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The Λ(1405)

• The Λ(1405) is the lowest-lying odd-parity state of the Λ baryon.

• Even though it contains a heavy strange quark and has odd parity
its mass is lower than any other excited spin-1/2 baryon.

• Its mass is lower than the lowest odd-parity nucleon state
N(1535), even though it has a valence strange quark.
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The Λ(1405)

• Before the existence of quarks was confirmed, Dalitz and
co-workers speculated that it might be a molecular state of an
anti-kaon bound to a nucleon.

• The structure of the Λ(1405) resonance has been the subject of
extensive debate.

• We present a lattice QCD simulation that
◦ Shows the Λ(1405) strange magnetic form factor vanishes,
◦ Together with a Hamiltonian effective field theory analysis of the

lattice QCD energy levels,

reveals that the structure is dominated by a bound
anti-kaon–nucleon component.

3 / 48



Why focus on the strange magnetic form factor?

• It provides direct insight into the possible dominance of a
molecular K N bound state.

• In forming such a molecular state, the Λ(u, d , s) valence quark
configuration is complemented by
◦ A u, u pair making a K−(s, u) - proton (u, u, d) bound state, or
◦ A d , d pair making a K 0(s, d) - neutron (d , d , u) bound state.

• In both cases the strange quark is confined within a spin-0 kaon
and has no preferred spin orientation.

• To conserve parity, the kaon has zero orbital angular momentum.

• Thus, in a K N molecule the strange quark does not contribute to
the magnetic form factor of the Λ(1405).
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Outline

1 Techniques for exciting the Λ(1405) in Lattice QCD

2 Quark-sector contributions to the electric and magnetic form factors

3 Hamiltonian effective field theory model

4 Conclusion
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Variational Analysis

By using multiple operators, we can isolate and analyse individual
energy eigenstates:

• Construct the correlation matrix

Gij(~p; t) =
∑
~x

e−i~p·~x tr ( Γ 〈Ω|χi(x)χj(0) |Ω〉 ) ,

for some set {χi } operators

• We seek the linear combinations of the operators {χi } that
perfectly isolate individual energy eigenstates, α, at momentum
~p:

φα = vαi (~p)χi , φα = uαi (~p)χi .
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Variational Analysis

• Using a basis of n operators {χi } that couple to the states of
interest, we can isolate and analyse individual energy
eigenstates.

• Construct an n × n correlation matrix,

Gij(~p, t) =
∑
~x

e−i~p.~x〈Ω|χi(x)χ̄j(0)|Ω〉.

• We seek to find the optimised linear combination of operators that
isolate an individual energy eigenstate α at momentum ~p :

φ̄α =
N∑

i=1

uαi χ̄i , φα =
N∑

i=1

vαi χi
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Variational Analysis

• In the case where a single state α participates in the optimised
correlation function, one can solve the generalised eigenproblems

[G−1(~p; t)G(~p; t + δt)] uα(~p) = e−Eα(~p) δt uα(~p)

vαT(~p) [G(~p; t + δt)G−1(~p; t)] = e−Eα(~p) δt vαT(~p)

such that the the left and right eigenvectors diagonalise the
correlation matrix at times t and t + δt,

vαT(~p)G(~p, t)uβ(~p) = δαβzαz̄βe−Eαt .
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Eigenstate-Projected Correlators

• The left and right vectors are used to define the
eigenstate-projected correlators

Gα(~p; t) =
∑
~x

e−i~p·~x 〈Ω|φα(x)φα(0)|Ω〉

= vαT(~p) G(~p; t) uα(~p).

• Effective masses of different states are then analysed from the
eigenstate-projected correlators in the usual way.

• Careful χ2 analysis to fit single-state ansatz ensures a robust
extraction of eigenstate energies,

Gα(~p, t) = zαz̄αe−Eα(~p)t .
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Simulation Details

We are using the PACS-CS (2 + 1)-flavour ensembles, available
through the ILDG.

S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

• Lattice size of 323 × 64 with β = 1.90. L ' 3 fm.

• 5 pion masses, ranging from 640 MeV down to 156 MeV.
• Single strange quark mass, with κs = 0.13640.

◦ We use κs = 0.13665 for the valence strange quarks to
reproduce the physical kaon mass.

• The strange quark κs is held fixed as the light quark masses vary.

◦ Changes in the strange quark contributions are environmental
effects.
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The Λ(1405) and Lattice QCD

Our variational analysis successfully isolated three low-lying odd-parity
spin-1/2 states.

B. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

• An extrapolation of the trend of the lowest state reproduces the
mass of the Λ(1405).

• Subsequent studies have confirmed these results.
G. P. Engel, C. B. Lang, A. Schäfer, Phys. Rev. D 87, 034502 (2013)
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Operators Used in Λ(1405) Analysis

We consider local three-quark operators with the correct quantum
numbers for the Λ channel, including

• Flavour-octet operators

χ8
1 =

1√
6
εabc (2(uaCγ5db)sc + (uaCγ5sb)dc − (daCγ5sb)uc)

χ8
2 =

1√
6
εabc (2(uaCdb)γ5sc + (uaCsb)γ5dc − (daCsb)γ5uc)

• Flavour-singlet operator

χ1 = 2εabc ((uaCγ5db)sc − (uaCγ5sb)dc + (daCγ5sb)uc)
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Operators Used in Λ(1405) Analysis

We also use gauge-invariant Gaussian smearing to increase our
operator basis.
• These results use 16 and 100 sweeps.

◦ Gives a 6× 6 matrix.

• Also considered 35 and 100 sweeps.
◦ Results are consistent with larger statistical uncertainties.
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Λ(1405) and Baryon Octet dominated states
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Flavour structure of the Λ(1405)
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The importance of eigenstate isolation (red)
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Probing with the electromagnetic current
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Only the projected correlator has acceptable χ2/dof
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Extracting Form Factors from Lattice QCD

• To extract the form factors for a state α, we need to calculate the
three-point correlation function

Gµ
α(~p′,~p; t2, t1) =

∑
~x1,~x2

e−i~p′·~x2ei(~p′−~p)·~x1 〈Ω|φα(x2) jµ(x1)φα(0)|Ω〉

• This takes the form

e−Eα(~p′)(t2−t1)e−Eα(~p)t1
∑
s, s′

〈Ω|φα|p′, s′〉 〈p′, s′|jµ|p, s〉 〈p, s|φα|Ω〉

• 〈p′, s′|jµ|p, s〉 encodes the form factors of the interaction.
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Current Matrix Elements for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

〈p′, s′|jµ|p, s〉 =

(
m2
α

Eα(~p)Eα(~p′)

)1/2

×

× u(~p′)

(
F1(q2) γµ + i F2(q2)σµν

qν

2mα

)
u(~p)

• The Dirac and Pauli form factors are related to the Sachs form
factors through

GE(q2) = F1(q2)− q2

(2mα)2 F2(q2)

GM(q2) = F1(q2) + F2(q2)
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Current Matrix Elements for Spin-1/2 Baryons

The light- and strange-quark sector contributions can be isolated.

• Eg. The strange sector is isolated by setting qu = qd = 0.

• qs is set to unity such that we report results for single quarks of
unit charge.

• Symmetry in the u-d sector provides
Gu(Q2) = Gd (Q2) ≡ G`(Q2) for qu = qd = 1.
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GE for the Λ(1405) at Q2 ∼ 0.16 GeV2
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GM for the Λ(1405) at Q2 ∼ 0.16 GeV2

light sector strange sector
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Λ(1405) magnetic form factor observations

• SU(3)-flavour symmetry is manifest for m` ∼ ms. All three quark
flavours play a similar role.

• G`M ≡ Gu
M ≡ Gd

M ' Gs
M for the heaviest three masses.
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Λ(1405) magnetic form factor observations

light sector strange sector
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Λ(1405) magnetic form factor observations

• The internal structure of the Λ(1405) reorganises at the lightest
quark mass.

• The strange quark contribution to the magnetic form factor of the
Λ(1405) drops by an order of magnitude and approaches zero.
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Λ(1405) magnetic form factor observations

light sector strange sector
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Correlation function ratio providing Gs
M(Q2)
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Λ(1405) magnetic form factor observations

• As the simulation parameters describing the strange quark are
held fixed, this is a remarkable environmental effect of
unprecedented strength.

• We observe an important rearrangement of the quark structure
within the Λ(1405) consistent with the dominance of a molecular
K N bound state.
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Hamiltonian Effective Field Theory Model

• Can use matrix Hamiltonian model to study resonance structure
in a finite-volume.

J. M. M. Hall, A. C.-P. Hsu, D. B. Leinweber, A. W. Thomas, R. D. Young., Phys. Rev. D 87, 094510 (2013)

• Details of matrix Hamiltonian analysis for Λ(1405)
J. M. M. Hall, WK, D. B. Leinweber, B. J. Menadue, et. al., Proc. Sci., LATTICE2014 (2014) 094

◦ The four octet meson-baryon interaction channels of the Λ(1405)
are included: πΣ, K N, K Ξ and ηΛ.

◦ It also includes a single-particle state with bare mass, m0 +α0 m2
π .

• In a finite periodic volume, momentum is quantised to n (2π/L).

◦ Working on a cubic volume of extent L on each side, it is
convenient to define the momentum magnitudes

kn =
√

n2
x + n2

y + n2
z

2π
L
,

with ni = 0, 1, 2, . . . and integer n = n2
x + n2

y + n2
z .
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Hamiltonian model, H0

Denoting each meson-baryon energy by ωMB(kn) = ωM(kn) + ωB(kn),
with ωA(kn) ≡

√
k2

n + m2
A, the non-interacting Hamiltonian takes the

form

H0 =



m0 + α0 m2
π 0 0 · · ·

0

ωπΣ(k0)

. . .
ωηΛ(k0)

0 · · ·

0 0

ωπΣ(k1)

. . .
ωηΛ(k1)

· · ·

...
...

...
. . .


.
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Hamiltonian model, HI

• Interaction entries describe the coupling of the single-particle
state to the two-particle meson-baryon states.

• Each entry represents the S-wave interaction energy of the
Λ(1405) with one of the four channels at a certain value for kn.

HI =



0 gπΣ(k0) · · · gηΛ(k0) gπΣ(k1) · · · gηΛ(k1) · · ·
gπΣ(k0) 0 · · ·

...
... 0

gηΛ(k0)
. . .

gπΣ(k1)
...

gηΛ(k1)
...


.
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Eigenvalue Equation Form

• The eigenvalue equation corresponding to our Hamiltonian model
is

λ = m0 + α0 m2
π −

∑
M,B

∞∑
n=0

g2
MB(kn)

ωMB(kn)− λ
.

with λ denoting the energy eigenvalue.

• The bare mass m0 + α0 m2
π encounters self-energy corrections

that lead to avoided level-crossings in the finite-volume energy
eigenstates.
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Hamiltonian model solution and fit

• The LAPACK software library routine dgeev is used to obtain the
eigenvalues and eigenvectors of H = H0 + HI .

• The bare mass parameters m0 and α0 are determined by a fit to
the lattice QCD results.

• Reference to chiral effective field theory provides the form of
gMB(kn).
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Hamiltonian model fit
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Avoided Level Crossing
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Energy eigenstate, |E〉, basis |state〉 composition

33 / 48



Volume dependence of the odd-parity Λ spectrum
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Infinite-volume reconstruction of the Λ(1405) energy

• Bootstraps are calculated by altering the value of each lattice
data point by a Gaussian-distributed random number, weighted
by the uncertainty.
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Infinite-volume Λ(1405) mass distribution at mphys
π
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Conclusions

• The Λ(1405) has been identified on the lattice through a study of
its quark mass dependence and its relation to avoided level
crossings in effective field theory.

• The structure of the Λ(1405) is dominated by a molecular bound
state of an anti-kaon and a nucleon.

• This structure is signified by:
◦ The vanishing of the strange quark contribution to the magnetic

moment of the Λ(1405), and

◦ The dominance of the K N component found in the finite-volume
effective field theory Hamiltonian treatment.
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Supplementary Information

The following slides provide additional information which may be of
interest.
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Dispersion Relation Test for the Λ(1405)
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Gs
M(q2) scaled to Gs

M(0) via Gs
M(q2)/Gs

E(q2)

Q2≈0.162 GeV2/c2 Q2 =0
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GE for the Λ(1405)

When compared to the ground state, the results for GE are consistent
with the development of a non-trivial KN component at light quark
masses.
• Noting that the centre of mass of the K (s, `) N(`, u, d) is nearer

the heavier N,
◦ The anti–light-quark contribution, `, is distributed further out by the

K and leaves an enhanced light-quark form factor.
◦ The strange quark may be distributed further out by the K and

thus have a smaller form factor.
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GE for the Λ(1405)
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GE for the Λ(1405)
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Hamiltonian model, HI

• The form of the interaction is derived from chiral effective field
theory.

gMB(kn) =

(
κMB

16π2f 2
π

C3(n)

4π

(
2π
L

)3

ωM(kn) u2(kn)

)1/2

.

• κMB denotes the SU(3)-flavour singlet couplings

κπΣ = 3ξ0, κK̄ N = 2ξ0, κK Ξ = 2ξ0, κηΛ = ξ0,

with ξ0 = 0.75 reproducing the physical Λ(1405)→ πΣ width.

• C3(n) is a combinatorial factor equal to the number of unique
permutations of the momenta indices ±nx , ±ny and ±nz .

• u(kn) is a dipole regulator, with regularization scale Λ = 0.8 GeV.
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Infinite-volume reconstruction of the Λ(1405) energy
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Energy eigenstate, |E〉, basis |state〉 composition
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Energy eigenstate, |E1〉, basis |state〉 composition
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Energy eigenstate, |E2〉, basis |state〉 composition
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Energy eigenstate, |E3〉, basis |state〉 composition
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N- spectrum with 5-quark operators

1 2 3 4 5 6 7
Basis Number

1

2

3

4

5

6
M

(G
eV

)
1 => χ1 + χ2
2 => χ1 + χ2 + χ5
3 => χ1 + χ2 + χ′5
4 => χ1 + χ2 + χ5 + χ′5
5 => χ1 + χ5 + χ′5
6 => χ2 + χ5 + χ′5
7 => χ5 + χ′5

ns = 35 + 200

S-wave N + π

P-wave Eπ + Eπ + MN
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