Overview

✧ Brief introductions to effective field theories (EFTs) and to lattice systematics.

✧ Uses of EFTs in lattice QCD.
 • ChPT, Symanzik effective theory, HQET.
 • Discretization errors.
 • Partial quenching.
 • Finite volume effects and twisted boundary conditions; heavy quarks;

✧ The payback: ChPT results from the lattice.
 • Mesons, mainly SU(2).
 • Nucleons (a little).
 • Preliminary results: SU(3) and 3-flavor chiral limit.
Effective Field Theories

✨ Powerful tool to describe physics in some limited range of scales.

• Useful when the fundamental theory is too difficult to handle (or unknown).

• Typically:
 1. “Integrate out” high energy modes of a theory (those above a cutoff Λ).
 2. Expand the resulting non-local theory in inverse powers of Λ times local operators (an OPE).
 3. Left with a local effective field theory (EFT) at low energy.

 – In rare cases (e.g. heavy quark effective theory), steps can actually be carried out (perturbatively).
 – Usually just imagine performing steps 1-3; use symmetries to constrain EFT.
These days, often said that all field theories are effective theories.

- Unknown new physics must kick in at some higher scale.
- E.g., QCD could be supplemented by higher dimension terms, such as:
 \[
 \frac{1}{M} \bar{q} \sigma_{\mu\nu}G^{\mu\nu}q
 \]
 - \(M\) is mass scale of new physics.
- Distinction between renormalizable and unrenormalizable theories is less important than we used to think.
- Still, an important distinction:
 - If LO effective theory is nonrenormalizable (e.g. ChPT), it tells you the scale at which new physics must enter \((4\pi f_\pi)\), so sets natural scale for NLO terms.
 - If the LO effective theory is renormalizable (e.g., QCD), then scale of new physics undetermined.
 - must be found/bound by experiment,
 - or by knowing/guessing the more fundamental underlying theory.
Lattice QCD Systematic Errors

- Lattice computation of QCD path integral inherently includes systematic errors.
 - Continuum extrapolation error: need to take lattice spacing \(a \to 0 \).
 - (Residual) finite-volume errors: need to take space & time extent \(L, T \to \infty \).
 - Chiral extrapolation error: for practical reasons may choose \(m_u, m_d \) larger than physical; need to extrapolate to physical values.
 - Even if near-physical values chosen (now possible), need to interpolate to precise physical values (can only be found \textit{a posteriori}): chiral interpolation error.
Use of EFTs in Lattice QCD

✧ EFTs provide functional forms for relevant extrapolations/interpolations.
 • thereby reduce systematic errors.

✧ First use: ChPT, to guide quark mass extrapolations.
 • ChPT gives functional form of expansion in quark masses (and momenta).
 • all dependence explicit.
 • exactly as needed for extrapolations.
 • Soon realized that ChPT also gives leading finite volume corrections.
Example of mass extrapolation

Example of mass extrapolation

Example of mass extrapolation

\[
\chi^2 / \text{dof} = 19/17 \\
\text{CL} = 0.30
\]

Example of mass extrapolation

• Discretization effects are fairly small, but clear.
Example of mass extrapolation

\[\chi^2 / \text{dof} = 19/17 \]

CL = 0.30

- Discretization effects are fairly small, but clear.
- \(a \)-dependence needs to be added to the continuum forms to fit lattice data.
Example of mass extrapolation

- Discretization effects are fairly small, but clear.
- a-dependence needs to be added to the continuum forms to fit lattice data.
- Here, simple analytic terms, $\text{const.} \times a^2$, do the trick.

\[\chi^2/\text{dof} = 19/17 \]
CL = 0.30

\[a = 0.08 \text{ fm} \]
\[a = 0.06 \text{ fm} \]

\[\chi^2/\text{dof} = 19/17 \]
CL = 0.30
Example of mass extrapolation

- Discretization effects are fairly small, but clear.
- a-dependence needs to be added to the continuum forms to fit lattice data.
- Here, simple analytic terms, $\text{const.} \times a^2$, do the trick.
- In some other cases (very precise lattice data, many degrees of freedom, larger discretization errors...) this approach may not be adequate.
Use of EFTs in Lattice QCD

Key insight: ChPT can be modified to include lattice discretization errors. [Sharpe & Singleton, 1998]

- Relates a-dependence to mass dependence, so better controlled extrapolations.
- Non-analytic terms in a arise from loops.
- Method uses another EFT: Symanzik Effective Theory (SET) [Symanzik, 1983].
 - For SET, the lattice QCD theory at fixed lattice spacing a is taken as “fundamental.”
 - SET is the EFT that describes the lattice theory at energy scales small compared to the cutoff: $p \ll 1/a$.
 - Leading order Lagrangian is just the continuum QCD Lagrangian.
 - Since $ap \ll 1$, need to keep only low powers of a as corrections:
 - add on local operators with dimension > 4, multiplied by appropriate powers of a.
 - Needed local operators \rightarrow determined by the underlying lattice symmetries.
Lattice QCD: Wilson quarks
Lattice QCD: Wilson quarks

- Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
Lattice QCD: Wilson quarks

• Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 • E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for $m=0$), so leading correction to continuum theory is Pauli operator:
Lattice QCD: Wilson quarks

• Needed local operators for SET ➔ determined by the underlying lattice symmetries.
 • E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for \(m=0 \)), so leading correction to continuum theory is Pauli operator:

\[
\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots
\]

\[
\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\not{D} + m) q
\]

\[
\mathcal{L}_{\text{NLO}} = a \bar{q} \sigma_{\mu\nu} G^{\mu\nu} q
\]
Lattice QCD: Wilson quarks

• Needed local operators for SET → determined by the underlying lattice symmetries.
 • E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for $m=0$), so leading correction to continuum theory is Pauli operator:

\[
\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots
\]

\[
\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\slashed{D} + m) q
\]

\[
\mathcal{L}_{\text{NLO}} = a \bar{q} \sigma_{\mu\nu} G^{\mu\nu} q
\]

• Once discretization effects are encoded as local operators in the SET, it’s easy to include them in the corresponding ChPT at low physical energies.
Lattice QCD: Wilson quarks

• Needed local operators for \(\text{SET} \rightarrow \) determined by the underlying lattice symmetries.

 • E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for \(m=0 \)), so leading correction to continuum theory is Pauli operator:
 \[
 \mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots
 \]
 \[
 \mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\overleftarrow{\partial} + m) q
 \]
 \[
 \mathcal{L}_{\text{NLO}} = a \bar{q} \sigma_{\mu\nu} G^{\mu\nu} q
 \]

• Once discretization effects are encoded as local operators in the \(\text{SET} \), it’s easy to include them in the corresponding ChPT at low physical energies.

 • Method is standard “spurion” approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.
• Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.

 • E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for $m=0$), so leading correction to continuum theory is Pauli operator:
 \[
 \mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots
 \]
 \[
 \mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu \nu} G_{\mu \nu} + \bar{q} (\not{D} + m) q
 \]
 \[
 \mathcal{L}_{\text{NLO}} = a \bar{q} \sigma_{\mu \nu} G^{\mu \nu} q
 \]

 • Once discretization effects are encoded as local operators in the SET, it’s easy to include them in the corresponding ChPT at low physical energies.

 • Method is standard “spurion” approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.

 • For Wilson quarks it’s particularly simple, since mass and Pauli term transform same way under chiral symmetry:
Lattice QCD: Wilson quarks

• Needed local operators for SET → determined by the underlying lattice symmetries.
 • E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for $m=0$), so leading correction to continuum theory is Pauli operator:

$$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots$$

$$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\not{D} + m) q$$

$$\mathcal{L}_{\text{NLO}} = a \, \bar{q} \sigma_{\mu\nu} G^{\mu\nu} q$$

• Once discretization effects are encoded as local operators in the SET, it’s easy to include them in the corresponding ChPT at low physical energies.
 • Method is standard “spurion” approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.
 • For Wilson quarks it’s particularly simple, since mass and Pauli term transform same way under chiral symmetry:

$$\mathcal{L}_{\text{ChPT}} = \frac{f_{\pi}^2}{8} \text{tr}(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}) - \frac{B f_{\pi}^2}{4} \text{tr}(M \Sigma + M \Sigma^{\dagger}) +$$

$$\quad - a \, c_1 \text{tr}(\Sigma + \Sigma^{\dagger}) + a^2 \, c_2 \text{tr}(\Sigma + \Sigma^{\dagger})^2 + \ldots$$
Lattice QCD: Wilson quarks

- Needed local operators for SET → determined by the underlying lattice symmetries.
 - E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for \(m=0 \)), so leading correction to continuum theory is Pauli operator:
 \[
 \mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots
 \]
 \[
 \mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G^{\mu\nu} + \bar{q} (\not{D} + m) q
 \]
 \[
 \mathcal{L}_{\text{NLO}} = a \bar{q} \sigma_{\mu\nu} G^{\mu\nu} q
 \]

- Once discretization effects are encoded as local operators in the SET, it’s easy to include them in the corresponding ChPT at low physical energies.
 - Method is standard “spurion” approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.
 - For Wilson quarks it’s particularly simple, since mass and Pauli term transform same way under chiral symmetry:
 \[
 \mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \text{tr}(\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger) + \\
 - a c_1 \text{tr}(\Sigma + \Sigma^\dagger) + a^2 c_2 \text{tr}(\Sigma + \Sigma^\dagger)^2 + \ldots
 \]
 - new LECs \(c_1 \) and \(c_2 \) encode leading discretization effects in ChPT.
Lattice QCD: Wilson quarks

• Needed local operators for SET \rightarrow determined by the underlying lattice symmetries.
 • E.g., lattice QCD with Wilson quarks: term to remove lattice doublers breaks chiral symmetry (even for $m=0$), so leading correction to continuum theory is Pauli operator:
 $$L_{\text{SET}} = L_{\text{LO}} + L_{\text{NLO}} + \ldots$$
 $$L_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} \left(\slash{D} + m \right) q$$
 $$L_{\text{NLO}} = a \bar{q} \sigma_{\mu\nu} G^{\mu\nu} q$$

• Once discretization effects are encoded as local operators in the SET, it's easy to include them in the corresponding ChPT at low physical energies.
 • Method is standard "spurion" approach that tells how chiral-symmetry-breaking mass terms are included in ChPT Lagrangian.
 • For Wilson quarks it's particularly simple, since mass and Pauli term transform same way under chiral symmetry:
 $$L_{\text{ChPT}} = \frac{f^2}{8} \text{tr} \left(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^\dagger \right) - \frac{B f^2}{4} \text{tr} \left(M \Sigma + M \Sigma^\dagger \right) +$$
 $$\quad - a c_1 \text{tr} \left(\Sigma + \Sigma^\dagger \right) + a^2 c_2 \text{tr} \left(\Sigma + \Sigma^\dagger \right)^2 + \ldots$$
 - New LECs c_1 and c_2 encode leading discretization effects in ChPT.
 - Sharpe & Singleton showed from this ChPT that a new lattice-artifact phase ("Aoki phase") was possible at fixed a for very small m.

C. Bernard, CD15
Lattice QCD: twisted-mass quarks

• Start with a doublet of Wilson quarks.
• Add a twisted mass [Frezzotti, Grassi, Sint & Weisz, 2001]:

\[\bar{q} \left(\slashed{D} + m \right) q \rightarrow \bar{q} \left(\slashed{D} + m + i \mu \gamma_5 \tau_3 \right) q \]

• In continuum, \(\mu \) term can be rotated away by non-singlet SU(2) chiral rotation.
• But on lattice, since Wilson term (to remove doublers) is in “m direction”, twist is nontrivial:
 • Avoid “exceptional configurations” in which statistical fluctuations from Wilson term bring mass to zero.
 • If \(m \) tuned to 0, physical quantities have errors starting at \(O(a^2) \), not \(O(a) \) [Frezzotti and Rossi, 2004].
• Price is violation of isospin symmetry at nonzero \(a \).
 – twisted mass ChPT [Munster, Schmidt & Scholz, 2004; Sharpe & Wu, 2004]
 \[\Rightarrow O(a^2) \text{ splitting of } \pi^0 \text{ from } \pi^+ \]
Lattice QCD: staggered quarks
Lattice QCD: staggered quarks

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
Lattice QCD: staggered quarks

• Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
 • Each flavor of quark comes in 4 tastes.
Lattice QCD: staggered quarks

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
 - Each flavor of quark comes in 4 tastes.
 - taste is unphysical: need to remove in simulation algorithm.
Lattice QCD: staggered quarks

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
 - Each flavor of quark comes in 4 tastes.
 - taste is unphysical: need to remove in simulation algorithm.
 - “Fourth root procedure” (ChPT can help to understand & tame.)
Lattice QCD: staggered quarks

• Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
 • Each flavor of quark comes in 4 tastes.
 – taste is unphysical: need to remove in simulation algorithm.
 ‣ “Fourth root procedure” (ChPT can help to understand & tame.)
 – SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.
Lattice QCD: staggered quarks

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
 - Each flavor of quark comes in 4 tastes.
 - taste is unphysical: need to remove in simulation algorithm.
 - “Fourth root procedure” (ChPT can help to understand & tame.)
 - SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.
- SET is:
 $$\mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \cdots$$
 $$\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\not{D} + m) q$$
 $$\mathcal{L}_{\text{NLO}} = a^2 \bar{q} (\gamma_\mu \otimes \xi_5) q \bar{q} (\gamma_\mu \otimes \xi_5) q + \cdots$$
Lattice QCD: staggered quarks

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
 - Each flavor of quark comes in 4 tastes.
 - taste is unphysical: need to remove in simulation algorithm.
 - “Fourth root procedure” (ChPT can help to understand & tame.)
 - SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.
- SET is:
 \[
 \mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots \\
 \mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} \left(\mathcal{D} + m \right) q \\
 \mathcal{L}_{\text{NLO}} = a^2 \bar{q} (\gamma_\mu \otimes \xi_5) q \bar{q} (\gamma_\mu \otimes \xi_5) q + \ldots
 \]
Lattice QCD: staggered quarks

• Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
 • Each flavor of quark comes in 4 tastes.
 – taste is unphysical: need to remove in simulation algorithm.
 ➡ “Fourth root procedure” (ChPT can help to understand & tame.)
 – SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.

• SET is:
 \[
 \mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots
 \]

\[
\mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\not{D} + m) q
\]

\[
\mathcal{L}_{\text{NLO}} = a^2 \bar{q} (\gamma_\mu \otimes \xi_5) q \bar{q} (\gamma_\mu \otimes \xi_5) q + \ldots
\]

• And staggered ChPT Lagrangian is [Lee & Sharpe, 1999; Aubin and CB, 2003]:

C. Bernard, CD15
Lattice QCD: staggered quarks

- Incomplete reduction of lattice doubling symmetry, so have an extra (unwanted) degree of freedom, “taste.”
- Each flavor of quark comes in 4 tastes.
 - taste is unphysical: need to remove in simulation algorithm.
 - “Fourth root procedure” (ChPT can help to understand & tame.)
 - SU(4) taste symmetry exact in continuum, but violated on lattice at $O(a^2)$.
- SET is:
 \[
 \mathcal{L}_{\text{SET}} = \mathcal{L}_{\text{LO}} + \mathcal{L}_{\text{NLO}} + \ldots
 \]
 \[
 \mathcal{L}_{\text{LO}} = \frac{1}{4} G^{\mu \nu} G_{\mu \nu} + \bar{q} \left(\not{D} + m \right) q
 \]
 \[
 \mathcal{L}_{\text{NLO}} = a^2 \bar{q}(\gamma_\mu \otimes \xi_5) q \bar{q}(\gamma_\mu \otimes \xi_5) q + \ldots
 \]

- And staggered ChPT Lagrangian is [Lee & Sharpe, 1999; Aubin and CB, 2003]:
 \[
 \mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \text{tr} (\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr} (M \Sigma + M \Sigma^\dagger) - a^2 C_1 \text{tr} (\xi_5 \Sigma \xi_5 \Sigma^\dagger) + \ldots
 \]
 - where Σ is now a $4n \times 4n$ matrix.
Lattice QCD: staggered quarks

\[\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \text{tr}(\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger) - a^2 C_1 \text{tr}(\xi_5 \Sigma \xi_5 \Sigma^\dagger) + \cdots \]
Lattice QCD: staggered quarks

\[\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \text{tr}(\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger) - a^2 C_1 \text{tr}(\xi_5 \Sigma \xi_5 \Sigma^\dagger) + \cdots \]

- Expanding as usual \(\rightarrow\) 16 pions each (non-singlet) flavor combination.
The Lagrangian for ChPT is given by:

$$\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \text{tr}(\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger) - a^2 C_1 \text{tr}(\xi_5 \Sigma \xi_5 \Sigma^\dagger) + \cdots$$

- Expanding as usual → 16 pions each (non-singlet) flavor combination.
- With one “Goldstone” pion whose mass vanishes in chiral limit (from the one non-singlet chiral symmetry unbroken by discretization corrections).
Lattice QCD: staggered quarks

\[\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \text{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger) - a^2 C_1 \text{tr}(\xi_5 \Sigma \xi_5 \Sigma^\dagger) + \cdots \]

• Expanding as usual → 16 pions each (non-singlet) flavor combination.
 • With one “Goldstone” pion whose mass vanishes in chiral limit (from the one non-singlet chiral symmetry unbroken by discretization corrections).
 • Rest are raised above Goldstone one by \(O(a^2)\) terms \(\times\) powers of \(\alpha_s\).
Lattice QCD: staggered quarks

\[\mathcal{L}_{\text{ChPT}} = \frac{f^2}{8} \text{tr}(\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger) - a^2 C_1 \text{tr}(\xi_5 \Sigma \xi_5 \Sigma^\dagger) + \cdots \]

- Expanding as usual → 16 pions each (non-singlet) flavor combination.
- With one “Goldstone” pion whose mass vanishes in chiral limit (from the one non-singlet chiral symmetry unbroken by discretization corrections).
- Rest are raised above Goldstone one by \(O(a^2) \) terms [times powers of \(\alpha_s \)].

Pion taste splittings vs \((\alpha_s a)^2\) for two versions of staggered quarks: “asqtad” and newer, more highly improved version, “HISQ”.

MILC [A. Bazavov, et al.],
PRD 87, 054505 (2013)
[arXiv:1212.4768]
So lattice-spacing-dependent ChPT can explain/control lattice artifacts:
 • Aoki phase (Wilson)
 • pion isospin-violations (twisted mass)
 • pion taste-splittings (staggered)

Another key use to is guide continuum extrapolations:
 • Fit quark-mass dependence and lattice-spacing dependence together, using expressions from the appropriate chpt.
 • Can significantly reduce systematic errors.
 • Such fits often done in partially quenched context: choose valence quarks to have different masses than sea quarks.
 • Useful because valence quarks are cheap compared to sea quarks: extract as much as possible for a given configuration (generated with sea quark back-effects).
 • “Partially quenched” because valence quarks are quenched: forbidden from appearing in virtual loops, but sea quarks are not quenched.
 • Add corresponding ghost (bosonic!) quarks, with same mass matrix as the valence quarks, to cancel the virtual loops (determinant) of the valence quarks [Morel, 1987].
Partial Quenching
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[
\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\mathcal{D} + \mathcal{M}) q + \bar{\hat{q}} (\mathcal{D} + \mathcal{M}') \hat{q} + \bar{\tilde{q}} (\mathcal{D} + \mathcal{M}') \tilde{q}
\]
Partially quenched QCD (PQQCD) Lagrangian (in continuum):

$$\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\mathcal{D} + \mathcal{M}) q + \bar{\hat{q}} (\mathcal{D} + \mathcal{M}') \hat{q} + \bar{\tilde{q}} (\mathcal{D} + \mathcal{M}') \tilde{q}$$

sea quarks
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[
\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\mathcal{D} + \mathcal{M}) q + \bar{\tilde{q}} (\mathcal{D} + \mathcal{M}') \tilde{q} + \bar{\tilde{q}} (\mathcal{D} + \mathcal{M}') \tilde{q}
\]

- Sea quarks
- Valence quarks

C. Bernard, *CD15*
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[
\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu \nu} G_{\mu \nu} + \bar{q} (\not{\partial} + \mathcal{M}) q + \bar{\tilde{q}} (\not{\partial} + \mathcal{M}') \tilde{q} + \bar{\tilde{q}} (\not{\partial} + \mathcal{M}') \tilde{q}
\]

- Sea quarks
- Valence quarks
- Ghost quarks
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[
\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\mathcal{D} + \mathcal{M}) q + \bar{q} (\mathcal{D} + \mathcal{M}') \hat{q} + \bar{\tilde{q}} (\mathcal{D} + \mathcal{M}') \tilde{q}
\]

- When \(\mathcal{M}' = \mathcal{M} \), reduces to QCD.
Partially quenched QCD (PQQCD) Lagrangian (in continuum):

$$\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu \nu} G_{\mu \nu} + \bar{q} (\not{D} + M) q + \bar{\hat{q}} (\not{D} + M') \hat{q} + \bar{\tilde{q}} (\not{D} + M') \tilde{q}$$

- When $M' = M$, reduces to QCD.
 - (More precisely, QCD Green’s function and physical quantities are a proper subset of those possible in PQQCD in this limit.)
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\not{D} + \mathcal{M}) q + \bar{\tilde{q}} (\not{D} + \mathcal{M}') \tilde{q} + \bar{\tilde{q}} (\not{D} + \mathcal{M}') \tilde{q} \]

- When \(\mathcal{M}' = \mathcal{M} \), reduces to QCD.
 - (More precisely, QCD Green’s function and physical quantities are a proper subset of those possible in PQQCD in this limit.)

- Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]:
Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu \nu} G_{\mu \nu} + \bar{q} (\bar{\Phi} + \mathcal{M}) q + \bar{q} (\bar{\Phi} + \mathcal{M}') \hat{q} + \bar{q} (\bar{\Phi} + \mathcal{M}') \tilde{q} \]

- When \(\mathcal{M}' = \mathcal{M} \), reduces to QCD.
 - (More precisely, QCD Green's function and physical quantities are a proper subset of those possible in PQQCD in this limit.)

Then partially quenched ChPT (PQChPT) at LO is \cite{CB&Golterman, 1993}:

\[\mathcal{L}_{\text{PQChPT}} = \frac{f^2}{8} \text{tr} (\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr} (\mathcal{M} \Sigma + \mathcal{M} \Sigma^\dagger) \]
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

 \[
 \mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\mathcal{D} + \mathcal{M}) q + \bar{\tilde{q}} (\mathcal{D} + \mathcal{M}') \tilde{q} + \bar{\tilde{q}} (\mathcal{D} + \mathcal{M}') \tilde{q}
 \]

 - **sea quarks**
 - **valence quarks**
 - **ghost quarks**

 - When \(\mathcal{M}' = \mathcal{M} \), reduces to QCD.
 - (More precisely, QCD Green’s function and physical quantities are a proper subset of those possible in PQQCD in this limit.)

- Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]:

 \[
 \mathcal{L}_{\text{PQChPT}} = \frac{f^2}{8} \text{tr}(\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger)
 \]

 - Looks standard but \(\Sigma \) is \((n_{\text{sea}}+2n_{\text{val}}) \times (n_{\text{sea}}+2n_{\text{val}})\) matrix, with pions of all combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[
\mathcal{L}_{PQQCD} = \frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \bar{q} (\slashed{D} + M) q + \bar{q} (\slashed{D} + M') \hat{q} + \bar{q} (\slashed{D} + M') \tilde{q}
\]

- When \(M' = M \), reduces to QCD.
 - (More precisely, QCD Green’s function and physical quantities are a proper subset of those possible in PQQCD in this limit.)

- Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]:

\[
\mathcal{L}_{PQChPT} = \frac{f^2}{8} tr(\partial \Sigma \partial \Sigma^\dagger) - \frac{B f^2}{4} tr(M \Sigma + M \Sigma^\dagger)
\]

 - Looks standard but \(\Sigma \) is \((n_{sea} + 2n_{val}) \times (n_{sea} + 2n_{val})\) matrix, with pions of all combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)
 - Mass matrix is \(M = \text{diag}(M, M', M') \)
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + \bar{q} (\not{D} + \mathcal{M}) q + \bar{q} (\not{D} + \mathcal{M}') \hat{q} + \bar{q} (\not{D} + \mathcal{M}') \tilde{q} \]

 - When \(\mathcal{M}' = \mathcal{M} \), reduces to QCD.
 - (More precisely, QCD Green’s function and physical quantities are a proper subset of those possible in PQQCD in this limit.)

- Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]:

\[\mathcal{L}_{\text{PQChPT}} = \frac{f^2}{8} \text{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger) \]

 - Looks standard but \(\Sigma \) is \((n_{\text{sea}}+2n_{\text{val}}) \times (n_{\text{sea}}+2n_{\text{val}}) \) matrix, with pions of all combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)
 - Mass matrix is \(M = \text{diag}(\mathcal{M}, \mathcal{M}', \mathcal{M}') \)
 - Chiral symmetry group is graded group \(\text{SU}(n_{\text{sea}}+n_{\text{val}} | n_{\text{val}}) \times \text{SU}(n_{\text{sea}}+n_{\text{val}} | n_{\text{val}}) \) instead of usual \(\text{SU}(n_{\text{sea}}) \times \text{SU}(n_{\text{sea}}) \).

C. Bernard, CD15
Partial Quenching

- Partially quenched QCD (PQQCD) Lagrangian (in continuum):

\[
\mathcal{L}_{\text{PQQCD}} = \frac{1}{4} G^{\mu \nu} G_{\mu \nu} + \bar{q} (\not{D} + \mathcal{M}) q + \bar{\hat{q}} (\not{D} + \mathcal{M}') \hat{q} + \bar{\tilde{q}} (\not{D} + \mathcal{M}') \tilde{q}
\]

- When \(\mathcal{M}' = \mathcal{M} \), reduces to QCD.
 - (More precisely, QCD Green’s function and physical quantities are a proper subset of those possible in PQQCD in this limit.)

- Then partially quenched ChPT (PQChPT) at LO is [CB & Golterman, 1993]:

\[
\mathcal{L}_{\text{PQChPT}} = \frac{f^2}{8} \text{tr}(\partial_\mu \Sigma \partial_\mu \Sigma^\dagger) - \frac{B f^2}{4} \text{tr}(M \Sigma + M \Sigma^\dagger)
\]

 - Looks standard but \(\Sigma \) is \((n_{\text{sea}} + 2n_{\text{val}}) \times (n_{\text{sea}} + 2n_{\text{val}})\) matrix, with pions of all combinations of quarks (sea-sea, sea-valence, sea-ghost, valence-valence, ...)
 - Mass matrix is \(M = \text{diag}(\mathcal{M}, \mathcal{M}', \mathcal{M}') \)
 - Chiral symmetry group is graded group \(\text{SU}(n_{\text{sea}} + n_{\text{val}} \mid n_{\text{val}}) \times \text{SU}(n_{\text{sea}} + n_{\text{val}} \mid n_{\text{val}}) \) instead of usual \(\text{SU}(n_{\text{sea}}) \times \text{SU}(n_{\text{sea}}) \).
 - graded group has some Grassman generators, because some transformations take fermions into bosons, and vice-versa, as in supersymmetry.

(C. Bernard, CD15)
Partial Quenching
Partial Quenching

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
Partial Quenching

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
Partial Quenching

🔹 PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.

- Cancel unwanted loops associated with valence particles.

🔹 Since valence particles on external lines do not appear in loops, PQCD violates unitarity.
Partial Quenching

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
Partial Quenching

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
Partial Quenching

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)
Partial Quenching

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.

- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)

- However, even for unequal valence & sea masses, the LECs of PQChPT are the same of those of the real world, since LECs don’t depend on quark masses [Sharpe and Shoresh, 2000].
 Partial Quenching

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)
- However, even for unequal valence & sea masses, the LECs of PQChPT are the same of those of the real world, since LECs don’t depend on quark masses [Sharpe and Shoresh, 2000].
 - Main reason why PQQCD and PQChPT are useful.
Partial Quenching

- PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 - Cancel unwanted loops associated with valence particles.
- Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 - Alternatively: Lagrangian contains spin-1/2 bosons!
 - Unitarity restored in limit when valence and sea masses equal.
 - (For all physical correlation functions corresponding to those in ordinary QCD.)
- However, even for unequal valence & sea masses, the LECs of PQChPT are the same of those of the real world, since LECs don’t depend on quark masses [Sharpe and Shoresh, 2000].
 - Main reason why PQQCD and PQChPT are useful.
- Original justification for ChPT [Weinberg, 1979], uses analyticity, clustering, and unitarity.
Partial Quenching

✧ PQChPT calculations in loop expansion are just like for standard ChPT, except that some fermionic mesons (sea-ghost, or valence-ghost pions) introduce minus signs in loops.
 • Cancel unwanted loops associated with valence particles.

✧ Since valence particles on external lines do not appear in loops, PQQCD violates unitarity.
 • Alternatively: Lagrangian contains spin-1/2 bosons!
 • Unitarity restored in limit when valence and sea masses equal.
 • (For all physical correlation functions corresponding to those in ordinary QCD.)

✧ However, even for unequal valence & sea masses, the LECs of PQChPT are the same of those of the real world, since LECs don’t depend on quark masses [Sharpe and Shoresh, 2000].
 • Main reason why PQQCD and PQChPT are useful.

✧ Original justification for ChPT [Weinberg, 1979], uses analyticity, clustering, and unitarity.
 • Is PQChPT really justified?
Partial Quenching
Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.
Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.

- Based on Leutwyler’s justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.

• Based on Leutwyler’s justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 • These are properties that can exist for Euclidean theory even if not unitary.
Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.

- Based on Leutwyler’s justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 - These are properties that can exist for Euclidean theory even if not unitary.
 - We showed* that the Euclidean theory has a transfer matrix and hence a Hamiltonian.

*modulo some (“mild”) assumptions
Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.

- Based on Leutwyler’s justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 - These are properties that can exist for Euclidean theory even if not unitary.
 - We showed* that the Euclidean theory has a transfer matrix and hence a Hamiltonian.
 - Hamiltonian is not Hermitian, but has a positive definite real part.

*modulo some (“mild”) assumptions
Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.

• Based on Leutwyler’s justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 • These are properties that can exist for Euclidean theory even if not unitary.
 • We showed* that the Euclidean theory has a *transfer matrix* and hence a Hamiltonian.
 – Hamiltonian is not Hermitian, but has a positive definite real part.
 – Implies* clustering.

* modulo some (“mild”) assumptions
Recently revisited issue [CB & Golterman, 2013] to put PQChPT on firmer footing.

- Based on Leutwyler’s justification for ChPT [Leutwyler, 1994], which emphasizes clustering and locality (not unitarity).
 - These are properties that can exist for Euclidean theory even if not unitary.
 - We showed* that the Euclidean theory has a transfer matrix and hence a Hamiltonian.
 - Hamiltonian is not Hermitian, but has a positive definite real part.
 - Implies* clustering.
 - PQChPT follows.*

*modulo some (“mild”) assumptions
Using Staggered ChPT
Using Staggered ChPT

- continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:
Using Staggered ChPT

- Continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

\[\chi^2/\text{dof}=538/504 \text{ (unadj.)} \]

\[p = 0.37 \]

• continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

Using Staggered ChPT

- Continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

\[\sqrt{\frac{C_a}{\chi^2/\text{dof}=538/504 \text{ (unadj.)}}} \]

- Same color and shape: changing valence mass for fixed \(a \) and sea-quark mass.

C. Bernard, CD15
Using Staggered ChPT

- Continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

- Same color and shape: changing valence mass for fixed a and sea-quark mass.
- Extrapolation to physical masses & continuum gives ~1% errors.

MILC [A. Bazavov et al., PoS(LAT2010), 074 (2010), arXiv:1012.0868.]

C. Bernard, CD15
Using Staggered ChPT

- continuum and chiral extrapolation of partially quenched staggered lattice data from multiple lattice spacings:

- Same color and shape: changing valence mass for fixed a and sea-quark mass.

- Extrapolation to physical masses & continuum gives ~1% errors.
 - Even though bulk of lattice data have ~10% discretization or mass corrections.

MILC [A. Bazavov et al., PoS(LAT2010), 074 (2010), arXiv:1012.0868.}
Staggered Heavy Quarks
Staggered Heavy Quarks

- ChPT for heavy-light mesons (D or D$_s$), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
Staggered Heavy Quarks

- ChPT for heavy-light mesons (D or D$_s$), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
- “HISQ” version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
Staggered Heavy Quarks

ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].

- “HISQ” version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \approx 1$.
Staggered Heavy Quarks

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - “HISQ” version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \approx 1$.

Staggered Lattice QCD
Staggered Heavy Quarks

ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].

- “HISQ” version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a \, m_c \ll 1$, even though may have only $a \, m_c \approx 1$.

Staggered Lattice QCD

\[a \, m_c \ll 1 \]
\[a \, m_L \ll 1 \]
Staggered Heavy Quarks

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
- "HISQ" version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, \(a m_c \ll 1 \), even though may have only \(a m_c \approx 1 \).
Staggered Heavy Quarks

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].

 • “HISQ” version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, \(a m_c \ll 1 \), even though may have only \(a m_c \lesssim 1 \).

\[
\begin{align*}
\text{Staggered Lattice QCD} & \quad a m_c \ll 1 \\
& \quad a m_\ell \ll 1 \\
\rightarrow & \quad \text{Symanzik Effective Theory} \\
\text{\Lambda}_{\text{QCD}} / m_c & \ll 1
\end{align*}
\]
Staggered Heavy Quarks

- ChPT for heavy-light mesons (D or D_s), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - “HISQ” version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

\[
\begin{align*}
\text{Staggered Lattice QCD} & \quad \xrightarrow{a m_c \ll 1} \xrightarrow{a m_\ell \ll 1} \quad \text{Symanzik Effective Theory} \\
\Lambda_{\text{QCD}} / m_c & \ll 1 \\
\text{HQET for charm quark}
\end{align*}
\]
Staggered Heavy Quarks

- ChPT for heavy-light mesons (D or Ds), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
- “HISQ” version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \sim 1$.

\[
\begin{align*}
Staggered \quad Lattice \ QCD & \quad a m_c \ll 1 \quad a m_\ell \ll 1 \\
\text{Symanzik} \quad \text{Effective} \quad \text{Theory} & \\
\Lambda_{QCD} / m_c \ll 1 & \\
HQET \ for \ charm \ quark \quad m_\ell / \Lambda_{QCD} \ll 1
\end{align*}
\]
Staggered Heavy Quarks

- ChPT for heavy-light mesons (D or Ds), including discretization errors, when both heavy and light quarks are staggered [J. Komijani and CB, 2013].
 - “HISQ” version of staggered quarks [HPQCD, Follana et al., 2007] makes possible charm simulations with staggered action.
 - Highly improved action so, effectively, $a m_c \ll 1$, even though may have only $a m_c \lesssim 1$.

\[
\begin{align*}
\Lambda_{QCD} / m_c &\ll 1 \\
m_\ell / \Lambda_{QCD} &\ll 1 \\
a m_\ell &\ll 1 \\
a m_c &\ll 1
\end{align*}
\]
Staggered Heavy & Light Quarks
Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds}.
Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds}.

Fit to form from heavy-meson ChPT with staggered discretization corrections:
Staggered Heavy & Light Quarks

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds}.

- Fit to form from heavy-meson ChPT with staggered discretization corrections:

Fermilab/MILC [A. Bazavov et al.], PRD 90, 074509 (2014)
Staggered Heavy & Light Quarks

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds}.

- Fit to form from heavy-meson ChPT with staggered discretization corrections:

 - Fit to partially quenched data shown.

Fermilab/MILC [A. Bazavov et al.], PRD 90, 074509 (2014)
Staggered Heavy & Light Quarks

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds}.

- Fit to form from heavy-meson ChPT with staggered discretization corrections:

 - Fit to partially quenched data shown.
 - χ^2/d.o.f. = 347/339, $p = 0.36$.

Fermilab/MILC [A. Bazavov et al.], PRD 90, 074509 (2014)
Staggered Heavy & Light Quarks

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, \(f_D \) and \(f_{D_s} \).

- Fit to form from heavy-meson ChPT with staggered discretization corrections:

- Fit to partially quenched data shown.
- \(\chi^2/d.o.f. = 347/339 \), \(p = 0.36 \).
- Orange band gives result after setting sea and valence masses equal, and extrapolating to continuum.

Fermilab/MILC [A. Bazavov et al.], PRD 90, 074509 (2014)
Staggered Heavy & Light Quarks

- Fermilab/MILC has simulated staggered charm and light quarks to determine heavy-light decay constants, f_D and f_{Ds}.

- Fit to form from heavy-meson ChPT with staggered discretization corrections:

 - Fit to partially quenched data shown.
 - χ^2/d.o.f. = 347/339, $p = 0.36$.
 - Orange band gives result after setting sea and valence masses equal, and extrapolating to continuum.

- Get:

 \[
 f_{D^+} = 212.6(0.4)(^{+1.0}_{-1.2}) \text{ MeV} \\
 f_{D_s} = 249.0(0.3)(^{+1.4}_{-1.5}) \text{ MeV}
 \]

Fermilab/MILC [A. Bazavov et al.], PRD 90, 074509 (2014)
ChPT for Twisted Boundary Conditions
With periodic boundary conditions, lattice momenta are limited:

\[p = \frac{2\pi n}{L}. \]

\([L = \text{spatial lattice dimension}, n = \text{integer}.]\)
With periodic boundary conditions, lattice momenta are limited:
\[p = \frac{2\pi n}{L}. \]
\([L = \text{spatial lattice dimension}, n = \text{integer}.]\]

- Even with current large volumes, \(L = 5 \text{ fm}, \) momenta spaced by \(\approx 250 \text{ MeV}. \)
With periodic boundary conditions, lattice momenta are limited:

\[p = \frac{2\pi n}{L}. \]

\([L = \text{spatial lattice dimension}, n = \text{integer}].\]

- Even with current large volumes, \(L = 5\ \text{fm},\) momenta spaced by \(\approx250\ \text{MeV}.\)
- Difficult, e.g., to compute momentum dependence of form factors.
With periodic boundary conditions, lattice momenta are limited:

\[p = \frac{2\pi n}{L}. \]

[\(L = \) spatial lattice dimension, \(n = \) integer.]

- Even with current large volumes, \(L = 5 \text{ fm} \), momenta spaced by \(\approx 250 \text{ MeV} \).
 - Difficult, e.g., to compute momentum dependence of form factors.

Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]:

give (some) quarks **twisted boundary conditions**:

\[q(x+L) = e^{i\theta} q(x). \]
With periodic boundary conditions, lattice momenta are limited:

\[p = \frac{2\pi n}{L}. \]

\([L = \text{spatial lattice dimension}, n = \text{integer}].\]

- Even with current large volumes, \(L = 5 \text{ fm},\) momenta spaced by \(\approx 250 \text{ MeV}.$
 - Difficult, e.g., to compute momentum dependence of form factors.

Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]: give (some) quarks \textit{twisted boundary conditions}:

\[q(x+L) = e^{i\theta} q(x). \]

- Then allowed momenta are: \(p = \frac{(2\pi n + \theta)}{L}. \)
With periodic boundary conditions, lattice momenta are limited:

\[p = \frac{2\pi n}{L}. \quad [L = \text{spatial lattice dimension, } n = \text{integer}]. \]

- Even with current large volumes, \(L = 5 \text{ fm} \), momenta spaced by \(\approx 250 \text{ MeV} \).
 - Difficult, e.g., to compute momentum dependence of form factors.

Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]:

- Give (some) quarks \textit{twisted boundary conditions}:
 \[q(x+L) = e^{i\theta} q(x). \]

- Then allowed momenta are:
 \[p = \frac{2\pi n + \theta}{L}. \]

- Finite volume effects are now different than with periodic b.c.
ChPT for Twisted Boundary Conditions

With periodic boundary conditions, lattice momenta are limited:
\[p = \frac{2\pi n}{L}. \quad [L = \text{spatial lattice dimension}, \ n = \text{integer}]. \]

- Even with current large volumes, \(L = 5 \text{ fm} \), momenta spaced by \(\approx 250 \text{ MeV} \).
 - Difficult, e.g., to compute momentum dependence of form factors.

Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]:

give (some) quarks \textit{twisted boundary conditions}:
\[q(x+L) = e^{i\theta} q(x). \]

- Then allowed momenta are: \(p = \frac{2\pi n + \theta}{L}. \)
- Finite volume effects are now different than with periodic b.c.
- Use ChPT to work out effects [Sachrajda & Villadoro, 2004; Bijnens & Relefors, 2014].
With periodic boundary conditions, lattice momenta are limited:
\[p = \frac{2\pi n}{L}. \]
\[[L = \text{spatial lattice dimension, } n = \text{integer.}] \]

- Even with current large volumes, \(L = 5 \text{ fm} \), momenta spaced by \(\approx 250 \text{ MeV} \).
 - Difficult, e.g., to compute momentum dependence of form factors.

Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]:

give (some) quarks \textit{twisted boundary conditions}:
\[q(x+L) = e^{i\theta} q(x). \]

- Then allowed momenta are:
 \[p = \frac{(2\pi n + \theta)}{L}. \]
- Finite volume effects are now different than with periodic b.c.
- Use ChPT to work out effects [Sachrajda & Villadoro, 2004; Bijnens & Relefors, 2014].
- Subtle: e.g., Bijnens & Relefors point out that integrals vanishing in infinite volume are non-zero with twisted b.c. in finite volume:
With periodic boundary conditions, lattice momenta are limited:

\[p = \frac{2\pi n}{L}. \]

\([L = \text{spatial lattice dimension}, \, n = \text{integer}].\]

- Even with current large volumes, \(L = 5\) fm, momenta spaced by \(\approx 250\) MeV.
 - Difficult, e.g., to compute momentum dependence of form factors.

Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]:

give (some) quarks *twisted boundary conditions*:

\[q(x+L) = e^{i\theta} q(x). \]

- Then allowed momenta are: \(p = \frac{(2\pi n + \theta)}{L}.\)
- Finite volume effects are now different than with periodic b.c.
- Use ChPT to work out effects [Sachrajda & Villadoro, 2004; Bijnens & Relefors, 2014].
- Subtle: e.g., Bijnens & Relefors point out that integrals vanishing in infinite volume are non-zero with twisted b.c. in finite volume:

\[\int \frac{d^4 k}{2\pi^4} \frac{k_\mu}{k^2 + m^2} = 0 \]

infinite volume: odd integral
ChPT for Twisted Boundary Conditions

- With periodic boundary conditions, lattice momenta are limited:
 \[p = \frac{2\pi n}{L}. \]
 \[L = \text{spatial lattice dimension}, \quad n = \text{integer}. \]

 - Even with current large volumes, \(L = 5 \text{ fm} \), momenta spaced by \(\approx 250 \text{ MeV} \).
 - Difficult, e.g., to compute momentum dependence of form factors.

- Solution [Bedaque, 2004; de Divitiis, Petronzio & Tantalo, 2004]:
 give (some) quarks \textit{twisted boundary conditions}:
 \[q(x+L) = e^{i\theta} q(x). \]

 - Then allowed momenta are:
 \[p = \frac{(2\pi n + \theta)}{L}. \]

 - Finite volume effects are now different than with periodic b.c.

 - Use ChPT to work out effects [Sachrajda & Villadoro, 2004; Bijnens & Relefors, 2014].

 - Subtle: e.g., Bijnens & Relefors point out that integrals vanishing in infinite volume are non-zero with twisted b.c. in finite volume:

 \[
 \int \frac{d^4 k}{2\pi^4} \frac{k_\mu}{k^2 + m^2} = 0 \quad \implies \quad \frac{1}{L^4} \sum \frac{k_\mu}{k^2 + m^2} = 0
 \]

 - Infinite volume: odd integral
 - Finite volume: shift spoils \(k \rightarrow -k \) symmetry
Lattice allows first-principles computation of LECs of the effective theory from fundamental QCD.

- In practice, is easiest for LECs affecting pseudoscalar meson masses and leptonic decay constants.
 - Can be calculated from quark-mass dependence of 2-point Euclidean Green’s functions.
 - Nice complement to experiments, which give little constraint on quark-mass dependence since quark masses fixed in Nature.
- LECs affecting momentum dependence of scattering amplitudes are just the opposite:
 - Difficult on the lattice: n-point functions; must pull out (indirectly) Minkowski-space amplitudes from Euclidean space calculations. [Maiani & Testa, 1990; Lüscher, 1991].
SU(2) LECs

\[\Sigma \equiv |\langle \bar{u}u \rangle| = (271(15) \text{ MeV})^3 \]

- in the two flavor chiral limit: \(m_u, m_d \rightarrow 0 \).
- values quoted are for \(N_f = 2+1 \) theory.
- For \(F_\pi/F \), looks like systematic errors of one or more calculations may be underestimated.
$N_f = 2$ Condensate from Banks-Casher
$N_f = 2$ Condensate from Banks-Casher

$N_f = 2$ Condensate from Banks-Casher

$N_f = 2$ Condensate from Banks-Casher

- From GMOR, condensate gives slope of M^2_π with quark mass (green lines).

\(N_f = 2 \) Condensate from Banks-Casher

- From GMOR, condensate gives slope of \(M_\pi^2 \) with quark mass (green lines).
- Agreement with direct lattice data for \(M_\pi^2 \) is excellent.

$N_f = 2$ Condensate from Banks-Casher

- From GMOR, condensate gives slope of M_π^2 with quark mass (green lines).
- Agreement with direct lattice data for M_π^2 is excellent.
- Get $|\langle \bar{u}u \rangle|^{1/3} = 263(3)(4) \text{ MeV}$

$N_f = 2$ Condensate from Banks-Casher

- From GMOR, condensate gives slope of M_π^2 with quark mass (green lines).
- Agreement with direct lattice data for M_π^2 is excellent.
- Get $|\langle \bar{u}u \rangle |^{1/3} = 263(3)(4)$ MeV
- FLAG, 2013 average is $|\langle \bar{u}u \rangle |^{1/3} = 269(8)$ MeV ($N_f=2; \mu = 2$ GeV).

\[\bar{\ell}_3 = 3.05(99) \]

\[\bar{\ell}_4 = 4.02(28) \]
\[
\ell_3 = 3.05(99)
\]

\[
\ell_4 = 4.02(28)
\]

• from quark mass dependence of pion (mass)\(^2\) and decay constant, respectively.
\[\bar{\ell}_3 = 3.05(99) \]

- from quark mass dependence of pion (mass)\(^2\) and decay constant, respectively.

- values quoted are for \(N_f = 2+1\) theory;
\[\bar{\ell}_3 = 3.05(99) \]

\[\bar{\ell}_4 = 4.02(28) \]

- from quark mass dependence of pion (mass)\(^2\) and decay constant, respectively.
- values quoted are for \(N_f = 2+1\) theory;
- for \(\bar{\ell}_4\), again may be some underestimates of systematic errors.
SU(2) LECs

\[\bar{\ell}_3 = 3.05(99) \]

- from quark mass dependence of pion (mass)\(^2\) and decay constant, respectively.
- values quoted are for \(N_f = 2+1 \) theory;
- for \(\bar{\ell}_4 \), again may be some underestimates of systematic errors.

RBC [T. Blum et al.], arXiv:1411.7017; physical quark masses; \(N_f=2+1 \):
SU(2) LECs

\[\bar{l}_3 = 3.05(99) \]

• from quark mass dependence of pion (mass)\(^2\) and decay constant, respectively.

• values quoted are for \(N_f = 2+1\) theory;

• for \(\bar{l}_4\), again may be some underestimates of systematic errors.

RBC [T. Blum et al., arXiv:1411.7017]; physical quark masses; \(N_f=2+1\):

\[\bar{l}_3 = 2.73(13) \quad \bar{l}_4 = 4.113(59) \]
Convergence of ChPT: SU(2)
Convergence of ChPT: SU(2)

2+1; $a \sim 0.12$ to 0.10 fm
Convergence of ChPT: SU(2)

- Convergence good for \(f_\pi \) and reasonable for \(M_\pi^2/\hat{m} \).
- up to limit of lattice data (~7 or 8 times physical \(\hat{m} \)).

2+1;
\(a \sim 0.12 \) to 0.10 fm
Convergence of ChPT: SU(2)

- Convergence good for f_π and reasonable for M_π^2/\hat{m}.
- up to limit of lattice data (~7 or 8 times physical \hat{m}).
- Reasonable agreement between computations.

$$M_\pi^2/(am/am_{\text{phys}})$$

2+1;
a~0.12 to 0.10 fm

MILC
[A. Bazavov et al.], PoS(LAT09), 077, [arXiv: 0911.0472]

2+1;
a~0.06 to 0.045 fm
Convergence of ChPT: SU(2)

- Convergence good for f_π and reasonable for M^2_π/\hat{m}.
- up to limit of lattice data (~7 or 8 times physical \hat{m}).

MILC [A. Bazavov et al., PoS(LAT09), 077, [arXiv: 0911.0472].

2+1; $a\sim0.12$ to 0.10 fm

2+1; $a\sim0.06$ to 0.045 fm
Convergence of ChPT: SU(2)

- Convergence good for f_π and reasonable for M_π^2/\hat{m}.
 - up to limit of lattice data (~7 or 8 times physical \hat{m}).
- Reasonable agreement between computations.
 - MILC lattice data is partially quenched.
 - corrected for in lattice ChPT.

2+1; $a \sim 0.12$ to 0.10 fm

MILC
[A. Bazavov et al.], PoS(LAT09), 077, [arXiv: 0911.0472]

2+1; $a \sim 0.06$ to 0.045 fm
SU(2) LECs

FLAG2013

\[\ell_6 \]

- \text{RBC/UKQCD 08A}
- \text{our estimate for } N_f = 2
- \text{Brandt 13}
- \text{JLQCD/TWQCD 09}
- \text{ETM 08}

- \text{Bijnens 98}
- \text{Gasser 84}
SU(2) LECs

\[\bar{\ell}_6 = 15.1(1.2) \]
\(\ell_6 = 15.1(1.2) \)

- from pion vector form factor.
\(\ell_6 = 15.1(1.2) \)

- from pion vector form factor.
- result from \(N_f = 2 \).
SU(2) LECs

\[\ell_6 = 15.1(1.2) \]

- from pion vector form factor.
- result from \(N_f = 2 \).
- also determines the radius \(\langle r^2 \rangle_\pi \) and the curvature \(c_\pi \).
\[\ell_6 = 15.1(1.2) \]

- from pion vector form factor.
- result from \(N_f = 2 \).
- also determines the radius \(\langle r^2 \rangle_V \)
 and the curvature \(c_V \).

$\bar{\ell}_6 = 15.1(1.2)$

- from pion vector form factor.
- result from $N_f = 2$.
- also determines the radius $\langle r^2 \rangle_\pi$ and the curvature c_V.

H. Fukaya, et al., PRD 90, 034506 (2014); $N_f = 2+1$
SU(2) LECs

\[\tilde{\ell}_6 = 15.1(1.2) \]

- from pion vector form factor.
- result from \(N_f = 2 \).
- also determines the radius \(\langle r^2 \rangle_{\pi} \) and the curvature \(c_V \).

\[\langle r^2 \rangle_{\pi} = 0.49(4)(4) \text{ fm}^2 \]
\[\tilde{\ell}_6 = 7.5(1.3)(1.5) \]
\[F_\pi/F = 1.6(2)(3) \]

C. Bernard, CD15 26
$\bar{\ell}_6 = 15.1(1.2)$

- from pion vector form factor.
- result from $N_f = 2$.
- also determines the radius $\langle r^2 \rangle_V$ and the curvature c_V.

H. Fukaya, et al., PRD 90, 034506 (2014); $N_f = 2+1$
ETM [C. Alexandrou et al.],
PRD 90, 074501 (2014),
arXiv:1406.4310;
$N_f = 2+1+1$
ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310; $N_f = 2+1+1$

- Fit is to NLO SU(2) HBChPT:
 \[m_N = m_N^{(0)} - 4c_1 m_\pi^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_\pi^3 \]
Nucleon Chiral Extrapolation

Fit is to NLO SU(2) HBChPT: \[m_N = m_N^{(0)} - 4c_1 m_\pi^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_\pi^3 \]

- constrained to go through physical point.

ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310; \(N_f = 2+1+1 \)
Nucleon Chiral Extrapolation

ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310; \(N_f = 2+1+1 \)

- Fit is to NLO SU(2) HBChPT:
 \[m_N = m_N^{(0)} - 4c_1 m_\pi^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_\pi^3 \]
 - constrained to go through physical point.

- \(c_1 \sim -1.1 \) is large but not crazy: \(m_N \) changes by \(~40\%\) from physical point to \(m_\pi = m_K \).
Fit is to NLO SU(2) HBChPT:

\[m_N = m_N^{(0)} - 4c_1 m_\pi^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_\pi^3 \]

- constrained to go through physical point.

- \(c_1 \sim -1.1 \) is large but not crazy: \(m_N \) changes by \(\sim 40\% \) from physical point to \(m_\pi = m_K \).
 - about twice as much as \(f_\pi \rightarrow f_K \).

\(N_f = 2+1+1 \)
Nucleon Chiral Extrapolation

- Fit is to NLO SU(2) HBChPT:
 \[m_N = m_{N}^{(0)} - 4c_1 m_{\pi}^2 - \frac{3g_A^2}{32\pi F_\pi^2} m_{\pi}^3 \]
 - constrained to go through physical point.
- \(c_1 \sim -1.1 \) is large but not crazy: \(m_N \) changes by \(\sim 40\% \) from physical point to \(m_{\pi} = m_K \).
 - about twice as much as \(f_{\pi} \rightarrow f_K \).
- Fit including \(\Delta \) is very similar.

ETM [C. Alexandrou et al.], PRD 90, 074501 (2014), arXiv:1406.4310; \(N_f = 2+1+1 \)
Nucleon Chiral Extrapolation
Nucleon Chiral Extrapolation

Nucleon Chiral Extrapolation

- “Ruler plot” [named by B. Tiburzi].

“Ruler plot” [named by B. Tiburzi].

Update of RBC points.*

*thanks to T. Blum for unpublished data.

• “Ruler plot” [named by B. Tiburzi].

• Update of RBC points.*

*thanks to T. Blum for unpublished data.
Nucleon Chiral Extrapolation

- “Ruler plot” [named by B. Tiburzi].
- Update of RBC points.*
- Seems to be a curious accident; doesn’t contradict expected chiral behavior.

*thanks to T. Blum for unpublished data.
SU(3) LECs

\[L_{10} \text{ from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014)}. \]
SU(3) LECs

- L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).
 - Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
SU(3) LECs

• \(L_{10} \) from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

• Combined NNLO study of lattice and continuum data for \(ud \) V–A correlator, and chiral sum rules for flavor-breaking \(ud – us \) combination.
 ➡ Continuum determination of \(ud \) correlator precise in low-\(Q^2 \) region.
SU(3) LECs

• L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking $ud – us$ combination.
 - Continuum determination of ud correlator precise in low-Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of mass-dependence, but mainly at higher Q^2.
SU(3) LECs

- **L_{10} from lattice+continuum:** P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of ud correlator precise in low-Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of mass-dependence, but mainly at higher Q^2.

![Graph 1](image1)

![Graph 2](image2)

- $1/a=1.37$ GeV, $m_\pi=171$ MeV
- OPAL+DV model, central
- OPAL+DV model, 1σ errors
SU(3) LECs

L from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of ud correlator precise in low-Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of mass-dependence, but mainly at higher Q^2.

✓ Excellent agreement where both are precise.
SU(3) LECs

L_{10} from lattice+continuum: P. Boyle et al., PRD 89, 094510 (2014).

- Combined NNLO study of lattice and continuum data for ud V–A correlator, and chiral sum rules for flavor-breaking ud – us combination.
 - Continuum determination of ud correlator precise in low-Q^2 region.
 - Lattice (using RBC domain-wall configurations) allows determination of mass-dependence, but mainly at higher Q^2.

✓ Excellent agreement where both are precise.

⇒ Additional constraint from chiral sum rules (inverse moment finite energy) [Golterman, Maltman & Peris, 2014].
Combined NNLO study of lattice and continuum data for \(ud \) V–A correlator, and chiral sum rules for flavor-breaking \(ud \) – \(us \) combination.

- Continuum determination of \(ud \) correlator precise in low-\(Q^2 \) region.
- Lattice (using RBC domain-wall configurations) allows determination of mass-dependence, but mainly at higher \(Q^2 \).

- Excellent agreement where both are precise.
- Additional constraint from chiral sum rules (inverse moment finite energy) [Golterman, Maltman & Peris, 2014]. Get: \(L_{10}^r(m_\rho) = -0.00346(32) \)
SU(3): chiral limit & convergence
SU(3): chiral limit & convergence

• Much more difficult issue to address than in SU(2):
SU(3): chiral limit & convergence

- Much more difficult issue to address than in SU(2):

 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have $\sim 20\%$ corrections at NLO at the physical strange-quark mass.
SU(3): chiral limit & convergence

✦ Much more difficult issue to address than in SU(2):

• We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.

• So even if SU(3) ChPT “converges well,” would expect ~4% NNLO corrections.
SU(3): chiral limit & convergence

Much more difficult issue to address than in SU(2):

- We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have \(\sim \)20% corrections at NLO at the physical strange-quark mass.

- So even if SU(3) ChPT “converges well,” would expect \(\sim \)4% NNLO corrections.

- Lattice data has sub-percent errors; good fits will probably require still higher order terms.
SU(3): chiral limit & convergence

Much more difficult issue to address than in SU(2):

- We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
- So even if SU(3) ChPT “converges well,” would expect ~4% NNLO corrections.
- Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
SU(3): chiral limit & convergence

Much more difficult issue to address than in SU(2):

• We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.

• So even if SU(3) ChPT “converges well,” would expect ~4% NNLO corrections.

• Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 • But chiral logs not known at NNNLO, so fits become ad-hoc.
 – Fine for interpolating around m_s, but not for
SU(3): chiral limit & convergence

🔹 Much more difficult issue to address than in SU(2):

- We know \(f_K / f_\pi \approx 1.2 \), but \(f_K = f_\pi \) at LO: seem to have \(~20\%\) corrections at NLO at the physical strange-quark mass.

- So even if SU(3) ChPT “converges well,” would expect \(~4\%\) NNLO corrections.

- Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - Fine for interpolating around \(m_s \), but not for finding LECs.
SU(3): chiral limit & convergence

Much more difficult issue to address than in SU(2):

- We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.
- So even if SU(3) ChPT “converges well,” would expect ~4% NNLO corrections.
- Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNNLO, so fits become ad-hoc.
 - Fine for interpolating around m_s, but not for
 - finding LECs.
 - extrapolating from near m_s to the chiral limit.
SU(3): chiral limit & convergence

Much more difficult issue to address than in SU(2):

• We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have ~20% corrections at NLO at the physical strange-quark mass.

• So even if SU(3) ChPT “converges well,” would expect ~4% NNLO corrections.

• Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 • But chiral logs not known at NNNNLO, so fits become ad-hoc.
 – Fine for interpolating around m_s, but not for finding LECs.
 – extrapolating from near m_s to the chiral limit.
 – determining fundamental issues like convergence.
SU(3): chiral limit & convergence

- Much more difficult issue to address than in SU(2):
 - We know $f_K/f_\pi \approx 1.2$, but $f_K = f_\pi$ at LO: seem to have $\sim 20\%$ corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT “converges well,” would expect $\sim 4\%$ NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - Fine for interpolating around m_s, but not for
 » finding LECs.
 » extrapolating from near m_s to the chiral limit.
 » determining fundamental issues like convergence.
 - “Coupling constant” is $1/(16\pi^2 f_0^2)$, but for highest order terms (NNLO in practice), it is consistent (and even sensible) to replace f_0 (decay constant in the 3-flavor chiral limit) by a physical decay constant, e.g. f_π, or even f_K (if data runs up to the kaon mass).
SU(3): chiral limit & convergence

Much more difficult issue to address than in SU(2):

• We know \(f_K / f_\pi \approx 1.2 \), but \(f_K = f_\pi \) at LO: seem to have \(\sim 20\% \) corrections at NLO at the physical strange-quark mass.

• So even if SU(3) ChPT “converges well,” would expect \(\sim 4\% \) NNLO corrections.

• Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 • But chiral logs not known at NNNLO, so fits become ad-hoc.
 – Fine for interpolating around \(m_s \), but not for
 » finding LECs.
 » extrapolating from near \(m_s \) to the chiral limit.
 » determining fundamental issues like convergence.

• “Coupling constant” is \(1 / (16\pi^2 f_0^2) \), but for highest order terms (NNLO in practice), it is consistent (and even sensible) to replace \(f_0 \) (decay constant in the 3-flavor chiral limit) by a physical decay constant, e.g. \(f_\pi \), or even \(f_K \) (if data runs up to the kaon mass).
 • This makes a big difference in size of NNLO terms!
SU(3): chiral limit & convergence

- Much more difficult issue to address than in SU(2):
 - We know \(f_K/f_\pi \approx 1.2 \), but \(f_K = f_\pi \) at LO: seem to have \(~20\%\) corrections at NLO at the physical strange-quark mass.
 - So even if SU(3) ChPT “converges well,” would expect \(~4\%\) NNLO corrections.
 - Lattice data has sub-percent errors; good fits will probably require still higher order terms.
 - But chiral logs not known at NNNLO, so fits become ad-hoc.
 - Fine for interpolating around \(m_s \), but not for
 » finding LECs.
 » extrapolating from near \(m_s \) to the chiral limit.
 » determining fundamental issues like convergence.
 - “Coupling constant” is \(1/(16\pi^2 f_0^2) \), but for highest order terms (NNLO in practice), it is consistent (and even sensible) to replace \(f_0 \) (decay constant in the 3-flavor chiral limit) by a physical decay constant, e.g. \(f_\pi \), or even \(f_K \) (if data runs up to the kaon mass).
 - This makes a big difference in size of NNLO terms!
 - Reliable control of the SU(3) ChPT seems only possible for the simulated strange-quark mass, \(m_s' \), chosen less than its physical value, \(m_s \).
SU(3): chiral limit & convergence
SU(3): chiral limit & convergence

- MILC “asqtad” simulations with $0.1 \, m_s \leq m_s' \leq 0.6 \, m_s$ (circa 2010).
SU(3): chiral limit & convergence

- MILC “asqtad” simulations with $0.1 \, m_s \leq m_s' \leq 0.6 \, m_s$ (circa 2010).
 - two very different fits for decay constant with $f_{\text{NNLO}} \approx f_{\pi}$
MILC “asqtad” simulations with $0.1 \, m_s \leq m_s' \leq 0.6 \, m_s$ (circa 2010).

- two very different fits for decay constant with $f_{\text{NNLO}} \approx f_{\pi}$

MILC “asqtad” simulations with $0.1 \, m_s \leq m_s' \leq 0.6 \, m_s$ (circa 2010).

- two very different fits for decay constant with $f_{\text{NNLO}} \approx f_\pi$

- function of strange sea mass, with u,d mass at chiral limit (extrapolated to continuum).

MILC “asqtad” simulations with $0.1 \, m_s \leq m_s' \leq 0.6 \, m_s$ (circa 2010).

- two very different fits for decay constant with $f_{\text{NNLO}} \approx f_\pi$

\[f_{\text{NNLO}} = f_\pi \]
\[f_\pi / f_0 = 1.26(4) \]

MILC “asqtad” simulations with $0.1 m_s \leq m_s' \leq 0.6 m_s$ (circa 2010).

- two very different fits for decay constant with $f_{\text{NNLO}} \approx f_\pi$

![Graph 1](image1)

- function of strange sea mass, with u,d mass at chiral limit (& extrapolated to continuum).

\[
f_{\text{NNLO}} = f_\pi \\
f_\pi / f_0 = 1.26(4)
\]

\[
f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_\pi \\
f_\pi / f_0 = 1.09(2)
\]
MILC “asqtad” simulations with $0.1 \, m_s \leq m_s' \leq 0.6 \, m_s$ (circa 2010).

- two very different fits for decay constant with $f_{\text{NNLO}} \approx f_{\pi}$

function of strange sea mass, with u,d mass at chiral limit (& extrapolated to continuum).

$$f_{\text{NNLO}} = f_{\pi}$$

$$f_{\pi} / f_0 = 1.26(4)$$

$$f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_{\pi}$$

$$f_{\pi} / f_0 = 1.09(2)$$

- Right-hand fits wants f_0 high to make f_{NNLO} high.
SU(3): chiral limit & convergence

- MILC “asqtad” simulations with $0.1 m_s \leq m_s' \leq 0.6 m_s$ (circa 2010).
 - two very different fits for decay constant with $f_{\text{NNLO}} \approx f_\pi$

 \[
 f_{\text{NNLO}} = f_\pi \\
 f_\pi / f_0 = 1.26(4)
 \]

- Right-hand fits wants f_0 high to make f_{NNLO} high.

- If f_{NNLO} fixed at f_π, independent of f_0 (left fit), get something totally different:
 - low f_0: small LO, big NLO.

- function of strange sea mass, with u,d mass at chiral limit (\& extrapolated to continuum).

- \[
 f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_\pi \\
 f_\pi / f_0 = 1.09(2)
 \]

- see:
 - C. Bernard, CD15
MILC “asqtad” simulations with $0.1 \, m_s \leq m_s' \leq 0.6 \, m_s$ (circa 2010).

- two very different fits for decay constant with $f_{\text{NNLO}} \approx f_\pi$

$\bar{\overline{\text{function of strange sea mass, with } u,d \text{ mass at chiral limit (}& \text{extrapolated to continuum).}}$

\[
f_{\text{NNLO}} = f_\pi \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.59(13) \quad f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_\pi
\]

- Right-hand fits wants f_0 high to make f_{NNLO} high.

- If f_{NNLO} fixed at f_π, independent of f_0 (left fit), get something totally different: low f_0 : small LO, big NLO.

SU(3): chiral limit & convergence

♦ MILC "asqtad" simulations with \(0.1 m_s \leq m_s' \leq 0.6 m_s\) (circa 2010).
 • two very different fits for decay constant with \(f_{\text{NNLO}} \approx f_\pi\)

\[
\begin{align*}
 f_{\text{NNLO}} &= f_\pi \\
 f_\pi / f_0 &= 1.26(4) \\
 |\langle \bar{u}u \rangle_2| / |\langle \bar{u}u \rangle_3| &= 1.59(13) \\
 f_{\text{NNLO}} &= \text{const.} \times f_0 \approx f_\pi \\
 f_\pi / f_0 &= 1.09(2)
\end{align*}
\]

“Paramagnetic effect:” Descotes, Girlanda & Stern, 1999

• Right-hand fits wants \(f_0\) high to make \(f_{\text{NNLO}}\) high.

• If \(f_{\text{NNLO}}\) fixed at \(f_\pi\), independent of \(f_0\) (left fit), get something totally different:
 \(\text{low } f_0: \text{ small LO, big NLO.}\)
SU(3): chiral limit & convergence
SU(3): chiral limit & convergence

• Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.
Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.
• Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.

$$f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_K$$

$$f_\pi / f_0 = 1.17(4)$$

(intermediate value of f_0)
Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.

Now two versions of fit (fixing f_{NNLO} independently of f_0, or fixing f_{NNLO}/f_0) give very similar results.

$$f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_K$$

$$f_\pi/f_0 = 1.17(4)$$

(intermediate value of f_0)
• Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.

• Now two versions of fit (fixing f_{NNLO} independently of f_0, or fixing f_{NNLO}/f_0) give very similar results.

• And $p=0.75$, significantly larger than before.

\[f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_K \]

\[f_\pi/f_0 = 1.17(4) \]

(intermediate value of f_0)
• Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.
• Now two versions of fit (fixing f_{NNLO} independently of f_0, or fixing f_{NNLO}/f_0) give very similar results.
• And $p=0.75$, significantly larger than before.
• Taken at face value, would say
\[
\frac{f_\pi}{f_0} = 1.17(4)(9); \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.34(10)^{+25}_{-16}
\]

\[
f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_K
\]
\[
f_\pi/f_0 = 1.17(4)
\]
(intermediate value of f_0)
• Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.

• Now two versions of fit (fixing f_{NNLO} independently of f_0, or fixing f_{NNLO}/f_0) give very similar results.

• And $p=0.75$, significantly larger than before.

• Taken at face value, would say

$$f_\pi/f_0 = 1.17(4)(9); \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle ar{u}u \rangle_3|} = 1.34(10)\left(\frac{+25}{-16}\right)$$

 - Ranges cover two other alternatives.

\[f_{\text{NNLO}} = \text{const.} \times f_0 \approx f_K \]
\[f_\pi/f_0 = 1.17(4) \]

(intermediate value of f_0)

C. Bernard, CD15
• Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.

• Now two versions of fit (fixing f_{NNLO} independently of f_0, or fixing f_{NNLO}/f_0) give very similar results.

• And $p=0.75$, significantly larger than before.

• Taken at face value, would say

$$
\frac{f_\pi}{f_0} = 1.17(4)(9); \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.34(10)(^{+25}_{-16})
$$

- Ranges cover two other alternatives.

• Somewhat surprising that $f_{\text{NNLO}} \approx f_K$ is needed for lattice data stopping at $m_{s'} = 0.6 \, m_s$.

\begin{equation}
\begin{aligned}
f_{\text{NNLO}} &= \text{const.} \times f_0 \approx f_K \\
\frac{f_\pi}{f_0} &= 1.17(4) \\
(\text{intermediate value of } f_0)
\end{aligned}
\end{equation}
SU(3): chiral limit & convergence

- Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.

- Now two versions of fit (fixing f_{NNLO} independently of f_0, or fixing f_{NNLO} / f_0) give very similar results.

- And $p=0.75$, significantly larger than before.

- Taken at face value, would say
 \[
 f_\pi / f_0 = 1.17(4)(9); \quad |\langle \bar{u}u \rangle_2| = 1.34(10)_{-16}^{+25}
 \]
 - Ranges cover two other alternatives.

- Somewhat surprising that $f_{\text{NNLO}} \approx f_K$ is needed for lattice data stopping at $m_s' = 0.6 \, m_s$.
 - Concern: Variation with f_{NNLO} shows that NNNLO effects not negligible. Or are discretization errors at NNLO to blame??

\[
\begin{align*}
 f_{\text{NNLO}} &= \text{const.} \times f_0 \approx f_K \\
 f_\pi / f_0 &= 1.17(4) \\
 (\text{intermediate value of } f_0)
\end{align*}
\]
SU(3): chiral limit & convergence

- Suggests choosing f_{NNLO} still larger, say $f_{\text{NNLO}} \approx f_K$.

- Now two versions of fit (fixing f_{NNLO} independently of f_0, or fixing f_{NNLO}/f_0) give very similar results.

- And $p=0.75$, significantly larger than before.

- Taken at face value, would say

 \[\frac{f_\pi}{f_0} = 1.17(4)(9); \quad \frac{|\langle \bar{u}u \rangle_2|}{|\langle \bar{u}u \rangle_3|} = 1.34(10)(+25_16) \]

 - Ranges cover two other alternatives.

- Somewhat surprising that $f_{\text{NNLO}} \approx f_K$ is needed for lattice data stopping at $m_s' = 0.6 \, m_s$.

 - Concern: Variation with f_{NNLO} shows that NNNLO effects not negligible. Or are discretization errors at NNLO to blame??

 - Need data with smaller discretization errors and smaller m_s' (in progress). [Higher order staggered ChPT would also help.]
Future prospects
Future prospects

Future of ChPT in service to lattice:
Future prospects

Future of ChPT in service to lattice:

- Now have physical mass ensembles, so chiral extrapolation less important.
Future prospects

Future of ChPT in service to lattice:

- Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
Future prospects

Future of ChPT in service to lattice:

• Now have physical mass ensembles, so chiral extrapolation less important.
 • still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 • And, as always, ChPT helps control finite volume effects.
Future prospects

Future of ChPT in service to lattice:

- Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.

- Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in a may be good enough: May not need to include discretization errors in ChPT.
Future prospects

Future of ChPT in service to lattice:

- Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.
- Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in a may be good enough: May not need to include discretization errors in ChPT.
 - Also, higher order terms in a (which are not in ChPT) may be comparable to the symmetry-breaking terms kept.
Future prospects

Future of ChPT in service to lattice:

• Now have physical mass ensembles, so chiral extrapolation less important.
 • still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 • And, as always, ChPT helps control finite volume effects.

• Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in a may be good enough: May not need to include discretization errors in ChPT.
 • Also, higher order terms in a (which are not in ChPT) may be comparable to the symmetry-breaking terms kept.

• Condition for calculation of physical quantities not to need lattice ChPT is $M^2_{\pi} \gg$ breaking terms.
Future prospects

Future of ChPT in service to lattice:

- Now have physical mass ensembles, so chiral extrapolation less important.
 - still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 - And, as always, ChPT helps control finite volume effects.

- Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in a may be good enough: May not need to include discretization errors in ChPT.
 - Also, higher order terms in a (which are not in ChPT) may be comparable to the symmetry-breaking terms kept.

- Condition for calculation of physical quantities **not** to need lattice ChPT is $M_\pi^2 \gg$ breaking terms.
 - For staggered, this is now satisfied for $a \leq 0.06$ fm (i.e., for some of the ensembles MILC uses, but not yet for all the ensembles used in controlled calculations).
Future prospects

Future of ChPT in service to lattice:

• Now have physical mass ensembles, so chiral extrapolation less important.
 • still, allows us to use other ensembles with higher mass, which often have smaller statistical errors.
 • And, as always, ChPT helps control finite volume effects.
• Highly improved actions + smaller lattice spacings: symmetry breaking effects small enough that simple analytic expansions in a may be good enough: May not need to include discretization errors in ChPT.
 • Also, higher order terms in a (which are not in ChPT) may be comparable to the symmetry-breaking terms kept.
• Condition for calculation of physical quantities not to need lattice ChPT is $M_{\pi}^2 \gg$ breaking terms.
 • For staggered, this is now satisfied for $a \leq 0.06$ fm (i.e., for some of the ensembles MILC uses, but not yet for all the ensembles used in controlled calculations).
 – If want interesting, but not experimentally accessible, quantities like f_0, (decay constant in 3-flavor chiral limit), staggered ChPT will still be needed for foreseeable future.
Future prospects
Future prospects

• New applications of ChPT, specifically, and EFTs in general, will always be required as field develops.
• New applications of ChPT, specifically, and EFTs in general, will always be required as field develops.

• E.g.: gradient flow techniques for setting the lattice scale (Lüscher, 2010; BMW, 2012).
Future prospects

• New applications of ChPT, specifically, and EFTs in general, will always be required as field develops.

• E.g.: gradient flow techniques for setting the lattice scale (Lüscher, 2010; BMW, 2012).
 • analyzed in ChPT by Bär & Golterman, 2014.
Future prospects

• New applications of ChPT, specifically, and EFTs in general, will always be required as field develops.
• E.g.: gradient flow techniques for setting the lattice scale (Lüscher, 2010; BMW, 2012).
 - analyzed in ChPT by Bär & Golterman, 2014.
 – can reduce already small sea-quark effect on scale even further by fitting to their formula.
Future prospects
Future prospects

- Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
Future prospects

- Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, ℓ_3 and ℓ_4.
Future prospects

✦ Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 • Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 • Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
Future prospects

Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.

- Straightforward to reduce errors on simple mass-dependent SU(2) LECs, ℓ_3 and ℓ_4.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
Future prospects

- Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, ℓ_3 and ℓ_4.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
Future prospects

- Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, \bar{l}_3 and \bar{l}_4.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0.
Future prospects

- Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0.
 - also probably for NLO sea-quark LECs, L_4 and $2L_6 - L_4$.

Future prospects

- Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, ℓ_3 and ℓ_4.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0.
 - also probably for NLO sea-quark LECs, L_4 and $2L_6 - L_4$.
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
Future prospects

- Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, ℓ_3 and ℓ_4.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0.
 - also probably for NLO sea-quark LECs, L_4 and $2L_6 - L_4$.
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
 - Lattice groups will only generate them if there is strong demand from ChPT community.
Future prospects

✦ Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 • Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and ℓ_4.
 • Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 • NNLO LECs can also be extracted as precision improves.
 • In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 • Especially for 3-flavor chiral limit quantities f_0 and B_0.
 – also probably for NLO sea-quark LECs, L_4 and $2L_6 - L_4$.
 • Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
 – Lattice groups will only generate them if there is strong demand from ChPT community.

✦ Huge QCD world out there; lattice QCD is exploring more and more issues from first principles, and with control over systematics:
Future prospects

- Determination of LECs: "payback" by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and $\bar{\ell}_4$.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0.
 - also probably for NLO sea-quark LECs, L_4 and $2L_6 - L_4$.
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
 - Lattice groups will only generate them if there is strong demand from ChPT community.

- Huge QCD world out there; lattice QCD is exploring more and more issues from first principles, and with control over systematics:
 - Form factors, scattering amplitudes, baryons and light nuclei, hadronic weak decays, electromagnetic and isospin-violating effects, hadronic contributions to $(g-2)_\mu$.
Future prospects

- Determination of LECs: “payback” by lattice QCD to ChPT, will continue to improve.
 - Straightforward to reduce errors on simple mass-dependent SU(2) LECs, $\bar{\ell}_3$ and ℓ_4.
 - Small discrepancies should go away as more and more calculations have masses down to (or even below) the physical light quark masses.
 - NNLO LECs can also be extracted as precision improves.
 - In SU(3), generation of dedicated ensembles with $m_s' < m_s$ seems necessary to get good control.
 - Especially for 3-flavor chiral limit quantities f_0 and B_0.
 - also probably for NLO sea-quark LECs, L_4 and $2L_6 - L_4$.
 - Such ensembles (especially if $m_s' \ll m_s$) are not particularly useful for most other lattice QCD calculations (e.g., flavor physics).
 - Lattice groups will only generate them if there is strong demand from ChPT community.
- Huge QCD world out there; lattice QCD is exploring more and more issues from first principles, and with control over systematics:
 - Form factors, scattering amplitudes, baryons and light nuclei, hadronic weak decays, electromagnetic and isospin-violating effects, hadronic contributions to $(g-2)_\mu$.
 - Many paybacks to come!
QCD Simulations

- Generate an ensemble of gluon fields according to a probability distribution given by the QCD gluon action and back-effect of sea quarks (virtual quark loops).
 - Expensive! (mainly because of sea quarks, whose effect is encoded in a determinant).

- In each gluon-field background (a “configuration”), calculate propagation of valence quarks.
 - Relatively cheap (for each quark, need one column of a matrix inverse).
 - E.g., for \(\langle 0 | A_\mu | \pi(p) \rangle = i f_{\pi} p_\mu \), in a given background:

Then average over the configurations ties together background gluon fields to make:
Some SU(2) Fits

• Note: Borsanyi et al paper includes physical quark masses.

• Discretization errors small in both cases.

2+1+1

2+1

a~0.12 fm
a~0.10 fm
Nucleon Chiral Extrapolation

- Good agreement among groups.
- Note QCDSF point close to physical, with relatively small errors.
Nucleon isospin violation

C. Aubin, W. Detmold, E. Mereghetti, K. Orginos, S. Syritsyn, B. Tiburzi, A. Walker-Loud

NNLO χPT

\[\delta M_{n-p}^{m_d-m_u} = \delta \left\{ \alpha \left[1 - \frac{m_{\pi}^2}{(4\pi f_{\pi})^2} (6g_A^2 + 1) \ln \left(\frac{m_{\pi}^2}{\mu^2} \right) \right] \right\} \]

\[(g_A = 1.27, f_{\pi} = 130 \text{ MeV}) + \beta(\mu) \frac{2m_{\pi}^2}{(4\pi f_{\pi})^2} \]

\[\chi^2/dof = 1.66/5 = 0.33 \]

this is striking evidence of a chiral logarithm
SU(3) LECs

\[L_5 = 0.84(38) \times 10^{-3} \]

\[L_4 = 0.04(14) \times 10^{-3} \]

- Results quoted are for \(N_f = 2+1 \).
- From decay constant.
- \(L_5 \) controls valence mass dependence; \(L_4 \) controls sea mass dependence.
\[2L_8 - L_5 = -0.12(22) \times 10^{-3}\]

\[2L_6 - L_4 = 0.10(12) \times 10^{-3}\]

- Results quoted are for \(N_f = 2+1\).
- From meson mass.
- \(2L_8-L_5\) controls valence mass dependence; \(2L_6-L_4\) controls sea mass dependence.
- Small because \(m_\pi^2\) is nearly linear in quark mass (small NLO corrections).
Meson (mass)2

- m^2_{π} and m^2_K vs. \hat{m}
- Shows how linear the (mass)2 is.
- Old: from MILC, 2004!
- Usually people divide by \hat{m} to show non-linearity.