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The A(1405)

e The A(1405) is the lowest-lying odd-parity state of the A baryon.

e Even though it contains a heavy strange quark and has odd parity
its mass is lower than any other excited spin-1/2 baryon.

Mass m = 1405,14:1:8 MeV
Full width ' = 50.5 + 2.0 MeV
Below K N threshold

A(1405) DECAY MODES Fraction (I;/T) p (MeV/c)

P 100 % 155

e |ts mass is lower than the lowest odd-parity nucleon state
N(1535), even though it has a valence strange quark.



The A(1405)

e Before the existence of quarks was confirmed, Dalitz and
co-workers speculated that it might be a molecular state of an
anti-kaon bound to a nucleon.

e The structure of the A(1405) resonance has been the subject of
extensive debate.
e We present a lattice QCD simulation that
o Shows the A(1405) strange magnetic form factor vanishes,
o Together with a Hamiltonian effective field theory analysis of the
lattice QCD energy levels,
reveals that the structure is dominated by a bound
anti-kaon—nucleon component.



Why focus on the strange magnetic form factor?

e |t provides direct insight into the possible dominance of a
molecular KN bound state.
e In forming such a molecular state, the A(u, d, s) valence quark
configuration is complemented by
o A u,U pair making a K~ (s, U) - proton (u, u, d) bound state, or
o A d, d pair making a K°(s, d) - neutron (d, d, u) bound state.



Why focus on the strange magnetic form factor?

e |t provides direct insight into the possible dominance of a
molecular KN bound state.
e In forming such a molecular state, the A(u, d, s) valence quark
configuration is complemented by
o A u,U pair making a K~ (s, U) - proton (u, u, d) bound state, or
o A d, d pair making a K°(s, d) - neutron (d, d, u) bound state.
¢ In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.

e To conserve parity, the kaon has zero orbital angular momentum.

e Thus, in a KN molecule the strange quark does not contribute to
the magnetic form factor of the A(1405).
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For almost 50 years the structure of the A(1405) resonance has been a mystery. Even though it contains a
heavy strange quark and has odd parity, its mass is lower than any other excited spin-1/2 baryon. Dalitz and
co-workers speculated that it might be a molecular state of an antikaon bound to a nucleon. However, a
standard quark-model structure is also admissible. Although the intervening years have seen considerable
cffort, there has been no convincing resolution. Here we present a new lattice QCD simulation showing that
the strange magnetic form factor of the A(1405) vanishes, signaling the formation of an antikaon-nucleon
molecule. Together with a Hamiltonian cffective-field-thcory model analysis of the lattice QCD cnergy
levels, this strongly suggests that the structure is dominated by a bound antikaon-nucleon component. This
result clarifies that not all states occurring in nature can be described within a simple quark model
framework and points to the existence of exotic molecular meson-nucleon bound states.

DOI: 10.1103/PhysRevLett.114.132002 PACS numbers: 12.38.Ge, 12.39.Fe, 13.40.Gp, 14.20.Jn



Outline

@ Techniques for exciting the A(1405) in Lattice QCD
@® Quark-sector contributions to the electric and magnetic form factors
@® Hamiltonian effective field theory model

© Conclusion
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Variational Analysis

By using multiple operators, we can isolate and analyse individual
energy eigenstates:

e Construct the correlation matrix

6(6i1) = Y P (T @ () (0)19).

for some set { x; } operators



Variational Analysis

By using multiple operators, we can isolate and analyse individual
energy eigenstates:

e Construct the correlation matrix

6(6i1) = Y P (T @ () (0)19).

for some set { x; } operators
e We seek the linear combinations of the operators { x; } that
perfectly isolate individual energy eigenstates, o, at momentum
p B
" =v'(P) xi, ¢ =u(P)Xi



Variational Analysis

e Using a basis of n operators { x; } that couple to the states of
interest, we can isolate and analyse individual energy
eigenstates.

e Construct an n x n correlation matrix,

Gj(p Ze_"” Qxi(x)x;(0)[$2).

e We seek to find the optimised linear combination of operators that
isolate an individual energy eigenstate o at momentum g :

N N
_ § a = o E «
- Ui Xi, ¢ - Vi Xi
i=1 i=1



Variational Analysis

¢ In the case where a single state « participates in the optimised
correlation function, one can solve the generalised eigenproblems

[G™(B: )G(B; t + 61)]u*(B) = e~ 5P u*(B)
v (B) [G(B; t + 60)GT(B; 1)] = e =P 2veT ()

such that the the left and right eigenvectors diagonalise the
correlation matrix at times t and t 4 dt,

veT(P)G(B, u’(p) = 6°7 272 e~ 5.
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Eigenstate-Projected Correlators

e The left and right vectors are used to define the
eigenstate-projected correlators

G*(Bi1) =Y e ¥ (Q¢*(x) 9*(0)|2)

—v*T(B) G(B: 1) u” (B).

o Effective masses of different states are then analysed from the
eigenstate-projected correlators in the usual way.

e Careful 2 analysis to fit single-state ansatz ensures a robust
extraction of eigenstate energies,

G*(B, 1) = zaZ,e B,

10/48



Simulation Details

We are using the PACS-CS (2 + 1)-flavour ensembles, available
through the ILDG.
S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

e Lattice size of 323 x 64 with 3 = 1.90. L ~ 3 fm.

e 5 pion masses, ranging from 640 MeV down to 156 MeV.
e Single strange quark mass, with kg = 0.13640.

o We use kg = 0.13665 for the valence strange quarks to
reproduce the physical kaon mass.
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Simulation Details

We are using the PACS-CS (2 + 1)-flavour ensembles, available
through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
Lattice size of 32% x 64 with 5 = 1.90. L ~ 3 fm.
e 5 pion masses, ranging from 640 MeV down to 156 MeV.

Single strange quark mass, with kg = 0.13640.

o We use kg = 0.13665 for the valence strange quarks to
reproduce the physical kaon mass.

o Changes in the strange quark contributions are environmental
effects.

The strange quark x is held fixed as the light quark masses vary.
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The A(1405) and Lattice QCD

Our variational analysis successfully isolated three low-lying odd-parity
spin-1/2 states.

B. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

e An extrapolation of the trend of the lowest state reproduces the
mass of the A(1405).

e Subsequent studies have confirmed these results.

G. P. Engel, C. B. Lang, A. Schéfer, Phys. Rev. D 87, 034502 (2013)

12/48



Operators Used in A(1405) Analysis

We consider local three-quark operators with the correct quantum
numbers for the A channel, including

e Flavour-octet operators

8

X} = —=e?° (2(LPCr5d”)s° + (uPC58°)d® — (d?Css”)u°)

X5 = —=&% (2(1*Cd®)5s° + (u?CsP)v5d° — (d2Cs®)ysu®)

5l-5)-

e Flavour-singlet operator

x' = 2% ((L7Cr5d°)s® — (uPCs8°)d° + (d?Css”)u°)

13/48



Operators Used in A(1405) Analysis

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
e These results use 16 and 100 sweeps.
o Gives a 6 X 6 matrix.
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Operators Used in A(1405) Analysis

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
e These results use 16 and 100 sweeps.
o Gives a 6 X 6 matrix.
e Also considered 35 and 100 sweeps.
o Results are consistent with larger statistical uncertainties.
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A(1405) and Baryon Octet dominated states
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Flavour structure of the A(1405)
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The importance of eigenstate isolation (red)
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Probing with the electromagnetic current
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Only the projected correlator has acceptable x?/dof
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Extracting Form Factors from Lattice QCD

e To extract the form factors for a state o, we need to calculate the
three-point correlation function

GL(E Bito,tr) = D _ e P R TDR (016 x0) 1 (x1) 6°(0)|)

X1, X2
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Extracting Form Factors from Lattice QCD

e To extract the form factors for a state o, we need to calculate the
three-point correlation function

GL(E Bito,tr) = D _ e P R TDR (016 x0) 1 (x1) 6°(0)|)

X1, X2

e This takes the form

e FP)e—te=E  (Qlp|0,s) (o, 8/l |p. s) (p. 5/671Q)

s, s

e (P, $'|j*|p, s) encodes the form factors of the interaction.
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Current Matrix Elements for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

1/2
(o, 'l |p, ) = <~mg~,> / x
Eo(P)Ea(P)

<uld) ()" +1F(A) 7 L) ()

(67
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Current Matrix Elements for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

1/2
(o, 'l |p, ) = <~mg~,> / X
Eo(P)Ea(P)

< 5(F) <F1 (@) +iF() 02‘,’,7) u(f)

(67

e The Dirac and Pauli form factors are related to the Sachs form
factors through
2 2 q° 2
= F ———F
Ge(q°) 1(9°) (2m)? 2(9°)

om(d®) = Fi(d°) + F(9°)

21/48



Current Matrix Elements for Spin-1/2 Baryons

The light- and strange-quark sector contributions can be isolated.

e Eg. The strange sector is isolated by setting q, = g4 = 0.

e Qs is set to unity such that we report results for single quarks of
unit charge.

e Symmetry in the u-d sector provides
GU(@?) = G9(@?) = G(@?) for g, = g = 1.

22/48



Ge for the A(1405) at @® ~ 0.16 GeV?
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Gu for the A(1405) at Q® ~ 0.16 GeV?
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A\(1405) magnetic form factor observations

e SU(3)-flavour symmetry is manifest for my ~ ms. All three quark
flavours play a similar role.

° gf,, =0y = ggj, ~ Gy, for the heaviest three masses.
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A\(1405) magnetic form factor observations
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A\(1405) magnetic form factor observations

e The internal structure of the A(1405) reorganises at the lightest
quark mass.

e The strange quark contribution to the magnetic form factor of the
A(1405) drops by an order of magnitude and approaches zero.
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A\(1405) magnetic form factor observations
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Correlation function ratio providing G5,( Q?)

T m, =0.156 GeV/c?
T m, = 0411 GeV/c

I

3

time

I I T ]
oL = e I
I —_
B
R : ¥
_ R
— =
19 20 21 22 23 24 25 26 27 28 29 30

25/48



A\(1405) magnetic form factor observations

e As the simulation parameters describing the strange quark are
held fixed, this is a remarkable environmental effect of
unprecedented strength.

e We observe an important rearrangement of the quark structure
within the A(1405) consistent with the dominance of a molecular
KN bound state.

48



Hamiltonian Effective Field Theory Model

e Can use matrix Hamiltonian model to study resonance structure
in a finite-volume.

J. M. M. Hall, A. C.-P. Hsu, D. B. Leinweber, A. W. Thomas, R. D. Young., Phys. Rev. D 87, 094510 (2013)
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Hamiltonian Effective Field Theory Model

e Can use matrix Hamiltonian model to study resonance structure
in a finite-volume.
J. M. M. Hall, A. C.-P. Hsu, D. B. Leinweber, A. W. Thomas, R. D. Young., Phys. Rev. D 87, 094510 (2013)
e Details of matrix Hamiltonian analysis for A(1405)
J. M. M. Hall, WK, D. B. Leinweber, B. J. Menadue, et. al., Proc. Sci., LATTICE2014 (2014) 094

o The four octet meson-baryon interaction channels of the A(1405)
are included: X, KN, K= and nA.
o It also includes a single-particle state with bare mass, mg + oy mfr
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Hamiltonian Effective Field Theory Model

e Can use matrix Hamiltonian model to study resonance structure
in a finite-volume.

J. M. M. Hall, A. C.-P. Hsu, D. B. Leinweber, A. W. Thomas, R. D. Young., Phys. Rev. D 87, 094510 (2013)

e Details of matrix Hamiltonian analysis for A(1405)

J. M. M. Hall, WK, D. B. Leinweber, B. J. Menadue, et. al., Proc. Sci., LATTICE2014 (2014) 094

o The four octet meson-baryon interaction channels of the A(1405)
are included: X, KN, K= and nA.
o It also includes a single-particle state with bare mass, mg + oy mfr

e In a finite periodic volume, momentum is quantised to n (27 /L).

o Working on a cubic volume of extent L on each side, it is
convenient to define the momentum magnitudes

27
kn:,/n§+n§+n§T7

with n; = 0,1,2,... and integer n = n + nZ + nZ.
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Hamiltonian model, H,

Denoting each meson- baryon energy by wys(kn) = wum(kn) + ws(kn),
\/k2 + m3, the non-interacting Hamiltonian takes the

with wa(kn) =
form
mo + cg M2
0
Ho

an(ko)

wy (ko)

Wry (k1 )

wpn (k1)

27/48



Hamiltonian model, H,

e Interaction entries describe the coupling of the single-particle
state to the two-particle meson-baryon states.
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Hamiltonian model, H,

e Interaction entries describe the coupling of the single-particle
state to the two-particle meson-baryon states.
e Each entry represents the S-wave interaction energy of the

A(1405) with one of the four channels at a certain value for kj,.

H

0
gz (ko)

gnn(ko)
gTr):(k1 )

g’n/\‘(k1 )

grx(ko) -+ gmalk)  grx(ki) -+ gyalke):---
0

28/48



Eigenvalue Equation Form

e The eigenvalue equation corresponding to our Hamiltonian model

is
)\:m0—|—040m72r—zz gMB)_
n

w
M,B n—0 m(

with \ denoting the energy eigenvalue.
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Eigenvalue Equation Form

e The eigenvalue equation corresponding to our Hamiltonian model

IS
00

_ 2
A=my+ aom; — E
M,B n=0

gus(kn) .
wMB(kn) - A

with \ denoting the energy eigenvalue.

e The bare mass mgy + «p mfr encounters self-energy corrections
that lead to avoided level-crossings in the finite-volume energy
eigenstates.

29/48



Hamiltonian model solution and fit

e The LAPACK software library routine dgeev is used to obtain the
eigenvalues and eigenvectors of H = Hy + H,.

e The bare mass parameters my and «q are determined by a fit to
the lattice QCD results.

e Reference to chiral effective field theory provides the form of
gma(kn).
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Hamiltonian model fit
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Avoided Level Crossing

E (GeV)
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Energy eigenstate,

E), basis |state) composition
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Volume dependence of the odd-parity A spectrum
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Infinite-volume reconstruction of the A(1405) energy

e Bootstraps are calculated by altering the value of each lattice
data point by a Gaussian-distributed random number, weighted

by the uncertainty.
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Infinite-volume A(1405) mass distribution at mP™s
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Conclusions

e The A(1405) has been identified on the lattice through a study of
its quark mass dependence and its relation to avoided level
crossings in effective field theory.

e The structure of the A(1405) is dominated by a molecular bound
state of an anti-kaon and a nucleon.
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Conclusions

e The A(1405) has been identified on the lattice through a study of
its quark mass dependence and its relation to avoided level
crossings in effective field theory.

e The structure of the A(1405) is dominated by a molecular bound
state of an anti-kaon and a nucleon.
e This structure is signified by:
o The vanishing of the strange quark contribution to the magnetic
moment of the A(1405), and
o The dominance of the KN component found in the finite-volume
effective field theory Hamiltonian treatment.
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Supplementary Information

The following slides provide additional information which may be of
interest.
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Dispersion Relation Test for the A(1405)
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Gi(9?) scaled to G§(0) via Gi(a®)/G2(a?)
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Ge for the A(1405)

When compared to the ground state, the results for Ge are consistent
with the development of a non-trivial KN component at light quark
masses.

41/48



Ge for the A(1405)

When compared to the ground state, the results for Ge are consistent
with the development of a non-trivial KN component at light quark
masses.
e Noting that the centre of mass of the K(s, ) N(, u, d) is nearer
the heavier N,
o The anti-light-quark contribution, ¢, is distributed further out by the
K and leaves an enhanced light-quark form factor.
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Ge for the A(1405)

0.86 T T T T

1
084}
0.82}
0.80}
& 0.78F | I !{
076 A A(1405)
1
1

0.74f f light flight

0.72f

0‘70 i 'l 'l 'l 'l
0.0 0.1 0.2 0.3 0.4 0.5

m? [GeV?/c*]

41/48



Ge for the A(1405)

When compared to the ground state, the results for Ge are consistent
with the development of a non-trivial KN component at light quark
masses.
e Noting that the centre of mass of the K(s, ) N(, u, d) is nearer
the heavier N,
o The anti-light-quark contribution, ¢, is distributed further out by the
K and leaves an enhanced light-quark form factor.
o The strange quark may be distributed further out by the K and
thus have a smaller form factor.
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Ge for the A(1405)
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Hamiltonian model, H,

The form of the interaction is derived from chiral effective field
theory.

3 1/2
gMB(kn):< rimg_ Cs(n) (2”) wM(kn)uz(k,,)> .

16722 4r \ L
e kg denotes the SU(3)-flavour singlet couplings

kry = 3%, kin = 2&o, kk= = 2&, knn = &o,

with & = 0.75 reproducing the physical A(1405) — 7% width.

e C3(n) is a combinatorial factor equal to the number of unique
permutations of the momenta indices +ny, £n, and £n,.

e u(kp) is a dipole regulator, with regularization scale A = 0.8 GeV.
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Infinite-volume reconstruction of the A(1405) energy
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Energy eigenstate,

E), basis |state) composition
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Energy eigenstate,

E;), basis |state) composition

|(state|E0)|2 .
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Energy eigenstate, |E>), basis |state) composition

|(state|E2)|2 N
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Energy eigenstate,

E3), basis |state) composition

|(state|E2)|2

KN
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N- spectrum with 5-quark operators
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