Effective Field Theories and Lattice QCD

Claude Bernard Washington University Saint Louis, Missouri, USA

Chiral Dynamics 2015 Pisa, June 29—July 3, 2015

Overview

- Brief introductions to effective field theories (EFTs) and to lattice systematics.
- ◆ Uses of EFTs in lattice QCD.
 - ChPT, Symanzik effective theory, HQET.
 - Discretization errors.
 - Partial quenching.
 - Finite volume effects and twisted boundary conditions; heavy quarks;
- The payback: ChPT results from the lattice.
 - Mesons, mainly SU(2).
 - Nucleons (a little).
 - Preliminary results: SU(3) and 3-flavor chiral limit.

Effective Field Theories

- Powerful tool to describe physics in some limited range of scales.
 - Useful when the fundamental theory is too difficult to handle (or unknown).
 - Typically:
 - 1. "Integrate out" high energy modes of a theory (those above a cutoff Λ).
 - 2. Expand the resulting non-local theory in inverse powers of Λ times local operators (an OPE).
 - 3. Left with a local effective field theory (EFT) at low energy.
 - In rare cases (e.g. heavy quark effective theory), steps can actually be carried out (perturbatively).
 - Usually just imagine performing steps 1-3; use symmetries to constrain EFT.

Effective Field Theories

- ✦ These days, often said that all field theories are effective theories.
 - Unknown new physics must kick in at some higher scale.
 - E.g., QCD could be supplemented by higher dimension terms, such as:

$$\frac{1}{M} \,\bar{q} \,\sigma_{\mu\nu} G^{\mu\nu} q$$

- ${\cal M}$ is mass scale of new physics.
- Distinction between renormalizable and unrenormalizable theories is less important than we used to think.
- Still, an important distinction:
 - If LO effective theory is nonrenormalizable (e.g. ChPT), it tells you the scale at which new physics must enter $(4\pi f_{\pi})$, so sets natural scale for NLO terms.
 - If the LO effective theory is renormalizable (e.g., QCD), then scale of new physics undetermined.
 - -must be found/bound by experiment,
 - -or by knowing/guessing the more fundamental underlying theory.

Lattice QCD Systematic Errors

- Lattice computation of QCD path integral inherently includes systematic errors.
 - Continuum extrapolation error: need to take lattice spacing $a \rightarrow 0$.
 - (Residual) finite-volume errors: need to take space & time extent $L, T \rightarrow \infty$.
 - Chiral extrapolation error: for practical reasons may choose m_u , m_d larger than physical; need to extrapolate to physical values.
 - Even if near-physical values chosen (now possible), need to interpolate to precise physical values (can only be found *a posteriori*): chiral interpolation error.

Use of EFTs in Lattice QCD

- EFTs provide functional forms for relevant extrapolations/ interpolations.
 - thereby reduce systematic errors.
- ✦ First use: ChPT, to guide quark mass extrapolations.
 - ChPT gives functional form of expansion in quark masses (and momenta).
 - all dependence explicit.
 - exactly as needed for extrapolations.
 - Soon realized that ChPT also gives leading finite volume corrections.
 - from pions, looping around the finite volume. [Gasser & Leutwyler, 1987, 1988; Neuberger, 1988; Hasenfratz & Leutwyler, 1990].

C. Bernard, CD15 7

• Discretization effects are fairly small, but clear.

- Discretization effects are fairly small, but clear.
- *a*-dependence needs to be added to the continuum forms to fit lattice data.

- Discretization effects are fairly small, but clear.
- a-dependence needs to be added to the continuum forms to fit lattice data.
- Here, simple analytic terms, const.× a^2 , do the trick.

- Discretization effects are fairly small, but clear.
- a-dependence needs to be added to the continuum forms to fit lattice data.
- Here, simple analytic terms, const.× a^2 , do the trick.
- In some other cases (very precise lattice data, many degrees of freedom, larger discretization errors...) this approach may not be adequate.
 C. Bernard, CD15 7

Use of EFTs in Lattice QCD

- Key insight: ChPT can be modified to include lattice discretization errors. [Sharpe & Singleton, 1998]
 - Relates *a*-dependence to mass dependence, so better controlled extrapolations.
 - Non-analytic terms in *a* arise from loops.
 - Method uses another EFT: Symanzik Effective Theory (SET) [Symanzik, 1983].
 - For SET, the lattice QCD theory at fixed lattice spacing *a* is taken as "fundamental."
 - SET is the EFT that describes the lattice theory at energy scales small compared to the cutoff: $p \ll 1/a$.
 - Leading order Lagrangian is just the continuum QCD Lagrangian.
 - Since $ap \ll 1$, need to keep only low powers of a as corrections:
 - -add on local operators with dimension > 4, multiplied by appropriate powers of a.
 - Needed local operators \rightarrow determined by the underlying lattice symmetries.

• Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for m=0), so leading correction to continuum theory is Pauli operator:

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for *m*=0), so leading correction to continuum theory is Pauli operator:

$$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \dots$$
$$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} \left(\not\!\!\!D + m \right) q$$
$$\mathcal{L}_{\text{NLO}} = a \, \bar{q} \, \sigma_{\mu\nu} G^{\mu\nu} q$$

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for *m*=0), so leading correction to continuum theory is Pauli operator:

$$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \dots$$
$$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} \left(\not\!\!\!D + m \right) q$$
$$\mathcal{L}_{\text{NLO}} = a \, \bar{q} \, \sigma_{\mu\nu} G^{\mu\nu} q$$

• Once discretization effects are encoded as local operators in the SET, it's easy to include them in the corresponding ChPT at low physical energies.

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for m=0), so leading correction to continuum theory is Pauli operator:

$$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \dots$$
$$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} \left(\not\!\!\!D + m \right) q$$
$$\mathcal{L}_{\text{NLO}} = a \, \bar{q} \, \sigma_{\mu\nu} G^{\mu\nu} q$$

- Once discretization effects are encoded as local operators in the SET, it's easy to include them in the corresponding ChPT at low physical energies.
 - Method is standard "spurion" approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for *m*=0), so leading correction to continuum theory is Pauli operator:

$$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \dots$$
$$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} \left(\not\!\!\!D + m \right) q$$
$$\mathcal{L}_{\text{NLO}} = a \, \bar{q} \, \sigma_{\mu\nu} G^{\mu\nu} q$$

- Once discretization effects are encoded as local operators in the SET, it's easy to include them in the corresponding ChPT at low physical energies.
 - Method is standard "spurion" approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.
 - For Wilson quarks it's particularly simple, since mass and Pauli term transform same way under chiral symmetry:

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for m=0), so leading correction to continuum theory is Pauli operator:

$$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \dots$$
$$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} \left(\not\!\!\!D + m \right) q$$
$$\mathcal{L}_{\text{NLO}} = a \, \bar{q} \, \sigma_{\mu\nu} G^{\mu\nu} q$$

- Once discretization effects are encoded as local operators in the SET, it's easy to include them in the corresponding ChPT at low physical energies.
 - Method is standard "spurion" approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.
 - For Wilson quarks it's particularly simple, since mass and Pauli term transform same way under chiral symmetry:

$$\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) + a c_1 \operatorname{tr}(\Sigma + \Sigma^{\dagger}) + a^2 c_2 \operatorname{tr}(\Sigma + \Sigma^{\dagger})^2 + \cdots$$

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for m=0), so leading correction to continuum theory is Pauli operator:

$$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \dots$$
$$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} \left(\not\!\!\!D + m \right) q$$
$$\mathcal{L}_{\text{NLO}} = a \, \bar{q} \, \sigma_{\mu\nu} G^{\mu\nu} q$$

- Once discretization effects are encoded as local operators in the SET, it's easy to include them in the corresponding ChPT at low physical energies.
 - Method is standard "spurion" approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.
 - For Wilson quarks it's particularly simple, since mass and Pauli term transform same way under chiral symmetry:

$$\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) + a c_1 \operatorname{tr}(\Sigma + \Sigma^{\dagger}) + a^2 c_2 \operatorname{tr}(\Sigma + \Sigma^{\dagger})^2 + \cdots$$

-new LECs c_1 and c_2 encode leading discretization effects in ChPT.

C. Bernard, CD15

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for *m*=0), so leading correction to continuum theory is Pauli operator:

$$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \dots$$
$$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} \left(\not\!\!\!D + m \right) q$$
$$\mathcal{L}_{\text{NLO}} = a \, \bar{q} \, \sigma_{\mu\nu} G^{\mu\nu} q$$

- Once discretization effects are encoded as local operators in the SET, it's easy to include them in the corresponding ChPT at low physical energies.
 - Method is standard "spurion" approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.
 - For Wilson quarks it's particularly simple, since mass and Pauli term transform same way under chiral symmetry:

$$\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) + a c_1 \operatorname{tr}(\Sigma + \Sigma^{\dagger}) + a^2 c_2 \operatorname{tr}(\Sigma + \Sigma^{\dagger})^2 + \cdots$$

9

-new LECs c_1 and c_2 encode leading discretization effects in ChPT.

-Sharpe & Singleton showed from this ChPT that a new lattice-artifact phase ("Aoki phase") was possible at fixed *a* for very small *m*. C. Bernard, *CD15*

Lattice QCD: twisted-mass quarks

- Start with a doublet of Wilson quarks.
- Add a *twisted mass* [Frezzotti, Grassi, Sint & Weisz, 2001]:

 $\bar{q} (\not\!\!\!D + m) q \rightarrow \bar{q} (\not\!\!\!\!D + m + i\mu\gamma_5\tau_3) q$

- In continuum, μ term can be rotated away by non-singlet SU(2) chiral rotation.
- But on lattice, since Wilson term (to remove doublers) is in "*m* direction", twist is nontrivial:
 - Avoid "exceptional configurations" in which statistical fluctuations from Wilson term bring mass to zero.
 - If m tuned to 0, physical quantities have errors starting at O(a²), not O(a) [Frezzotti and Rossi, 2004].

 Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."
 - Each flavor of quark comes in 4 tastes.

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."
 - Each flavor of quark comes in 4 tastes.
 - -taste is unphysical: need to remove in simulation algorithm.

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."
 - Each flavor of quark comes in 4 tastes.
 - -taste is unphysical: need to remove in simulation algorithm.
 - ➡ "Fourth root procedure" (ChPT can help to understand & tame.)

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."
 - Each flavor of quark comes in 4 tastes.
 - -taste is unphysical: need to remove in simulation algorithm.
 - ➡ "Fourth root procedure" (ChPT can help to understand & tame.)

-SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."
 - Each flavor of quark comes in 4 tastes.
 - -taste is unphysical: need to remove in simulation algorithm.
 - ➡ "Fourth root procedure" (ChPT can help to understand & tame.)

-SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.

• SET is:

$$\mathcal{L}_{SET} = \mathcal{L}_{LO} + \mathcal{L}_{NLO} + \dots$$

$$\mathcal{L}_{LO} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\not\!\!\!D + m) q$$

$$\mathcal{L}_{NLO} = a^2 \, \bar{q} (\gamma_\mu \otimes \xi_5) q \, \bar{q} (\gamma_\mu \otimes \xi_5) q + \dots$$

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."
 - Each flavor of quark comes in 4 tastes.
 - -taste is unphysical: need to remove in simulation algorithm.
 - ➡ "Fourth root procedure" (ChPT can help to understand & tame.)

-SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.

• SET is:

$$\mathcal{L}_{SET} = \mathcal{L}_{LO} + \mathcal{L}_{NLO} + \dots$$

$$\mathcal{L}_{LO} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\not\!\!\!D + m) q$$
explicit taste-matrices, so violates SU(4) taste symmetry
$$\mathcal{L}_{NLO} = a^2 \, \bar{q} (\gamma_\mu \otimes \xi_5) q \, \bar{q} (\gamma_\mu \otimes \xi_5) q + \cdots$$

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."
 - Each flavor of quark comes in 4 tastes.
 - -taste is unphysical: need to remove in simulation algorithm.
 - ➡ "Fourth root procedure" (ChPT can help to understand & tame.)
 - -SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.

• SET is:

$$\mathcal{L}_{SET} = \mathcal{L}_{LO} + \mathcal{L}_{NLO} + \dots$$

$$\mathcal{L}_{LO} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\not\!\!\!D + m) q$$
explicit taste-matrices, so violates SU(4) taste symmetry
$$\mathcal{L}_{NLO} = a^2 \, \bar{q} (\gamma_\mu \otimes \xi_5) q \, \bar{q} (\gamma_\mu \otimes \xi_5) q + \dots$$

• And staggered ChPT Lagrangian is [Lee & Sharpe, 1999; Aubin and CB, 2003]:

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, "taste."
 - Each flavor of quark comes in 4 tastes.
 - -taste is unphysical: need to remove in simulation algorithm.
 - ➡ "Fourth root procedure" (ChPT can help to understand & tame.)
 - -SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.

• SET is:

$$\mathcal{L}_{SET} = \mathcal{L}_{LO} + \mathcal{L}_{NLO} + \dots$$

$$\mathcal{L}_{LO} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\not\!\!\!D + m) q$$
explicit taste-matrices, so violates SU(4) taste symmetry
$$\mathcal{L}_{NLO} = a^2 \, \bar{q} (\gamma_\mu \otimes \xi_5) q \, \bar{q} (\gamma_\mu \otimes \xi_5) q + \dots$$

• And staggered ChPT Lagrangian is [Lee & Sharpe, 1999; Aubin and CB, 2003]: $\mathcal{L}_{ChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) - a^2 C_1 \operatorname{tr}(\xi_5 \Sigma \xi_5 \Sigma^{\dagger}) + \cdots$

-where Σ is now a 4n \times 4n matrix.

$$\mathcal{L}_{\rm ChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) - a^2 C_1 \operatorname{tr}(\xi_5 \Sigma \xi_5 \Sigma^{\dagger}) + \cdots$$
$$\mathcal{L}_{\rm ChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) - a^2 C_1 \operatorname{tr}(\xi_5 \Sigma \xi_5 \Sigma^{\dagger}) + \cdots$$

• Expanding as usual \rightarrow 16 pions each (non-singlet) flavor combination.

12

$$\mathcal{L}_{\rm ChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) - a^2 C_1 \operatorname{tr}(\xi_5 \Sigma \xi_5 \Sigma^{\dagger}) + \cdots$$

- Expanding as usual \rightarrow 16 pions each (non-singlet) flavor combination.
 - With one "Goldstone" pion whose mass vanishes in chiral limit (from the one non-singlet chiral symmetry unbroken by discretization corrections).

12

$$\mathcal{L}_{\rm ChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) - a^2 C_1 \operatorname{tr}(\xi_5 \Sigma \xi_5 \Sigma^{\dagger}) + \cdots$$

- Expanding as usual \rightarrow 16 pions each (non-singlet) flavor combination.
 - With one "Goldstone" pion whose mass vanishes in chiral limit (from the one non-singlet chiral symmetry unbroken by discretization corrections).
 - Rest are raised above Goldstone one by $O(a^2)$ terms [times powers of α_s].

12

$$\mathcal{L}_{\rm ChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger}) - a^2 C_1 \operatorname{tr}(\xi_5 \Sigma \xi_5 \Sigma^{\dagger}) + \cdots$$

- Expanding as usual \rightarrow 16 pions each (non-singlet) flavor combination.
 - With one "Goldstone" pion whose mass vanishes in chiral limit (from the one non-singlet chiral symmetry unbroken by discretization corrections).
 - Rest are raised above Goldstone one by $O(a^2)$ terms [times powers of α_s].

ChPT and extrapolations to continuum

- ♦ So lattice-spacing-dependent ChPT can explain/control lattice artifacts:
 - Aoki phase (Wilson)
 - pion isospin-violations (twisted mass)
 - pion taste-splittings (staggered)
- ✦ Another key use to is guide continuum extrapolations:
 - Fit quark-mass dependence and lattice-spacing dependence together, using expressions from the appropriate chpt.
 - Can significantly reduce systematic errors.
 - Such fits often done in *partially quenched* context: choose valence quarks to have different masses than sea quarks.
 - Useful because valence quarks are cheap compared to sea quarks: extract as much as possible for a given configuration (generated with sea quark back-effects).
 - "Partially quenched" because valence quarks are quenched: forbidden from appearing in virtual loops, but sea quarks are not quenched.
 - Add corresponding ghost (bosonic!) quarks, with same mass matrix as the valence quarks, to cancel the virtual loops (determinant) of the valence quarks [Morel, 1987].

✦ Partially quenched QCD (PQQCD) Lagrangian (in continuum):

◆ Partially quenched QCD (PQQCD) Lagrangian (in continuum): $\mathcal{L}_{PQQCD} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} \left(\not\!\!\!D + \mathcal{M} \right) q + \bar{\hat{q}} \left(\not\!\!\!D + \mathcal{M}' \right) \hat{q} + \bar{\tilde{q}} \left(\not\!\!\!D + \mathcal{M}' \right) \hat{q}$

◆ Partially quenched QCD (PQQCD) Lagrangian (in continuum): $\mathcal{L}_{PQQCD} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\not \!\!\!D + \mathcal{M}) q + \bar{\hat{q}} (\not \!\!\!D + \mathcal{M}') \hat{q} + \bar{\hat{q}} (\not \!\!\!D + \mathcal{M}') \hat{q}$ sea quarks

◆ Partially quenched QCD (PQQCD) Lagrangian (in continuum):

$$\mathcal{L}_{PQQCD} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\not \!\!\!D + \mathcal{M}) q + \bar{\hat{q}} (\not \!\!\!D + \mathcal{M}') \hat{q} + \bar{\tilde{q}} (\not \!\!\!D + \mathcal{M}') \tilde{q}$$
sea quarks
valence quarks

✦ Partially quenched QCD (PQQCD) Lagrangian (in continuum):

• When $\mathcal{M}' = \mathcal{M}$, reduces to QCD.

• When $\mathcal{M}' = \mathcal{M}$, reduces to QCD.

• (More precisely, QCD Green's function and physical quantities are a proper subset of those possible in PQQCD in this limit.)

• When $\mathcal{M}' = \mathcal{M}$, reduces to QCD.

• (More precisely, QCD Green's function and physical quantities are a proper subset of those possible in PQQCD in this limit.)

✦ Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]:

- When $\mathcal{M}' = \mathcal{M}$, reduces to QCD.
 - (More precisely, QCD Green's function and physical quantities are a proper subset of those possible in PQQCD in this limit.)
- ◆ Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]: $\mathcal{L}_{PQChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger})$

• When $\mathcal{M}' = \mathcal{M}$, reduces to QCD.

- (More precisely, QCD Green's function and physical quantities are a proper subset of those possible in PQQCD in this limit.)
- ◆ Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]: $\mathcal{L}_{PQChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu}\Sigma\partial_{\mu}\Sigma^{\dagger}) \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger})$
 - Looks standard but Σ is $(n_{sea}+2n_{val}) \times (n_{sea}+2n_{val})$ matrix, with pions of all combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)

- When $\mathcal{M}' = \mathcal{M}$, reduces to QCD.
 - (More precisely, QCD Green's function and physical quantities are a proper subset of those possible in PQQCD in this limit.)
- ◆ Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]: $\mathcal{L}_{PQChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger})$
 - Looks standard but Σ is $(n_{sea}+2n_{val}) \times (n_{sea}+2n_{val})$ matrix, with pions of all combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)
 - Mass matrix is $M = \operatorname{diag}(\mathcal{M}, \mathcal{M}', \mathcal{M}')$

- When $\mathcal{M}' = \mathcal{M}$, reduces to QCD.
 - (More precisely, QCD Green's function and physical quantities are a proper subset of those possible in PQQCD in this limit.)
- ◆ Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]: $\mathcal{L}_{PQChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger})$
 - Looks standard but Σ is $(n_{sea}+2n_{val}) \times (n_{sea}+2n_{val})$ matrix, with pions of all combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)
 - Mass matrix is $M = \operatorname{diag}(\mathcal{M}, \mathcal{M}', \mathcal{M}')$
 - Chiral symmetry group is graded group SU($n_{sea}+n_{val} | n_{val}$) × SU($n_{sea}+n_{val} | n_{val}$) instead of usual SU(n_{sea}) × SU(n_{sea}).

- When $\mathcal{M}' = \mathcal{M}$, reduces to QCD.
 - (More precisely, QCD Green's function and physical quantities are a proper subset of those possible in PQQCD in this limit.)
- ◆ Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]: $\mathcal{L}_{PQChPT} = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) \frac{Bf^2}{4} \operatorname{tr}(M\Sigma + M\Sigma^{\dagger})$
 - Looks standard but Σ is $(n_{sea}+2n_{val}) \times (n_{sea}+2n_{val})$ matrix, with pions of all combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)
 - Mass matrix is $M = \operatorname{diag}(\mathcal{M}, \mathcal{M}', \mathcal{M}')$
 - Chiral symmetry group is graded group SU($n_{sea}+n_{val} | n_{val}$) × SU($n_{sea}+n_{val} | n_{val}$) instead of usual SU(n_{sea}) × SU(n_{sea}).
 - graded group has some Grassman generators, because some transformations take fermions into bosons, and vice-versa, as in supersymmetry.
 C. Bernard, CD15 14

 PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)
- However, even for unequal valence & sea masses, the LECs of PQChPT are the same of those of the real world, since LECs don't depend on quark masses [Sharpe and Shoresh, 2000].

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)
- However, even for unequal valence & sea masses, the LECs of PQChPT are the same of those of the real world, since LECs don't depend on quark masses [Sharpe and Shoresh, 2000].
 - Main reason why PQQCD and PQChPT are useful.

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)
- However, even for unequal valence & sea masses, the LECs of PQChPT are the same of those of the real world, since LECs don't depend on quark masses [Sharpe and Shoresh, 2000].
 - Main reason why PQQCD and PQChPT are useful.
- Original justification for ChPT [Weinberg, 1979], uses analyticity, clustering, and unitarity.

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)
- However, even for unequal valence & sea masses, the LECs of PQChPT are the same of those of the real world, since LECs don't depend on quark masses [Sharpe and Shoresh, 2000].
 - Main reason why PQQCD and PQChPT are useful.
- Original justification for ChPT [Weinberg, 1979], uses analyticity, clustering, and unitarity.
 - Is PQChPT really justified?

 Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.

- Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.
 - Based on Leutwyler's justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).

- Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.
 - Based on Leutwyler's justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 - These are properties that can exist for Euclidean theory even if not unitary.

- Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.
 - Based on Leutwyler's justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 - These are properties that can exist for Euclidean theory even if not unitary.
 - We showed* that the Euclidean theory has a *transfer matrix* and hence a Hamiltonian.

- Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.
 - Based on Leutwyler's justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 - These are properties that can exist for Euclidean theory even if not unitary.
 - We showed* that the Euclidean theory has a *transfer matrix* and hence a Hamiltonian. –Hamiltonian is not Hermitian, but has a positive definite real part.
Partial Quenching

- Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.
 - Based on Leutwyler's justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 - These are properties that can exist for Euclidean theory even if not unitary.
 - We showed* that the Euclidean theory has a *transfer matrix* and hence a Hamiltonian. –Hamiltonian is not Hermitian, but has a positive definite real part.
 - -Implies* clustering.

Partial Quenching

- Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.
 - Based on Leutwyler's justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 - These are properties that can exist for Euclidean theory even if not unitary.
 - We showed* that the Euclidean theory has a *transfer matrix* and hence a Hamiltonian.
 - -Hamiltonian is not Hermitian, but has a positive definite real part.
 - -Implies* clustering.
 - -PQChPT follows.*

C. Bernard, CD15 17

 continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

 continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

 continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

(2010), arXiv:1012.0868.

 continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

PoS(LAT2010), 074 • Same color and shape: changing valence mass for fixed *a* and sea-quark mass. (2010), arXiv:1012.0868.

 continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

PoS(LAT2010), 074 • Same color and shape: changing valence mass for fixed *a* and sea-quark mass. (2010), arXiv:1012.0868. • Extrapolation to physical masses & continuum gives ~1% errors.

C. Bernard, CD15 17

 continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

- (2010), arXiv:1012.0868. Extrapolation to physical masses & continuum gives ~1% errors.
 - Even though bulk of lattice data have ~10% discretization or mass corrections.

◆ ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].

- ◆ ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

• Fermilab/MILC has simulated staggered charm and light quarks to determine heavylight decay constants, f_D and f_{Ds} .

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds} .
- Fit to form from heavy-meson ChPT with staggered discretization corrections:

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavylight decay constants, f_D and f_{Ds} .
- Fit to form from heavy-meson ChPT with staggered discretization corrections:

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavylight decay constants, f_D and f_{Ds} .
- Fit to form from heavy-meson ChPT with staggered discretization corrections:

 Fit to partially quenched data shown.

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavylight decay constants, f_D and f_{Ds} .
- Fit to form from heavy-meson ChPT with staggered discretization corrections:

 Fit to partially quenched data shown.

•
$$\chi^2$$
/d.o.f. = 347/339,
p = 0.36.

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds} .
- Fit to form from heavy-meson ChPT with staggered discretization corrections:

- Fit to partially quenched data shown.
- χ^2 /d.o.f. = 347/339, p = 0.36.
- Orange band gives result after setting sea and valence masses equal, and extrapolating to continuum.

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds} .
- Fit to form from heavy-meson ChPT with staggered discretization corrections:

- Fit to partially quenched data shown.
- χ^2 /d.o.f. = 347/339, p = 0.36.
- Orange band gives result after setting sea and valence masses equal, and extrapolating to continuum.
- Get:
- $f_{D^+} = 212.6(0.4) \begin{pmatrix} +1.0 \\ -1.2 \end{pmatrix}$ MeV $f_{D_s} = 249.0(0.3) \begin{pmatrix} +1.1 \\ -1.5 \end{pmatrix}$ MeV

C. Bernard, CD15

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L. [L = spatial lattice dimension, n = integer.]

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L. [L = spatial lattice dimension, n = integer.]

• Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L.[L = spatial lattice dimension, n = integer.]

- Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.
 - Difficult, e.g., to compute momentum dependence of form factors.

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L.[L = spatial lattice dimension, n = integer.]

- Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.
 - Difficult, e.g., to compute momentum dependence of form factors.

◆ Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]: give (some) quarks *twisted boundary conditions*: $q(x+L) = e^{i\theta} q(x)$.

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L.[L = spatial lattice dimension, n = integer.]

- Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.
 - Difficult, e.g., to compute momentum dependence of form factors.

◆ Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]: give (some) quarks *twisted boundary conditions*: $q(x+L) = e^{i\theta} q(x).$

• Then allowed momenta are: $p = (2\pi n + \theta) / L$.

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L.[L = spatial lattice dimension, n = integer.]

- Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.
 - Difficult, e.g., to compute momentum dependence of form factors.

◆ Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]: give (some) quarks *twisted boundary conditions*: $q(x+L) = e^{i\theta} q(x)$.

- Then allowed momenta are: $p = (2\pi n + \theta) / L$.
- Finite volume effects are now different than with periodic b.c.

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L. [L = spatial lattice dimension, n = integer.]

- Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.
 - Difficult, e.g., to compute momentum dependence of form factors.

◆ Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]: give (some) quarks *twisted boundary conditions*: $q(x+L) = e^{i\theta} q(x).$

- Then allowed momenta are: $p = (2\pi n + \theta) / L$.
- Finite volume effects are now different than with periodic b.c.
- Use ChPT to work out effects [Sachrajda & Villadoro, 2004; Bijnens & Relefors, 2014].
ChPT for Twisted Boundary Conditions

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L. [L = spatial lattice dimension, n = integer.]

• Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.

• Difficult, e.g., to compute momentum dependence of form factors.

◆ Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]: give (some) quarks *twisted boundary conditions*: $q(x+L) = e^{i\theta} q(x).$

- Then allowed momenta are: $p = (2\pi n + \theta) / L$.
- Finite volume effects are now different than with periodic b.c.
- Use ChPT to work out effects [Sachrajda & Villadoro, 2004; Bijnens & Relefors, 2014].
- Subtle: e.g., Bijnens & Relefors point out that integrals vanishing in infinite volume are non-zero with twisted b.c. in finite volume:

ChPT for Twisted Boundary Conditions

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L. [L = spatial lattice dimension, n = integer.]

- Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.
 - Difficult, e.g., to compute momentum dependence of form factors.

◆ Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]: give (some) quarks *twisted boundary conditions*: $q(x+L) = e^{i\theta} q(x)$.

- Then allowed momenta are: $p = (2\pi n + \theta) / L$.
- Finite volume effects are now different than with periodic b.c.
- Use ChPT to work out effects [Sachrajda & Villadoro, 2004; Bijnens & Relefors, 2014].
- Subtle: e.g., Bijnens & Relefors point out that integrals vanishing in infinite volume are non-zero with twisted b.c. in finite volume:

$$\int \frac{d^4 k}{2\pi^4} \frac{k_{\mu}}{k^2 + m^2} = 0$$

infinite volume: odd integral

ChPT for Twisted Boundary Conditions

♦ With periodic boundary conditions, lattice momenta are limited: p = 2πn / L. [L = spatial lattice dimension, n = integer.]

- Even with current large volumes, L = 5 fm, momenta spaced by ≈ 250 MeV.
 - Difficult, e.g., to compute momentum dependence of form factors.

◆ Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]: give (some) quarks *twisted boundary conditions*: $q(x+L) = e^{i\theta} q(x).$

- Then allowed momenta are: $p = (2\pi n + \theta) / L$.
- Finite volume effects are now different than with periodic b.c.
- Use ChPT to work out effects [Sachrajda & Villadoro, 2004; Bijnens & Relefors, 2014].
- Subtle: e.g., Bijnens & Relefors point out that integrals vanishing in infinite volume are non-zero with twisted b.c. in finite volume:

ChPT Results from the Lattice

- Lattice allows first-principles computation of LECs of the effective theory from fundamental QCD.
 - In practice, is easiest for LECs affecting pseudoscalar meson masses and leptonic decay constants.
 - Can be calculated from quark-mass dependence of 2-point Euclidean Green's functions.
 - Nice complement to experiments, which give little constraint on quark-mass dependence since quark masses fixed in Nature.
 - LECs affecting momentum dependence of scattering amplitudes are just the opposite:
 - –Difficult on the lattice: n-point functions; must pull out (indirectly) Minkowski-space amplitudes from Euclidean space calculations. [Maiani & Testa, 1990; Lüscher, 1991].

- in the two flavor chiral limit: $m_u, m_d \rightarrow 0$.
- values quoted are for $N_f = 2+1$ theory.
- For F_π/F, looks like systematic errors of one or more calculations may be underestimated.
 C. Bernard, CD15 22

C. Bernard, CD15

• Engel, et al. (2015)

calculate condensate from eigenvalue density, *a la* Banks-Casher.

 Engel, et al. (2015) calculate condensate from eigenvalue density, *a la* Banks-Casher.

- Engel, et al. (2015) calculate condensate from eigenvalue density, *a la* Banks-Casher.
- From GMOR, condensate gives slope of M_{π}^2 with quark mass (green lines).

- Engel, et al. (2015) calculate condensate from eigenvalue density, *a la* Banks-Casher.
- From GMOR, condensate gives slope of M_{π}^2 with quark mass (green lines).
- Agreement with direct lattice data for M_{π}^2 is excellent.

- Engel, et al. (2015) calculate condensate from eigenvalue density, *a la* Banks-Casher.
- From GMOR, condensate gives slope of M_{π}^2 with quark mass (green lines).
- Agreement with direct lattice data for M_{π}^2 is excellent.

• Get
$$|\langle \bar{u}u \rangle|^{1/3} = 263(3)(4) \text{ MeV}$$

- Engel, et al. (2015) calculate condensate from eigenvalue density, *a la* Banks-Casher.
- From GMOR, condensate gives slope of M_{π}^2 with quark mass (green lines).
- Agreement with direct lattice data for M_{π}^2 is excellent.

• Get
$$|\langle \bar{u}u \rangle|^{1/3} = 263(3)(4) \text{ MeV}$$

• FLAG, 2013 average is $|\langle \bar{u}u \rangle|^{1/3} = 269(8) \text{ MeV}$ (*N_f*=2; µ = 2 GeV).

C. Bernard, CD15 24

$$\ell_3 = 3.05(99)$$

 $\bar{\ell}_4 = 4.02(28)$

C. Bernard, CD15 24

• from quark mass dependence of pion (mass)² and decay constant, respectively.

• from quark mass dependence of pion (mass)² and decay constant, respectively.

• values quoted are for $N_f = 2+1$ theory;

• from quark mass dependence of pion (mass)² and decay constant, respectively.

• values quoted are for $N_f = 2+1$ theory;

• for ℓ_4 , again may be some underestimates of systematic errors.

• from quark mass dependence of pion (mass)² and decay constant, respectively.

• values quoted are for $N_f = 2+1$ theory;

• for ℓ_4 , again may be some underestimates of systematic errors.

RBC [T. Blum et al.], arXiv:1411.7017; physical quark masses; $N_f=2+1$:

• from quark mass dependence of pion (mass)² and decay constant, respectively.

- values quoted are for $N_f = 2+1$ theory;
- for ℓ_4 , again may be some underestimates of systematic errors.

RBC [T. Blum et al.], arXiv:1411.7017; physical quark masses; $N_f=2+1$: $\bar{\ell}_3 = 2.73(13)$ $\bar{\ell}_4 = 4.113(59)$

C. Bernard, CD15 24

LO+NLO+NNLO only LO+NLO only LO β =3.77 S. Borsanyi et al., Phys. Rev. β=3.792 β=3.85 ${\sf M}^2_{\pi}$ / (am/am^{phys}) [10² MeV²] D88 (2013) 014513, [arXiv: f_{π} [MeV] 1205.0788]. 2+1; LO+NLO+NNLO only LO+NLO only LO β =3.77 *a*~0.12 to 0.10 fm β=3.792 0.8 1.0 1.2 0.8 $\beta = 3.85$ 1.2 1.0 am/am^{phys} am/am^{phys}

 $\begin{array}{c|c} LO+NLO+NNLO\\ only LO+NLO\\ only LO\\ \beta=3.77\\ \beta=3.792\\ \beta=3.85\\ \end{array}$ S. Borsanyi et al., Phys. Rev. M_{π}^2 / (am/am^{phys}) [10² MeV²] D88 (2013) 014513, [arXiv: f_{π} [MeV] 1205.0788]. 2+1; LO+NLO+NNLO only LO+NLO only LO a~0.12 to β=3.77 0.10 fm B=3.792 0.8 1.0 1.2 0.8 $\beta = 3.85$ 1.0 1.2 am/am^{phys} am/am^{phys}

- Convergence good for f_{π} and reasonable for M_{π}^2/\hat{m} .
- up to limit of lattice data (~7 or 8 times physical \hat{m}).

160 LO+NLO+NNLO only LO+NLO 186 S. Borsanyi et 184 155 only LO al., Phys. Rev. β=3.77 182 β=3.792 ${\sf M}^2_{\pi}$ / (am/am^{phys}) [10² MeV²] D88 (2013) 150 $\beta = 3.85$ 180 014513, 178 145 [arXiv: \mathfrak{f}_{π} [MeV] 176 140 1205.0788]. 174 132 172 135 182 131 170 2+1; LO+NLO+NNLO 130 168 130 only LO+NLO 181 a~0.12 to only LO 166 125 β=3.77 129 0.10 fm 180 164 B=3.792 0.8 1.0 1.2 0.8 $\beta = 3.85$ 1.0 1.2 162 120 6 9 0 2 3 6 7 8 9 10 0 2 3 5 7 8 5 1 am/am^{phys} am/am^{phys} f_{π} ; SU(2) χ PT $m_{\pi}^2/(m_{x}+m_{y}); SU(2) \chi PT$ MILC 0.18 6.6 [A. Bazavov ∻super fine, am'=0.018 CL = 0.3+ super fine, am'_s=0.018 Oultra fine, am'=0.014 $\chi^{2}/dof = 37/33$ ○ ultra fine, am'=0.014 et al.], Z^{fine}/Z_m CL = 0.30.0036 + 0.0025 0.17 $\chi^{2}/dof = 37/33$ PoS(LAT09), ÷ 0.0018 0.0028 077, [arXiv: LO, cont 0911.0472] $(f_{\pi}\ r_1)/\sqrt{2}$ 0.16 $m_\pi^2/(m_x\!+\!m_y)$ + 0.0036 NNLO, cont. + 0.0025 ÷ 0.0018 6.2 NLO, cont. 0.0028 0.15 NNLO, cont 🕂 extrap 2+1; \approx expt. (r₁=0.318fm from Υ) $(m_u + m_d)^{phys}$ a~0.06 to NLO, cont. $m_{x}+m_{v}=0.5m_{s}$ 0.14 6.0 $m_{x} + m_{y} = 0.5 m_{s}$ LO, cont 0.045 fm 0.00 0.00 0.02 0.04 0.06 0.02 0.04 0.06

 $(m_x + m_y)r_1 \times (Z_m/Z_m^{fine})$

- Convergence good for f_{π} and reasonable for M_{π}^2/\hat{m} .
 - up to limit of lattice data (~7 or 8 times physical \hat{m}).
- Reasonable agreement between computations.

C. Bernard, CD15

10

 $(m_x{+}m_y)r_1~\times~(Z_m/Z_m^{\text{fine}})$

25

160 LO+NLO+NNLO only LO+NLO 186 S. Borsanyi et 184 155 only LO al., Phys. Rev. β=3.77 182 . β=3.792 ${\sf M}^2_{\pi}$ / (am/am^{phys}) [10² MeV²] D88 (2013) 150 $\beta = 3.85$ 180 014513, 178 145 [arXiv: \mathfrak{f}_{π} [MeV] 176 140 1205.0788]. 174 132 172 135 182 131 170 2+1; LO+NLO+NNLO 130 168 only LO+NLO 130 181 a~0.12 to only LO 166 125 β=3.77 129 0.10 fm 180 164 B=3.792 0.8 1.0 1.2 0.8 $\beta = 3.85$ 1.0 162 120 6 0 2 3 6 7 8 9 10 0 2 3 5 7 8 5 1 am/am^{phys} am/am^{phys} f_{π} ; SU(2) χ PT $m_{\pi}^2/(m_{x}+m_{y}); SU(2) \chi PT$ MILC 0.18 6.6 [A. Bazavov ∻super fine, am'=0.018 CL = 0.3+ super fine, am'_=0.018 Oultra fine, am'=0.014 $\chi^{2}/dof = 37/33$ ○ ultra fine, am'=0.014 et al.], Z^{fine}/Z_m CL = 0.30.0036 $\chi^{2}/dof = 37/33$ + 0.0025 0.17 PoS(LAT09), ÷ 0.0018 0.0028 077, [arXiv: LO, cont 0911.0472] $(f_{\pi}\ r_1)/\sqrt{2}$ 0.16 $m_\pi^2/(m_x\!+\!m_y)$ + 0.0036 NNLO, cont. + 0.0025 ÷ 0.0018 6.2 NLO, cont. 0.0028 0.15 NNLO, cont 🕂 extrap 2+1; \approx expt. (r₁=0.318fm from Υ) $(m_u + m_d)^{phys}$ a~0.06 to 6.0 NLO, cont. $m_{x}+m_{v}=0.5m_{s}$ 0.14 $m_{x} + m_{y} = 0.5 m_{s}$ LO, cont 0.045 fm 0.00 0.00 0.02 0.04 0.06 0.02 0.04 0.06

 $(m_x + m_y)r_1 \times (Z_m/Z_m^{fine})$

- Convergence good for f_{π} and reasonable for M_{π}^2/\hat{m} .
 - up to limit of lattice data (~7 or 8 times physical \hat{m}).
- Reasonable agreement between computations.

1.2

10

9

 $(m_x{+}m_y)r_1~\times~(Z_m/Z_m^{\text{fine}})$

• MILC lattice data is partially quenched.

C. Bernard, CD15 25

160 LO+NLO+NNLO 186 S. Borsanyi et only LO+NLO 184 155 only LO al., Phys. Rev. β=3.77 182 . β=3.792 ${\sf M}^2_{\pi}$ / (am/am^{phys}) [10² MeV²] D88 (2013) 150 $\beta = 3.85$ 180 014513, 178 145 [arXiv: \mathfrak{f}_{π} [MeV] 176 140 1205.0788]. 174 132 172 135 182 131 170 2+1; LO+NLO+NNLO 130 168 only LO+NLO 130 181 a~0.12 to only LO 166 125 β=3.77 129 0.10 fm 180 164 B=3.792 0.8 1.0 1.2 0.8 $\beta = 3.85$ 1.0 1.2 162 120 9 0 2 3 6 7 8 9 10 0 2 3 5 6 7 8 5 1 am/am^{phys} am/am^{phys} f_{π} ; SU(2) χ PT $m_{\pi}^2/(m_{x}+m_{y}); SU(2) \chi PT$ MILC 0.18 6.6 [A. Bazavov +super fine, am'=0.018 CL = 0.3+ super fine, am'_s=0.018 Oultra fine, am'=0.014 $\chi^{2}/dof = 37/33$ ○ ultra fine, am'=0.014 et al.], Z^{fine}/Z_m CL = 0.30.0036 + 0.0025 0.17 $\chi^{2}/dof = 37/33$ PoS(LAT09), ÷ 0.0018 0.0028 077, [arXiv: LO, cont 0911.0472] $(f_{\pi}\ r_1)/\sqrt{2}$ 0.16 $m_\pi^2/(m_x\!+\!m_y)$ + 0.0036 NNLO, cont. + 0.0025 ÷ 0.0018 6.2 NLO, cont. 0.0028 0.15 NNLO, cont 🕂 extrap 2+1; \approx expt. (r₁=0.318fm from Υ) $(m_u + m_d)^{phys}$ a~0.06 to 6.0 NLO, cont. 0.14 $m_{x} + m_{y} = 0.5 m_{s}$ $m_{x} + m_{y} = 0.5 m_{s}$ LO, cont 0.045 fm 0.00 0.00 0.02 0.04 0.06 0.02 0.04 0.06 $(m_x{+}m_y)r_1~\times~(Z_m/Z_m^{\text{fine}})$

 $(m_x + m_y)r_1 \times (Z_m/Z_m^{fine})$

- Convergence good for f_{π} and reasonable for M_{π}^2/\hat{m} .
- up to limit of lattice data (~7 or 8 times physical \hat{m}).
- Reasonable agreement between computations.

10

- MILC lattice data is partially quenched.
 - corrected for in lattice ChPT.

25

C. Bernard, CD15

C. Bernard, CD15 26

$$\bar{\ell}_6 = 15.1(1.2)$$

• from pion vector form factor.

 $\bar{\ell}_6 = 15.1(1.2)$

- from pion vector form factor.
- result from $N_f = 2$.

 $\bar{\ell}_6 = 15.1(1.2)$

- from pion vector form factor.
- result from $N_f = 2$.
- also determines the radius $\langle r^2 \rangle_V^{\pi}$ and the curvature c_V .

 $\bar{\ell}_6 = 15.1(1.2)$

- from pion vector form factor.
- result from $N_f = 2$.
- also determines the radius $\langle r^2 \rangle_V^{\pi}$ and the curvature $c_{\rm V}$.

e chine and chin											
Collaboration	Ref.	N_f	qnd	E.	000	Eni	$\langle r^2 \rangle_V^{\pi}$	c_V	$\overline{\ell}_6$		
RBC/UKQCD 08A	[252]	$^{2+1}$	А	0		*	0.418(31)		12.2(9)		
LHP 04	[<mark>274</mark>]	$^{2+1}$	Α	0	•	0	0.310(46)				
Brandt 13	[256]	2	А	0	*	*	0.481(33)(13)		15.5(1.7)(1.3)		
JLQCD/TWQCD 09	270	2	Α	0			0.409(23)(37)	3.22(17)(36)	11.9(0.7)(1.0)		
ETM 08	237	2	Α	0	0	0	0.456(30)(24)	3.37(31)(27)	14.9(1.2)(0.7)		
QCDSF/UKQCD 064	A [275]	2	Α	0	*	0	0.441(19)(56)(29)				
Bijnens 98	[236]						0.437(16)	3.85(60)	16.0(0.5)(0.7)		
NA7 86	[276]						0.439(8)				
Gasser 84	[58]								16.5(1.1)		

From, FLAG [S. Aoki et al.], Eur. Phys. J. C 74, 2890 (2014).

0.3

0

0.1

$$\bar{\ell}_6 = 15.1(1.2)$$

- from pion vector form factor.
- result from $N_f = 2$.
- also determines the radius $\langle r^2 \rangle_V^{\pi}$ and the curvature C_{V} . H. Fukaya, et al., PRD 90, 034506 (2014); $N_{\rm f} = 2+1$

					^{ation star}	etrapolar.	uun ertre	olime 4001		
	Collaboration	Ref.	N_f	Public	China)	Outin	Enie.	$\langle r^2 \rangle_V^{\pi}$	c_V	$\overline{\ell}_6$
	RBC/UKQCD 08A LHP 04	[252] [274]	$^{2+1}_{2+1}$	A A	0 0	;	* 0	0.418(31) 0.310(46)		12.2(9)
	Brandt 13 JLQCD/TWQCD 09 ETM 08 QCDSF/UKQCD 06.	[256] [270] [237] A[275]	2 2 2 2	A A A A	0 0 0 0	★ ■ ○ ★	* • •	$\begin{array}{c} 0.481(33)(13)\\ 0.409(23)(37)\\ 0.456(30)(24)\\ 0.441(19)(56)(29) \end{array}$	3.22(17)(36) 3.37(31)(27)	15.5(1.7)(1.3) 11.9(0.7)(1.0) 14.9(1.2)(0.7)
	Bijnens 98 NA7 86 Gasser 84	[236] [276] [58]						0.437(16) 0.439(8)	3.85(60)	16.0(0.5)(0.7) 16.5(1.1)
n^2]	0.8 0.7 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7									
<r<sup>2>_V[fr</r<sup>	0.5	·····			qı	iaurai	uc			

0.2

0.3

C. Bernard, CD15 26

$$\bar{\ell}_6 = 15.1(1.2)$$

- from pion vector form factor.
- result from $N_f = 2$.
- also determines the radius $\langle r^2 \rangle_V^{\pi}$

$$\bar{\ell}_6 = 15.1(1.2)$$

- from pion vector form factor.
- result from $N_f = 2$.
- also determines the radius $\langle r^2 \rangle_{\rm V}^{\pi}$ and the curvature $c_{\rm V}$.

Nucleon Chiral Extrapolation

• Fit is to NLO SU(2) HBChPT: $m_N = m_N^{(0)} - 4c_1 m_\pi^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_\pi^3$ • constrained to go through physical point.

• Fit is to NLO SU(2) HBChPT: $m_N = m_N^{(0)} - 4c_1 m_\pi^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_\pi^3$ • constrained to go through physical point.

• $c_1 \sim -1.1$ is large but not crazy: m_N changes by ~40% from physical point to $m_\pi = m_K$.

• Fit is to NLO SU(2) HBChPT: $m_N = m_N^{(0)} - 4c_1 m_\pi^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_\pi^3$ • constrained to go through physical point.

- $c_1 \sim -1.1$ is large but not crazy: m_N changes by ~40% from physical point to $m_\pi = m_K$.
 - about twice as much as $f_{\pi} \rightarrow f_{K}$.

• Fit is to NLO SU(2) HBChPT: $m_N = m_N^{(0)} - 4c_1 m_\pi^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_\pi^3$ • constrained to go through physical point.

- $c_1 \sim -1.1$ is large but not crazy: m_N changes by ~40% from physical point to $m_\pi = m_K$.
 - about twice as much as $f_{\pi} \rightarrow f_{K}$.
- Fit including Δ is very similar.

• Walker-Loud, Lattice '13, arXiv:1401.8259.

• Walker-Loud, Lattice '13, arXiv:1401.8259.

• "Ruler plot" [named by B. Tiburzi].

• Walker-Loud, Lattice '13, arXiv:1401.8259.

- "Ruler plot" [named by B. Tiburzi].
- Update of RBC points.*

- Walker-Loud, Lattice '13, arXiv:1401.8259.
- "Ruler plot" [named by B. Tiburzi].
- Update of RBC points.*
- ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310.

*thanks to T. Blum for unpublished data.

- Walker-Loud, Lattice '13, arXiv:1401.8259.
- "Ruler plot" [named by B. Tiburzi].
- Update of RBC points.*
- ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310.
- Seems to be a curious accident; doesn't contradict expected chiral behavior.

*thanks to T. Blum for unpublished data.

C. Bernard, CD15

28

♦ L₁₀ from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

← L₁₀ from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

 Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.

← L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of *ud* correlator precise in low- Q^2 region.

← L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of *ud* correlator precise in low- Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of massdependence, but mainly at higher Q².

← L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of *ud* correlator precise in low- Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of massdependence, but mainly at higher Q².

← L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of *ud* correlator precise in low- Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of massdependence, but mainly at higher Q².

 \checkmark Excellent agreement where both are precise.

← L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of *ud* correlator precise in low- Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of massdependence, but mainly at higher Q².

 \checkmark Excellent agreement where both are precise.

Additional constraint from chiral sum rules (inverse moment finite energy) [Golterman, Maltman & Peris, 2014].

← L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of *ud* correlator precise in low- Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of massdependence, but mainly at higher Q².

 \checkmark Excellent agreement where both are precise.

Additional constraint from chiral sum rules (inverse moment finite energy) [Golterman, Maltman & Peris, 2014]. Get: $L_{10}^r(m_{\rho}) = -0.00346(32)$ _{C.}

C. Bernard, CD15 29

✦ Much more difficult issue to address than in SU(2):

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.

–Fine for interpolating around m_s , but **not** for

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - -Fine for interpolating around m_s , but **not** for
 - » finding LECs.

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - –Fine for interpolating around m_s , but **not** for
 - » finding LECs.
 - » extrapolating from near m_s to the chiral limit.

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - –Fine for interpolating around m_s , but **not** for
 - » finding LECs.
 - » extrapolating from near m_s to the chiral limit.
 - » determining fundamental issues like convergence.

- Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - –Fine for interpolating around m_s , but **not** for
 - » finding LECs.
 - » extrapolating from near m_s to the chiral limit.
 - » determining fundamental issues like convergence.
 - "Coupling constant" is $1/(16\pi^2 f_0^2)$, but for highest order terms (NNLO in practice), it is consistent (and even sensible) to replace f_0 (decay constant in the 3-flavor chiral limit) by a physical decay constant, e.g. f_{π} , or even f_K (if data runs up to the kaon mass).

- Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - –Fine for interpolating around m_s , but **not** for
 - » finding LECs.
 - » extrapolating from near m_s to the chiral limit.
 - » determining fundamental issues like convergence.
 - "Coupling constant" is $1/(16\pi^2 f_0^2)$, but for highest order terms (NNLO in practice), it is consistent (and even sensible) to replace f_0 (decay constant in the 3-flavor chiral limit) by a physical decay constant, e.g. f_{π} , or even f_K (if data runs up to the kaon mass).
 - This makes a big difference in size of NNLO terms!

- ✦ Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT "converges well," would expect ~4% NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - –Fine for interpolating around m_s , but **not** for
 - » finding LECs.
 - » extrapolating from near m_s to the chiral limit.
 - » determining fundamental issues like convergence.
 - "Coupling constant" is $1/(16\pi^2 f_0^2)$, but for highest order terms (NNLO in practice), it is consistent (and even sensible) to replace f_0 (decay constant in the 3-flavor chiral limit) by a physical decay constant, e.g. f_{π} , or even f_K (if data runs up to the kaon mass).
 - This makes a big difference in size of NNLO terms!
 - Reliable control of the SU(3) ChPT seems only possible for the simulated strange-quark mass, m_s' , chosen less than its physical value, m_s .

♦ MILC "asqtad" simulations with 0.1 $m_s \le m_s' \le 0.6 m_s$ (circa 2010).

◆ MILC "asqtad" simulations with 0.1 $m_s \le m_s' \le 0.6 m_s$ (circa 2010).

 \bullet two very different fits for decay constant with $f_{\rm NNLO}\approx f_{\pi}$
♦ MILC "asqtad" simulations with 0.1 m_s ≤ m_s' ≤ 0.6 m_s (circa 2010).
 • two very different fits for decay constant with f_{NNLO} ≈ f_π

◆ MILC "asqtad" simulations with 0.1 m_s ≤ m_s' ≤ 0.6 m_s (circa 2010).
 • two very different fits for decay constant with f_{NNLO} ≈ f_π

• function of strange sea mass, with *u*,*d* mass at chiral limit (& extrapolated to continuum).

◆ MILC "asqtad" simulations with 0.1 m_s ≤ m_s' ≤ 0.6 m_s (circa 2010).
 • two very different fits for decay constant with f_{NNLO} ≈ f_π

• function of strange sea mass, with *u*,*d* mass at chiral limit (& extrapolated to continuum). $f_{\rm NNLO} = f_{\pi}$ $f_{\pi}/f_0 = 1.26(4)$

◆ MILC "asqtad" simulations with 0.1 m_s ≤ m_s' ≤ 0.6 m_s (circa 2010).
 • two very different fits for decay constant with f_{NNLO} ≈ f_π

• function of strange sea mass, with *u*,*d* mass at chiral limit (& extrapolated to continuum). $f_{\text{NNLO}} = f_{\pi}$ $f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_{\pi}$ $f_{\pi}/f_0 = 1.26(4)$ $f_{\pi}/f_0 = 1.09(2)$

◆ MILC "asqtad" simulations with 0.1 m_s ≤ m_s' ≤ 0.6 m_s (circa 2010).
 • two very different fits for decay constant with f_{NNLO} ≈ f_π

$$f_{\text{NNLO}} = f_{\pi}$$

$$f_{\pi}/f_0 = 1.26(4)$$

$$f_{\pi}/f_0 = 1.09(2)$$

• Right-hand fits wants f_0 high to make $f_{\rm NNLO}$ high.

◆ MILC "asqtad" simulations with 0.1 m_s ≤ m_s' ≤ 0.6 m_s (circa 2010).
 • two very different fits for decay constant with f_{NNLO} ≈ f_π

• function of strange sea mass, with *u*,*d* mass at chiral limit (& extrapolated to continuum). $f_{\text{NNLO}} = f_{\pi}$ $f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_{\pi}$ $f_{\pi}/f_0 = 1.26(4)$ $f_{\pi}/f_0 = 1.09(2)$

- Right-hand fits wants f_0 high to make $f_{\rm NNLO}$ high.
- If f_{NNLO} fixed at f_{π} , independent of f_0 (left fit), get something totally different: low f_0 : small LO, big NLO.

◆ MILC "asqtad" simulations with 0.1 m_s ≤ m_s' ≤ 0.6 m_s (circa 2010).
 • two very different fits for decay constant with f_{NNLO} ≈ f_π

$$f_{\text{NNLO}} = f_{\pi} \qquad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.59(13) \qquad f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_{\pi} \\ f_{\pi}/f_0 = 1.26(4) \qquad \frac{|\langle \bar{u}u \rangle_3|}{|\langle \bar{u}u \rangle_3|} = 1.59(13) \qquad f_{\pi}/f_0 = 1.09(2)$$

• Right-hand fits wants f_0 high to make $f_{\rm NNLO}$ high.

• If f_{NNLO} fixed at f_{π} , independent of f_0 (left fit), get something totally different: low f_0 : small LO, big NLO.

◆ MILC "asqtad" simulations with 0.1 m_s ≤ m_s' ≤ 0.6 m_s (circa 2010).
 • two very different fits for decay constant with f_{NNLO} ≈ f_π

• function of strange sea mass, with *u*,*d* mass at chiral limit (& extrapolated to continuum).

 $f_{\rm NNLO} = {\rm const.} \times f_0 \approx f_{\pi}$

 $f_{\pi}/f_0 = 1.09(2)$

 $f_{\text{NNLO}} = f_{\pi} \qquad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.59(13)$

"Paramagnetic effect:" Descotes, Girlanda & Stern, 1999

- Right-hand fits wants f_0 high to make $f_{\rm NNLO}$ high.
- If f_{NNLO} fixed at f_{π} , independent of f_0 (left fit), get something totally different: low f_0 : small LO, big NLO.

• Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.

• Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.

• Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.

- Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.
- Now two versions of fit (fixing $f_{\rm NNLO}$ independently of f_0 , or fixing $f_{\rm NNLO}/f_0$) give very similar results.

- Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.
- Now two versions of fit (fixing $f_{\rm NNLO}$ independently of f_0 , or fixing $f_{\rm NNLO}/f_0$) give very similar results.
- And p=0.75, significantly larger than before.

- Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.
- Now two versions of fit (fixing $f_{\rm NNLO}$ independently of f_0 , or fixing $f_{\rm NNLO}/f_0$) give very similar results.
- And p=0.75, significantly larger than before.
- Taken at face value, would say $f_{\pi}/f_0 = 1.17(4)(9); \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.34(10)(^{+25}_{-16})$

- Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.
- Now two versions of fit (fixing $f_{\rm NNLO}$ independently of f_0 , or fixing $f_{\rm NNLO}/f_0$) give very similar results.
- And p=0.75, significantly larger than before.
- Taken at face value, would say $f_{\pi}/f_0 = 1.17(4)(9); \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.34(10)(^{+25}_{-16})$
 - Ranges cover two other alternatives.

- Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.
- Now two versions of fit (fixing $f_{\rm NNLO}$ independently of f_0 , or fixing $f_{\rm NNLO}/f_0$) give very similar results.
- And p=0.75, significantly larger than before.
- Taken at face value, would say $f_{\pi}/f_0 = 1.17(4)(9); \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.34(10)(^{+25}_{-16})$
 - Ranges cover two other alternatives.
- Somewhat surprising that $f_{\rm NNLO} \approx f_K$ is needed for lattice data stopping at $m_{\rm s}' = 0.6 \, m_{\rm s}$.

- Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.
- Now two versions of fit (fixing $f_{\rm NNLO}$ independently of f_0 , or fixing $f_{\rm NNLO}/f_0$) give very similar results.
- And p=0.75, significantly larger than before.
- Taken at face value, would say

$$f_{\pi}/f_0 = 1.17(4)(9); \quad \frac{|\langle uu \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.34(10)(^{+25}_{-16})$$

- Ranges cover two other alternatives.
- Somewhat surprising that $f_{\rm NNLO} \approx f_K$ is needed for lattice data stopping at $m_{\rm s}' = 0.6 \, m_{\rm s}$.
- Concern: Variation with $f_{\rm NNLO}$ shows that NNNLO effects not negligible. Or are discretization errors at NNLO to blame??

(intermediate value of f_0)

- Suggests choosing $f_{\rm NNLO}$ still larger, say $f_{\rm NNLO} \approx f_K$.
- Now two versions of fit (fixing $f_{\rm NNLO}$ independently of f_0 , or fixing $f_{\rm NNLO}/f_0$) give very similar results.
- And p=0.75, significantly larger than before.
- Taken at face value, would say

$$f_{\pi}/f_0 = 1.17(4)(9); \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.34(10)(^{+25}_{-16})$$

- Ranges cover two other alternatives.
- Somewhat surprising that $f_{\rm NNLO} \approx f_K$ is needed for lattice data stopping at $m_{\rm s}' = 0.6 \, m_{\rm s}.$
- Concern: Variation with $f_{\rm NNLO}$ shows that NNNLO effects not
 - negligible. Or are discretization errors at NNLO to blame??
- Need data with smaller discretization errors and smaller m_s' (in progress). [Higher order staggered ChPT would also help.]

(intermediate value of f_0)

✦ Future of ChPT in service to lattice:

- ✦ Future of ChPT in service to lattice:
 - Now have physical mass ensembles, so chiral extrapolation less important.

- ✦ Future of ChPT in service to lattice:
 - Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.

- ✦ Future of ChPT in service to lattice:
 - Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.

- ✦ Future of ChPT in service to lattice:
 - Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.
 - Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in *a* may be good enough: May not need to include discretization errors in ChPT.

- ✦ Future of ChPT in service to lattice:
 - Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.
 - Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in *a* may be good enough: May not need to include discretization errors in ChPT.
 - Also, higher order terms in a (which are not in ChPT) may be comparable to the symmetry-breaking terms kept.

- ✦ Future of ChPT in service to lattice:
 - Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.
 - Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in *a* may be good enough: May not need to include discretization errors in ChPT.
 - Also, higher order terms in a (which are not in ChPT) may be comparable to the symmetry-breaking terms kept.
 - Condition for calculation of physical quantities **not** to need lattice ChPT is $M_{\pi}^2 \gg$ breaking terms.

- ✦ Future of ChPT in service to lattice:
 - Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.
 - Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in *a* may be good enough: May not need to include discretization errors in ChPT.
 - Also, higher order terms in a (which are not in ChPT) may be comparable to the symmetry-breaking terms kept.
 - Condition for calculation of physical quantities **not** to need lattice ChPT is $M_{\pi}^2 \gg$ breaking terms.
 - For staggered, this is now satisfied for $a \le 0.06$ fm (i.e., for some of the ensembles MILC uses, but not yet for all the ensembles used in controlled calculations).

- ✦ Future of ChPT in service to lattice:
 - Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.
 - Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in *a* may be good enough: May not need to include discretization errors in ChPT.
 - Also, higher order terms in a (which are not in ChPT) may be comparable to the symmetry-breaking terms kept.
 - Condition for calculation of physical quantities **not** to need lattice ChPT is $M_{\pi}^2 \gg$ breaking terms.
 - For staggered, this is now satisfied for $a \le 0.06$ fm (i.e., for some of the ensembles MILC uses, but not yet for all the ensembles used in controlled calculations).
 - –If want interesting, but not experimentally accessible, quantities like f₀, (decay constant in 3-flavor chiral limit), staggered ChPT will still be needed for foreseeable future.

 New applications of ChPT, specifically, and EFTs in general, will always be required as field develops.

- New applications of ChPT, specifically, and EFTs in general, will always be required as field develops.
- E.g.: gradient flow techniques for setting the lattice scale (Lüscher, 2010; BMW, 2012).

- New applications of ChPT, specifically, and EFTs in general, will always be required as field develops.
- E.g.: gradient flow techniques for setting the lattice scale (Lüscher, 2010; BMW, 2012).
 - analyzed in ChPT by Bär & Golterman, 2014.

- New applications of ChPT, specifically, and EFTs in general, will always be required as field develops.
- E.g.: gradient flow techniques for setting the lattice scale (Lüscher, 2010; BMW, 2012).
 - analyzed in ChPT by Bär & Golterman, 2014.
 - -can reduce already small sea-quark effect on scale even further by fitting to their formula.

 Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4.$

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0 .

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0 .
 - -also probably for NLO sea-quark LECs, L_4 and $2L_6$ L_4 .

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0 .
 - -also probably for NLO sea-quark LECs, L_4 and $2L_6$ L_4 .
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0 .
 - -also probably for NLO sea-quark LECs, L_4 and $2L_6$ L_4 .
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
 - Lattice groups will only generate them if there is strong demand from ChPT community.

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0 .
 - -also probably for NLO sea-quark LECs, L_4 and $2L_6$ L_4 .
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
 - Lattice groups will only generate them if there is strong demand from ChPT community.
- Huge QCD world out there; lattice QCD is exploring more and more issues from first principles, and with control over systematics:

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0 .
 - -also probably for NLO sea-quark LECs, L_4 and $2L_6$ L_4 .
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
 - Lattice groups will only generate them if there is strong demand from ChPT community.
- Huge QCD world out there; lattice QCD is exploring more and more issues from first principles, and with control over systematics:
 - Form factors, scattering amplitudes, baryons and light nuclei, hadronic weak decays, electromagnetic and isospin-violating effects, hadronic contributions to $(g-2)_{\mu}$.

35

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0 .
 - -also probably for NLO sea-quark LECs, L_4 and $2L_6$ L_4 .
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
 - Lattice groups will only generate them if there is strong demand from ChPT community.
- Huge QCD world out there; lattice QCD is exploring more and more issues from first principles, and with control over systematics:
 - Form factors, scattering amplitudes, baryons and light nuclei, hadronic weak decays, electromagnetic and isospin-violating effects, hadronic contributions to $(g-2)_{\mu}$.
 - Many paybacks to come!

35

Backup Slides

QCD Simulations

- Generate an ensemble of gluon fields according to a probability distribution given by the QCD gluon action and back-effect of sea quarks (virtual quark loops).
 - Expensive! (mainly because of sea quarks, whose effect is encoded in a determinant).
- In each gluon-field background (a "configuration"), calculate propagation of valence quarks.
 - Relatively cheap (for each quark, need one column of a matrix inverse).
 - E.g., for $\langle 0 | A_{\mu} | \pi(p) \rangle = i f_{\pi} p_{\mu}$, in a given background:

Then average over the configurations ties together background gluon fields to make:

Some SU(2) Fits

- Note: Borsanyi et al paper includes physical quark masses.
- Discretization errors small in both cases.

38

Nucleon Chiral Extrapolation

• Plot from: ETM [C. Alexandrou et al.], PoS LATTICE 2014, 100 [arXiv:1412.0925].

- Good agreement among groups.
- Note QCDSF point close to physical, with relatively small errors.
 - ► G. Bali et al., NPB 866 (2013) 1 [arXiv:1206.7034].

Nucleon isospin violation (Slide from A. Walker-Loud)

C.Aubin, W.Detmold, E. Mereghetti, K.Orginos, S.Syritsyn, B.Tiburzi, A. Walker-Loud

this is striking evidence of a chiral logarithm

SU(3) LECs

- Results quoted are for $N_f = 2+1$.
- From decay constant.
- L_5 controls valence mass dependence; L_4 controls sea mass dependence.

SU(3) LECs

 $2L_8 - L_5 = -0.12(22) \times 10^{-3}$

- Results quoted are for $N_f = 2+1$.
- From meson mass.
- $2L_{8}L_{5}$ controls valence mass dependence; $2L_{6}L_{4}$ controls sea mass dependence.
- Small because m_{π}^2 is nearly linear in quark mass (small NLO corrections).

Meson (mass)²

- $\bullet m_\pi^2$ and m_K^2 vs. \hat{m}
- shows how linear the (mass)² is.
- old: from MILC, 2004!
- usually people divide by \hat{m} to show non-linearity.