  “payback” by lattice QCD to ChPT, will continue to 

improve.
• Straightforward to reduce errors on simple mass-dependent SU(2) LECs,      

and     .
• Small discrepancies should go away as more and more calculations have 

masses down to (or even below) the physical light quark masses.
• NNLO LECs can also be extracted as precision improves.

• In SU(3), generation of dedicated ensembles with  ms′ <  ms  seems necessary to 
get good control.

• Especially for 3-flavor chiral limit quantities f0 and B0. 
– also probably for NLO sea-quark LECs,  L4  and 2L6 - L4.

• Such ensembles (especially if ms′ ≪ ms )  are not particularly useful for most other 
lattice QCD calculations (e.g., flavor physics).

– Lattice groups will only generate them if there is strong demand from ChPT 
community.

✦ Huge QCD world out there; lattice QCD is exploring more and more issues from first 
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• Form factors, scattering amplitudes, baryons and light nuclei, hadronic weak decays, 

electromagnetic and isospin-violating effects, hadronic contributions to (g-2)μ.
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• Form factors, scattering amplitudes, baryons and light nuclei, hadronic weak decays, 

electromagnetic and isospin-violating effects, hadronic contributions to (g-2)μ.
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Backup Slides
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QCD Simulations
✦ Generate an ensemble of gluon fields according to a probability distribution 

given by the QCD gluon action and back-effect of sea quarks (virtual quark 
loops).
• Expensive! (mainly because of sea quarks, whose effect is encoded in a determinant).

✦ In each gluon-field background (a “configuration”), calculate propagation of 
valence quarks.  
• Relatively cheap (for each quark, need one column of a matrix inverse).

• E.g., for  <0| Aμ |π(p)> = i fπ pμ, in a given background:

✦ Then average over the configurations ties together background gluon fields to 
make:
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Some SU(2) Fits

• Note: Borsanyi 
et al paper 
includes 
physical quark 
masses.

• Discretization 
errors small in 
both cases.
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Nucleon Chiral Extrapolation

• Plot from:  ETM [C. Alexandrou et al.], PoS LATTICE  2014, 100  [arXiv:1412.0925].
• Good agreement among groups.
• Note QCDSF point close to physical, with relatively small errors.
‣ G. Bali et al., NPB 866 (2013) 1 [arXiv:1206.7034].
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Nucleon isospin violation PRELIMINARY
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L5 = 0.84(38)⇥ 10�3 L4 = 0.04(14)⇥ 10�3

C. Bernard, CD15

SU(3) LECs

• Results quoted are for Nf = 2+1. 

• From decay constant.
• L5 controls valence mass dependence; L4 controls sea mass dependence.
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2L6 � L4 = 0.10(12)⇥ 10�32L8 � L5 = �0.12(22)⇥ 10�3

C. Bernard, CD15

SU(3) LECs

• Results quoted are for Nf = 2+1. 
• From meson mass.
• 2L8-L5 controls valence mass dependence; 2L6-L4 controls sea mass dependence.
• Small because        is nearly linear in quark mass  (small NLO corrections).
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Meson (mass)2

•        and         vs. 
• shows how linear 

the (mass)2 is.
• old: from MILC, 

2004!
• usually people divide 

by      to show non-
linearity.
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