

# Hadronic Weak Interaction: The NPGamma Experiment

### Libertad Barrón-Palos

Instituto de Física Universidad Nacional Autónoma de México



8th International Workshop on Chiral Dynamics



# Hadronic Weak Interaction (HWI)



QCD is nonperturbative at low energies

8th International Workshop on 2 Chiral Dynamics





**Chiral Dynamics** 

Workshop on 3

# Hadronic Weak Interaction

### Strangness-Changing

- Nonleptonic decays of mesons and baryons
- Observed dominance of the  $\Delta I=1/2$  channel in nonleptonic decays of kaons
- Relative PV and PC decay amplitudes in nonleptonic decays of hyperons
- Large PV asymmetries in radiative hyperon decays

### Parity-Violating ( $\Delta S=0$ )

- Isolation of weak interaction in hadronic and nuclear physics processes that violate parity
- The natural scale of hadronic PV effects is ~10<sup>-7</sup>, however they can be amplified by nuclear structure in many-body systems
- PV observables have been measured in nuclear systems for many years
- Uncertainties associated to nuclear wave functions affect the theoretical interpretation of observables



**Chiral Dynamics** 

Workshop on

- 4

# Reasons to study the $\Delta S=0$ HWI

- Unresolved puzzles in the flavour changing HWI
- It offers a possibility to study weak neutral currents at low energies
- Constitutes a probe for quark-quark correlations in nucleons
- Test of nuclear structure models using PV effects in nuclear and atomic systems
- Physics input to PV electron scattering experiments





Chiral Dynamics

Workshop on 5

# Theoretical description

### DDH

- One meson exchange potential
- Model dependent Desplanques, Donoghue, Holstein, Annals of Physics 124, 449 (1980)

### EFT

- Not dependent on a model
- Consistent with the symmetries and degrees of freedom of QCD

Zhu, Maekawa, Holstein, Ramsey-Musolf, Van Kolck, Nuclear Physics A 748, 435 (2005)



 $\lambda_s^0, \lambda_s^1, \lambda_s^2, \lambda_t, \rho_t$   ${}^1S_0 \rightarrow {}^3P_0 \quad (\Delta I = 0, 1, 2)$   ${}^3S_1 \rightarrow {}^1P_1 \quad (\Delta I = 0)$   ${}^3S_1 \rightarrow {}^3P_1 \quad (\Delta I = 1)$ 

### Lattice QCD

- Theoretical exploration of observables in the nonperturbative regime of QCD with quantifiable uncertainties
- Confrontation of theory and experiment J. Wasem, Physical Review C 85, 022501 (2012)



# PV observables in nuclear systems



$$h_V^{\text{nuc}} = h_\pi^1 - 0.12 h_\rho^1 - 0.18 h_\omega^1$$
  
 $h_S^{\text{nuc}} = -(h_\rho^0 + 0.7 h_\omega^0)$ 

Ramsey-Musolf, Page, Annual Review of Nuclear and Particle Science 56, 1-52 (2006)

#### Few-nucleon systems

8th International

**Chiral Dynamics** 

Workshop on 6

- Less uncertainties related to nuclear structure and more reliable interpretation of observables
- Theoretical calculations with quasi-exact nonperturbative methods are more feasible and in some cases already available for few-body systems
- Intense sources of neutrons allow the measurement of PV effects with sensitivity in the 10<sup>-8</sup> level



# Program with low energy neutrons

#### Nuclear reactor





#### **Spallation source**







June 30, 2015

8th International Workshop on Chiral Dynamics







**Chiral Dynamics** 

Workshop on 9

### NPDGamma



- Dominated by a  $\Delta I=1$   ${}^{3}S_{1}-{}^{3}P_{1}$  parity-odd transition in the n-p system (accessible through  $\pi$  exchange)
- In the DDH model  $A_{\gamma} \approx -0.11h_{\pi}^{1}$ With DDH "best" value  $A_{\gamma} = -5 \times 10^{-8}$  $h_{\pi}^{1}$   $0 \rightarrow 30$  $h_{\sigma}^{0}$   $30 \rightarrow -81$

Desplanques, Donoghue, Holstein, Annals of Physics 124, 449 (1980)

| Coupling                    | Reasonable range (each $\times 3.8 \times 10^{-8}$ ) | "Best" value (each $	imes 3.8 	imes 10^{-8}$ ) |
|-----------------------------|------------------------------------------------------|------------------------------------------------|
| $h_{\pi}^{1}$               | $0 \rightarrow 30$                                   | 12                                             |
| $h_{\rho}^{0}$              | $30 \rightarrow -81$                                 | -30                                            |
| $h_{\rho}^{1}$              | $-1 \rightarrow 0$                                   | -0.5                                           |
| h <sup>2</sup>              | $-20 \rightarrow -29$                                | -25                                            |
| h <sup>6</sup>              | $15 \rightarrow -27$                                 | -5                                             |
| $h_{\omega}^{\overline{1}}$ | -5  ightarrow -2                                     | -3                                             |

• First lattice QCD result  $h_{\pi}^1 = 1.099 \pm 0.505 \stackrel{+0.058}{-0.064} \left[ \times 10^{-7} \right]$ 

J. Wasem, Physical Review C 85, 022501 (2012)





**Chiral Dynamics** 

Workshop on 10

## NPDGamma







## The Spallation Neutron Source at the ORNL





8th International Workshop on 11 Chiral Dynamics

# Fundamental Neutron Physics Beamline

Spallation Neutron Source at Oak Ridge National Laboratory

The world's most intense pulsed, accelerator-based neutron source



N. Fomin et al., Nuclear Instruments and Methods A 773, 45(2015)

8th International Workshop on 12 Chiral Dynamics

CD2015





**Chiral Dynamics** 

### **NPDGamma**

### **Experimental apparatus**





## Experiment

### Neutron flux

60 pulses per second







## Experiment

### Neutron flux

60 pulses per second



8th International Workshop on 14 Chiral Dynamics





**Chiral Dynamics** 

## Experiment

#### Neutron flux

#### 60 pulses per second





## Experiment

#### Neutron flux

#### 60 pulses per second



8th International Workshop on 14 Chiral Dynamics



## Experiment

#### Neutron flux

#### 60 pulses per second



Workshop on 14 Chiral Dynamics

8th International





#### **Beam monitors**





**Chiral Dynamics** 

Workshop on 15

## Experiment

### **Beam monitors**

- Ionization chamber with N<sub>2</sub> and some <sup>3</sup>He (1-2%)  $n + {}^{3}He \rightarrow t + p + 764 \text{ keV}$
- At most 2% of the neutrons at 4 meV are captured









**Chiral Dynamics** 

## Experiment

### Supermirror (SM) Polarizer





## Experiment

### Supermirror (SM) Polarizer

- Magnetized Fe/Si SM
- Scattering length  $b \pm p$ , with p the magnetic component



Fe/Si on boron float glass, no Gd

m=3.0 n=45 R=9.6 m L=40 cm d=0.3mm

T=25.8% P=95.3% N=2.2×10<sup>10</sup> n/s critical angle channels radius of curvature length vane thickness

transmission polarization output flux (chopped)



8th International Workshop on 16 Chiral Dynamics



## Experiment

### Holding magnetic field and RF spin flipper



8th International Workshop on 17 Chiral Dynamics





June 30, 2015

8th International Workshop on Chiral Dynamics



**Chiral Dynamics** 

## Experiment

### LH<sub>2</sub> target





## Experiment

### LH<sub>2</sub> target





at room temperature ortho/para is 3/1, but at 17 K 99.98% of  $H_2$  is in the para- $H_2$  state





8th International Workshop on 18 Chiral Dynamics



**Chiral Dynamics** 

Workshop on 18

## Experiment

### LH<sub>2</sub> target

Scattering cross section of neutrons on para-H<sub>2</sub>







**Chiral Dynamics** 

Workshop on 19



#### Gamma ray detector







#### Gamma ray detector







- 48 Csl detectors
- 3π acceptance
- Current mode operation (5x10<sup>7</sup> gammas/pulse)

8th International Workshop on 19 Chiral Dynamics



# Extraction of $A_{\gamma}$



$$A_{\gamma, \text{raw}} = \frac{1}{2} \left( \frac{N_{\theta}^{\uparrow} - N_{\theta+\pi}^{\uparrow}}{N_{\theta}^{\uparrow} + N_{\theta+\pi}^{\uparrow}} - \frac{N_{\theta}^{\downarrow} - N_{\theta+\pi}^{\downarrow}}{N_{\theta}^{\downarrow} + N_{\theta+\pi}^{\downarrow}} \right)$$









# Extraction of $A_{\gamma}$



$$A_{\gamma, \text{raw}} = \frac{1}{2} \left( \frac{N_{\theta}^{\uparrow} - N_{\theta+\pi}^{\uparrow}}{N_{\theta}^{\uparrow} + N_{\theta+\pi}^{\uparrow}} - \frac{N_{\theta}^{\downarrow} - N_{\theta+\pi}^{\downarrow}}{N_{\theta}^{\downarrow} + N_{\theta+\pi}^{\downarrow}} \right)$$

up-down (PV) and left-right (PC) asymmetries

up-down left-right  $A_{\gamma, raw} = A_{\gamma}^{PV} G_{UD} + A_{\gamma}^{PC} G_{LR} + A_{offset}$   $\langle \hat{k}_{\gamma} \cdot \hat{\sigma}_{n} = \hat{\cos} \theta \rangle \qquad \langle \hat{k}_{\gamma} \cdot (\hat{\sigma}_{n} \times \hat{k}_{n}) = \hat{\sin} \theta \rangle$   $G_{UD} \text{ and } G_{LR} \text{ geometrical factors}$   $G_{UD}(i) = \langle \hat{k}_{\gamma} \cdot \hat{\sigma}_{n} \rangle = \langle \hat{k}_{\gamma} \cdot \hat{y} \rangle$ 

 $G_{LR}(i) = \langle \hat{k}_{\gamma} \cdot (\hat{\sigma}_n \times \hat{k}_n) \rangle = \langle \hat{k}_{\gamma} \cdot \hat{x} \rangle$ 

 $G_{ID}$ 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 30 5 10 15 25 20 35 40 45 1  $G_{LR}$ 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 35 25 30 40 45 0 5 10 15 20 Detector #



Workshop on 20 Chiral Dynamics

8th International



# Extraction of $A_{\gamma}$



$$A_{\gamma, \, \mathrm{raw}} = \frac{1}{2} \left( \frac{N_{\theta}^{\uparrow} - N_{\theta+\pi}^{\uparrow}}{N_{\theta}^{\uparrow} + N_{\theta+\pi}^{\uparrow}} - \frac{N_{\theta}^{\downarrow} - N_{\theta+\pi}^{\downarrow}}{N_{\theta}^{\downarrow} + N_{\theta+\pi}^{\downarrow}} \right)$$

### Corrections

- Beam polarization
- Beam depolarization in target
- RF SF efficiency
- Subtraction of background (Aluminium)

$$A_{\gamma} = \frac{A_{\gamma, raw}}{P_n \epsilon_{SF} C_d} - F_{BG} \frac{A_{Al}}{P_n^{Al} \epsilon_{SF}^{Al} C_d^{Al}}$$

8th International Workshop on 20 Chiral Dynamics



# Aluminium asymmetry

- Capture of neutrons on <sup>27</sup>AI produces <sup>28</sup>AI\*
- Several (3-4) prompt gammas are emitted in the transition to <sup>28</sup>Al g.s. (total energy of 7.8 MeV)
- Asymmetries (PV and PC) correlated to  $\vec{\sigma}_n$  are expected in the emission of prompt gammas
- <sup>28</sup>AI beta decays to <sup>28</sup>Si\* with a lifetime of 194 s. Delayed gammas of 1.8 MeV are emitted in the transition of <sup>28</sup>Si\* to g.s., however these delayed gammas make negligible contribution to the PV AI asymmetry



Results with a partial data set

$$A_{\gamma, UD} = -18 \pm 7.1 \left[ \times 10^{-8} \right]$$
$$A_{\gamma, LR} = -6.8 \pm 7.1 \left[ \times 10^{-8} \right]$$

Z. Tang et al., in preparation



8th International Workshop on 21 Chiral Dynamics



**Chiral Dynamics** 

Workshop on 22

# Chlorine asymmetry

- Test of sensitivity with large and well known PV gamma asymmetry
- In  $\vec{n} + {}^{35}Cl \rightarrow {}^{36}Cl + \gamma$ , the PV effect is amplified by the mixing and interference of nearly degenerate states of opposite parity



| Measurement                           | Asymmetry (x10 <sup>-6</sup> ) |
|---------------------------------------|--------------------------------|
| LANL                                  | -29.1 ± 6.7                    |
| Leningrad                             | -27.8 ± 4.9                    |
| ILL                                   | -21.2 ± 1.72                   |
| SNS (data analysis not completed yet) | -25.9 ± 0.6                    |

N. Fomin et al., in preparation





# Hydrogen asymmetry

- Completed data acquisition in June 2014 (250 beam days)
- Data analysis in progress (final results to be announced soon)





The analyzed data indicates that  $A_{\gamma}$  is small with a statistical uncertainty of ~1.3×10<sup>-8</sup>



8th International Workshop on 23 Chiral Dynamics



**Chiral Dynamics** 

Workshop on 24

# Systematic and statistical uncertainties

#### Systematic effects which may cause false asymmetry

| Additive asymmetry (instrumental)       | < 1×10 <sup>-9</sup>  |
|-----------------------------------------|-----------------------|
| Multiplicative asymmetry (instrumental) | < 1×10 <sup>-9</sup>  |
| Stern-Gerlach (steering of the beam)    | < 1×10 <sup>-10</sup> |
| y-ray circular polarization             | < 1×10 <sup>-12</sup> |
| β-decay in flight                       | < 1×10 <sup>-11</sup> |
| Capture on <sup>6</sup> Li              | < 1×10 <sup>-11</sup> |
| Radiative β-decay                       | < 1×10 <sup>-12</sup> |
| β-delayed Al gammas (internal+external) | < 1×10 <sup>-9</sup>  |

#### Uncertainties in applied corrections

| Neutron beam polarization          | < 2%                      |
|------------------------------------|---------------------------|
| RF SF efficiency                   | ~ 0.5%                    |
| Depolarization of the neutron beam | < 0.5% (target-dependent) |
| Geometric factors                  | 1%                        |
| Polarization of overlap neutrons   | 0.1%                      |
| Target position                    | 0.03%                     |

#### Statistical uncertainty in current result

Combined hydrogen and aluminum data

~ 1.3×10<sup>-8</sup>





**Chiral Dynamics** 

Workshop on 25

## Summary

- The study of the ΔS=0 HWI is relevant not only to have a better understanding of the interaction itself, but also to shed light on aspects like neutral currents at low energies, dynamics of QCD in nonperturbative regime, test of nuclear structure models, etc.
- To complement the theory, measurement of several independent PV observables is needed to determine the weak couplings or effective parameters
- Studies with few-nucleon systems (for which ab initio calculations are feasible) have the advantage of dealing with less nuclear structure uncertainties
- The availability of intense low-energy neutron fluxes makes it possible to measure PV effects that are ~10<sup>-7</sup>. There is a program to measure PV observables in the interaction of neutrons and light nuclei
- The NN weak interaction is dominated by the exchange of pions, and therefore the weak coupling constant  $h_{\pi}^1$  is very important
- The  $\Delta I=1$  channel ( $\pi$  exchange) gets isolated in the  $\vec{n} + p \rightarrow d + \gamma$  reaction. There are experimental values (statistically limited) and recent lattice QCD calculation. Need for more precise measurements
- NPDGamma finalized data acquisition at the SNS a year ago and several independent analysis are consistent and near conclusion. The achieved statistical uncertainty is ~1.3×10<sup>-8</sup>





**Chiral Dynamics** 

Workshop on 26

## The NPDGamma collaboration

R. Alarcon<sup>1</sup>, R. Allen<sup>2</sup>, L.P. Alonzi<sup>3</sup>, S. Baeßler<sup>3</sup>, S. Balascuta<sup>1</sup>, L. Barrón-Palos<sup>4</sup>, A. Barzilov<sup>5</sup>, D. Blythe<sup>1</sup>, D. Bowman<sup>6</sup>, M. Bychkov<sup>3</sup>, J. Calarco<sup>7</sup>, R. Carlini<sup>8</sup>, W. Chen<sup>9</sup>, T. Chupp<sup>10</sup>, C. Crawford<sup>11</sup>, K. Craycraft<sup>11</sup>, M. Dabaghyan<sup>7</sup>, A. Danagoulian<sup>12</sup>, M. Dawkins<sup>13</sup>, D. Evans<sup>3</sup>, N. Fomin<sup>14</sup>, E. Frlež<sup>3</sup>, S. Freedman<sup>15</sup>, J. Fry<sup>13</sup>, T. Gentile<sup>9</sup>, M. Gericke<sup>16</sup>, C. Gillis<sup>13</sup>, K Grammer<sup>14</sup>, G. Greene<sup>6,14</sup>, J Hamblen<sup>17</sup>, C. Hayes<sup>14</sup>, F. Hersman<sup>7</sup>, T. Ino<sup>18</sup>, E. Iverson<sup>6</sup>, G. Jones<sup>19</sup>, K. Latiful<sup>11</sup>, K. Kraycraft<sup>11</sup>, S. Kucuker<sup>14</sup>, B. Lauss<sup>20</sup>, W. Lee<sup>2</sup>, M. Leuschner<sup>13</sup>, W. Losowski<sup>13</sup>, R. Mahurin<sup>14</sup>, M. Maldonado-Velázquez<sup>4</sup>, Y. Masuda<sup>18</sup>, M. McCrea<sup>16</sup>, J. Mei<sup>13</sup>, G. Mitchell<sup>21</sup>, P. Mueller<sup>6</sup>, M. Musgrave<sup>14</sup>, S. Muto<sup>18</sup>, H. Nann<sup>13</sup>, I. Novikov<sup>22</sup>, S. Page<sup>16</sup>, S. Penttilä<sup>6</sup>, D. Počanić<sup>3</sup>, D. Ramsay<sup>16,23</sup>, A. Ramírez-Morales<sup>4</sup>, A. Salas-Bacci<sup>3</sup>, S. Santra<sup>24</sup>, P.-N. Seo<sup>25</sup>, E. Sharapov<sup>26</sup>, M. Sharma<sup>10</sup>, T. Smith<sup>27</sup>, W. Snow<sup>13</sup>, E. Tang<sup>11</sup>, Z. Tang<sup>13</sup>, W. Wilburn<sup>12</sup>, V. Yuan<sup>12</sup>

<sup>1</sup>Arizona State University
 <sup>2</sup>Spallation Neutron Source, ORNL
 <sup>3</sup>University of Virginia
 <sup>4</sup>Universidad Nacional Autónoma de México
 <sup>5</sup>University of Nevada at Los Vegas
 <sup>6</sup>Oak Ridge National Laboratory
 <sup>7</sup>University of New Hampshire
 <sup>8</sup>Thomas Jefferson National Laboratory
 <sup>9</sup>National Institute of Standards and Technology
 <sup>10</sup>University of Michigan, Ann Arbor
 <sup>11</sup>University of Kentucky
 <sup>12</sup>Los Alamos National Laboratory
 <sup>13</sup>Indiana University
 <sup>14</sup>University of Tennessee, Knoxville

Work supported by DOE and NSF (USA) NSERC (Canada) CONACYT (Mexico) BARC (India) <sup>15</sup>University of California at Berkeley <sup>16</sup>University of Manitoba, Canada
<sup>17</sup>University of Tennessee at Chattanooga <sup>18</sup>High Energy Accelerator Research Organization (KEK), Japan <sup>19</sup>Hamilton College
<sup>20</sup>Paul Scherer Institute, Switzerland <sup>21</sup>University of California at Davis <sup>22</sup>Western Kentucky University <sup>23</sup>TRIUMF, Canada
<sup>24</sup>Bhabha Atomic Research Center, India <sup>25</sup>Duke University
<sup>26</sup>Joint Institute of Nuclear Research, Dubna, Russia <sup>27</sup>University of Dayton