

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and PN potential

Summary and outlook

Local χ EFT potential

χ EFT Studies of Light Nuclei: a Status Report

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA Physics Department, Old Dominion University, Norfolk, VA 23529, USA

June 30, 2015

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overview

Nuclear χEFT

- Formalism
- EM operators
- EM structure
- WK structure
- HWI and PV potential
- Summary and outlook
- Local χ EFT potential

- Nuclear χEFT: from field-theory amplitudes to nuclear potentials and electroweak currents
 - Constraining the currents
- Recent applications to:
 - EM structure of few-nucleon ground states and M1 transitions in A>4
 - WK transitions in A = 2 and 3 systems
 - HWI and the PV potential: constraints on the LEC's from PV few-nucleon observables
- Summary and outlook
- A minimally non-local *r*-space potential with Δ intermediate states

Collaborators:

- A. Baroni, M. Piarulli, S. Pastore, F. Spadoni
- L. Girlanda, A. Kievsky, L.E. Marcucci, M. Viviani
- J. Carlson, S. Gandolfi, A. Lovato, S.C. Pieper, R.B. Wiringa

The χEFT approach

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and PV potential

Summary and outlook

Local χ EFT potential

- χEFT is a low-energy approximation of QCD
- Lagrangians describing the interactions of π, N, ... are expanded in powers of Q/Λ_χ (Λ_χ ~ 1 GeV)
- Their construction has been codified in a number of papers¹

$$\mathcal{L} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \dots \\ + \mathcal{L}_{\pi \pi}^{(2)} + \mathcal{L}_{\pi \pi}^{(4)} + \dots$$

- Initial impetus to the development of $\chi {\rm EFT}$ for nuclei in the early nineties 2
- First χ EFT studies of nuclear electroweak currents soon followed ³

¹Gasser and Leutwyler (1984); Gasser, Sainio, and Švarc (1988); Bernard et al. (1992); Fettes et al. (2000)

²Weinberg (1990)–(1992); ³Park, Min, and Rho (1993) & (1996) → (□)

General considerations

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P\ potential

Summary and outlook

Local χ EFT potential

• Time-ordered perturbation theory (TOPT):

$$\langle f \mid T \mid i \rangle = \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle$$

• Momentum scaling of contribution

- Each of the N_K energy denominators involving only nucleons is of order Q^{-2}
- Each of the other $N N_K 1$ energy denominators involving also pion energies is expanded as

$$\frac{1}{E_i - E_I - \omega_\pi} = -\frac{1}{\omega_\pi} \left[1 + \frac{E_i - E_I}{\omega_\pi} + \frac{(E_i - E_I)^2}{\omega_\pi^2} + \dots \right]$$

• Power counting:

$$T = T^{LO} + T^{NLO} + T^{N^2LO} + \dots, \text{ and } T^{N^nLO} \sim (Q/\Lambda_{\chi})^n T^{LO}$$

From amplitudes to potentials

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P' potential

Summary and outlook

Local χ EFT potential

• Construct v such that when inserted in LS equation

 $v + v G_0 v + v G_0 v G_0 v + \dots$ $G_0 = 1/(E_i - E_I + i\eta)$

leads to T-matrix order by order in the power counting

• Assume $v = v^{(0)} + v^{(1)} + v^{(2)} + \dots = v^{(n)} \sim Q^n$

Determine v⁽ⁿ⁾ from

 $\begin{aligned} &v^{(0)} &= T^{(0)} \\ &v^{(1)} &= T^{(1)} - \left[v^{(0)} G_0 v^{(0)}\right] \\ &v^{(2)} &= T^{(2)} - \left[v^{(0)} G_0 v^{(0)} G_0 v^{(0)}\right] - \left[v^{(1)} G_0 v^{(0)} + v^{(0)} G_0 v^{(1)}\right] \end{aligned}$

where

$$v^{(m)} G_0 v^{(n)} \sim Q^{m+n+1}$$

Pastore, Goity, and Schiavilla (2008); Pastore et al. (2009); Pastore et al. (2011)

Including EM interactions

Nuclear χ EFT

Formalism

Eivi operators

EM structure

WK structure

HWI and PN potential

Summary and outlook

Local χ EFT potential

• Power counting of EM interactions (treated in first order)

$$T_{\gamma} = T_{\gamma}^{(-3)} + T_{\gamma}^{(-2)} + T_{\gamma}^{(-1)} + \dots \quad T_{\gamma}^{(n)} \sim e Q^{n}$$

• For $v_{\gamma} = A^0 \, \rho - {f A} \cdot {f j}$ to match T_{γ} order by order

$$\begin{array}{rcl} v_{\gamma}^{(-3)} & = & T_{\gamma}^{(-3)} \\ v_{\gamma}^{(-2)} & = & T_{\gamma}^{(-2)} - \left[v_{\gamma}^{(-3)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v_{\gamma}^{(-3)} \right] \\ v_{\gamma}^{(-1)} & = & T_{\gamma}^{(-1)} - \left[v_{\gamma}^{(-3)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} + \text{permutations} \right] \\ & & - \left[v_{\gamma}^{(-2)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v_{\gamma}^{(-2)} \right] \end{array}$$

and so on up to $n = 1 \ (\sim e Q)$

• These relations determine $\rho^{(n)}$ (LO has n = -3) and $\mathbf{j}^{(n)}$ (LO has n = -2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

EM operators up to one loop

Nuclear χEFT

• Contributions to j up to order e Q:

 $LO : eQ^{-2}$ NLO : eQ⁻¹

$$^{2}LO:eQ^{0}$$

• No unknown LEC's in
$$ho$$
 up to $e Q$

• LO for ρ at eQ^{-3} and no OPE corrections at eQ^{-1}

unknown LEC's 🔸 🗼 🕂

• Five unknown LEC's in i at eQ

Pastore et al. (2009) & (2011); Kölling et al. (2009) & (2011); Piarulli et al. (2013) 🔺 🚊 🕨 🚊 🖉 🔍 🔍

The LEC's characterizing j at N³LO

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P potential

Summary and outlook

Local χ EFT potential

• *d*'s could be determined by (γ, π) data on the nucleon

- d_1^V, d_2^V fixed by assuming Δ dominance, d_1^S, c^S , and c^V fixed by fitting A = 2 and 3 EM observables
- Three-body currents at N³LO vanish:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and PV potential

Summary and outlook

Local χ EFT potential

• After (perturbative) renormalization, resulting operators still need to be regularized:

$$C_{\Lambda}(k) = e^{-(k/\Lambda)^n}$$

and $n \ge 4$ not to generate spurious contributions

- For the given Λ (~ $c^{S,V}/\Lambda^4$ and ~ d^S/Λ^2):
 - Isovector (d_1^V, d_2^V) from Δ -resonance saturation; isoscalar (d^S, c^S) by reproducing μ_d and μ^S
 - Isovector c^V fixed by reproducing either σ_{np} or μ^V

Λ	c^{S}	$d^S \times 10$	$c^{V}(\sigma_{np})$	$c^V(\mu^V)$
500	4.1	2.2	-13	-8.0
 600	11	3.2	-22	–12

Girlanda et al. (2010); Piarulli et al. (2013)

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P potential

Summary and outlook

Local χ EFT potential

Applications to EM Structure

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

EM structure of light nuclei

Nuclear χEFT

- Formalism
- EM operators

EM structure

WK structure

HWI and PN potential

Summary and outlook

Local χ EFT potential

- A sample of available results:
 - EM properties of light nuclei with $A \le 10$ (charge radii, magnetic moments, . . .)
 - Elastic f.f.'s of few-nucleon systems
- See Pastore's talk for further results

Unless otherwise noted, all calculations are based on chiral NN and NNN potentials at N3LO¹ and N2LO^{2,3}

 c_D and c_E in N2LO NNN potential fixed by reproducing GT m.e. in $^3{\rm H}$ β -decay and $^3{\rm H}/^3{\rm He}$ binding energies 4

¹Machleidt and Entem (2011); ²van Kolck (1994); ³Epelbaum *et al.* (2002); ⁴Gardestig and Phillips (2006) < <

Isoscalar magnetic structure: deuteron

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P potential

Summary and outlook

Local χ EF1 potential • OPE (NLO) and TPE (N3LO) vanish (isovector); largest corrections beyond LO from (isoscalar) N3LO terms

Courtesy of Bacca and Pastore, J. Phys. G: Nucl. Part. Phys. 41, 123002 (2014)

³He/³H magnetic f.f.'s

Nuclear χEFT

- Formalism
- EM operators
- EM structure
- WK structure
- HWI and P potential
- Summary and outlook
- Local χ EF1 potential

• Two-body (isovector) contributions play crucial role

Magenta shaded area: LEC c^V fixed by σ^γ_{np}
Red shaded area: LEC c^V fixed by μ^V(³He/³H)

Piarulli et al. (2013)

▲口 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Magnetic moments in $A \leq 10$ nuclei

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and PN potential

Summary and outlook

Local χ EFT potential

GFMC calculations use the AV18/IL7 (rather than chiral) potentials in combination with the *χ*EFT currents
 Predictions for *A* > 3; 40% of μ(⁹C) due to corrections beyond LO

⁴He charge f.f.

Nuclear χEFT

- Formalism
- EM operators
- EM structure
- WK structure
- HWI and PV potential
- Summary and outlook
- Local χ EFT potential

 Isoscalar corrections beyond N3LO (~ Q⁰) suppressed by Q²: loop corrections at N4LO (~ Q¹) are isovector

G_C and G_Q f.f.'s in ²H; A = 2-4 static properties

[†]See Gross' talk for a calculation of Q_d in a relativistic OBE approach based on covariant spectator theory

・ロット (雪) (日) (日)

ъ

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P potential

Summary and outlook

Local χ EFT potential

Axial Currents and Weak Transitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Weak axial operators up to one loop

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P potential

Summary and outlook

Local χ EFT potential

 Axial current (and charge) operators derived up to one loop in TOPT (Baroni's talk)

• \mathbf{j}_{5a} and ρ_{5a} differ from those of an earlier derivation¹

(日) (日) (日) (日) (日) (日) (日)

¹ Park, Min, and Rho (1993); Park *et al.* (2003)

μ^- capture on $^2{ m H}$ and $^3{ m He}$

Nuclear χEFT

- Formalism
- EM operators
- EM structure
- WK structure

HWI and PV potential

Summary and outlook

Local χ EFT potential

• χ EFT predictions with conservative error estimates¹:

 $\Gamma(^{2}H) = (399 \pm 3) \sec^{-1} \qquad \Gamma(^{3}He) = (1494 \pm 21) \sec^{-1}$

- Errors due primarily to:
 - experimental error on GT^{EXP} (0.5%)
 - uncertainties in EW radiative corrections² (0.4%)
 - cutoff dependence
- Using $\Gamma^{\rm EXP}({}^3{\rm He}) = (1496 \pm 4) \ {\rm sec}^{-1}$, one extracts

$$G_{PS}(q_0^2 = -0.95 \, m_\mu^2) = 8.2 \pm 0.7$$

versus $G_{PS}^{\rm EXP}(q_0^2=-0.88\,m_\mu^2)=8.06\pm0.55^{\,3}$ and a $\chi{\rm PT}$ prediction of $7.99\pm0.20^{\,4}$

• Upcoming measurement of $\Gamma(^{2}H)$ by the MuSun collaboration at PSI with a projected 1% error ...

¹ Marcucci *et al.* (2012); ² These corrections increase rate by 3%, see Czarnecki *et al.* (2007); ³ From a measurement of $\Gamma^{EXP}(^{1}H)$, Andreev *et al.* (2013); ⁴ Bernard *et al.* (1994), Kaiser (2003)

pp weak capture

Nuclear χEFT

- Formalism
- EM operators
- EM structure
- WK structure
- HWI and P\ potential
- Summary and outlook
- Local χ EFT potential

- Process ignites the *pp* cycle in the sun
- N³LO chiral potential, including full treatment of EM interactions
- $S(0) = (4.030 \pm 0.006) \times 10^{-23} \text{ MeV-fm}^2$
- Decrease ($\lesssim 1\%$) due to higher-order EM effects offset by increase due to P-wave capture

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P potential

Summary and outlook

Local χ EFT potential

Hadronic Weak Interactions and PV Observables

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hadronic weak interactions: the PV potential

Nuclear χEFT

Formalism

- EM operators
- EM structure
- WK structure
- HWI and PN potential
- Summary and outlook
- Local χ EFT potential

$$\mathcal{L}_{\rm PV} = \overbrace{\frac{h_{\pi}^1}{2\sqrt{2}} f_{\pi} \,\overline{\psi} \, X_-^3 \psi}^{(1)} + \mathcal{L}_{\rm PV}^{(1)}$$

- Complete analysis of $\Delta I = 0, 1, 2$ terms contributing to $\mathcal{L}_{PV}^{(2)}$ carried out recently²
- In addition, there are 5 independent 4 N contact terms with one gradient at lowest order ³
- PV potential up to order Q (N2LO) depends^{2,4} on h¹_π and the LEC's C_{i=1,...,5}

¹Kaplan and Savage (1993); ²Viviani *et al.* (2014); ³Girlanda (2008); ⁴Zhu *et al.* (2005), (

Nuclear χEFT

- Formalism
- EM operators
- EM structure
- WK structure
- HWI and P\ potential
- Summary and outlook
- Local χ EFT potential

- A number of PV observables have been, are being, or could be measured in few-nucleon systems¹:
 - A_z in \vec{pp} and $\vec{p\alpha}$, and $\vec{n}^{\,3}\text{He} \rightarrow p^{\,3}\text{H}$ scattering²
 - Neutron spin rotation in $\vec{n}p$, $\vec{n}d$, and $\vec{n}\alpha$ scattering
 - A^{γ} in $\vec{n}p$ capture ³ and P^{γ} in $d(\vec{\gamma}, n)p$
- Beautiful but difficult experiments: asymmetries are expected to be of order $\lesssim G_F f_\pi^2 \sim 10^{-7}$

¹Schindler's talk; ²Gericke's talk; ³Barròn-Palos' talk

A_z in \vec{pp} scattering

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P potential

Summary and outlook

Local χ EFT potential

• Pion contribution enters via TPE

$$A_z^{pp}(E,\Lambda) = a_0^{(pp)}(E,\Lambda) \, h_\pi^1 + a_1^{(pp)}(E,\Lambda) \, C$$

with $C = C_1 + C_2 + 2(C_4 + C_5)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A_z in \vec{n} ³He charge-exchange reaction

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and PN potential

Summary and outlook

Local χ EF1 potential

Experiment in progress at the Oak Ridge SNS facility
 PV observables a_z cos θ

$$a_{z} = a_{0} h_{\pi}^{1} + a_{1} C_{1} + a_{2} C_{2} + a_{3} C_{3} + a_{4} C_{4} + a_{5} C_{5}$$

Λ (MeV)	a_0	a_1	a_2	a_3	a_4	a_5
500	-0.1444	0.0061	0.0226	-0.0199	-0.0174	-0.0005
600	-0.1293	0.0081	0.0320	-0.0161	-0.0156	-0.0001

*a*₀ large relative to *a_i*, but in particular (isoscalar) *C*₂ is expected to be large

$$\begin{split} C_1^{(\text{DDH})} &\approx 1 \quad C_2^{(\text{DDH})} \approx 30 \quad C_3^{(\text{DDH})} \approx -2 \\ C_4^{(\text{DDH})} &\approx 0 \quad C_5^{(\text{DDH})} \approx 7 \end{split}$$

by matching the C_i to DDH vector-meson couplings

Viviani et al. (2010); Viviani et al. (2014)

Summary and outlook

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and PV potential

Summary and outlook

Local χ EFT potential

- Electroweak currents up to one loop have been derived in TOPT
- Quantitatively accurate description of EW properties: static properties of $A \le 10$, A = 2-4 f.f.'s, weak captures
- In μ -capture nuclear χ EFT leads to predictions with $\lesssim 1\%$ accuracy (extract nucleon G_{PS} from ³He capture)
- Theory results (in search of experimental data!) obtained for a variety of few-nucleon PV observables
- Nuclear χEFT for A > 4 and quantum Monte Carlo methods: need for r-space formulation

Minimally non-local r-space potential with Δ 's

Nuclear χEFT

Formalism

EM operators

EM structure

WK structure

HWI and P\ potential

Summary and outlook

Local χ EFT potential

- Two-nucleon potential: $v = v^{\text{EM}} + v^{\text{LR}} + v^{\text{SR}}$
- EM component $v^{\rm EM}$ including corrections up to α^2
- Chiral OPE and TPE component v^{LR} with Δ intermediate states up to order Q^3 (local in *r*-space)

$$\begin{array}{c|c}
\mathbf{P} & \mathbf{P} & \mathbf{P} \\
\mathbf{LO} : Q^{0} & \mathbf{P} & \mathbf{P} \\
\end{array}$$

$$\begin{array}{c|c}
\mathbf{P} & \mathbf{P} \\
\mathbf{P} \\
\mathbf{P} \\
\end{array}$$

$$\begin{array}{c|c}
\mathbf{NLO} : Q^{2} & \mathbf{P} \\
\mathbf{P} & \mathbf{P} \\
\end{array}$$

$$\begin{array}{c|c}
\mathbf{P} & \mathbf{P} \\
\mathbf{P}$$

• Short-range contact component v^{SR} up to order Q^4 with Fierz rearrangement of terms to yield at most \mathbf{p}^2

Fitting procedure

Nuclear χEFT

- Formalism
- EM operators
- EM structure
- WK structure
- HWI and PN potential
- Summary and outlook
- Local χ EFT potential

• Short-range cutoff $C_{R_S}(r) \propto e^{-(r/R_S)^2}$; long-range cutoff $C_{R_L}(r)$

• Total 34 LEC's in v^{SR} fitted to 2161 pp and 2764 np data up to $E_{lab} = 300$ MeV in the Granada database

• For $(R_L, R_S) = (1.2, 0.8), (1.0, 0.7), (0.8, 0.6)$ fm

	$\sim \sim$	$ \sim $	\sim	
a	_ b		c	
	а	b	С	
$\chi^2(pp)/datum$	1.48	1.48	1.52	
$\chi^2(np)/{ m datum}$	1.20	1.19	1.23	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

pp phase shifts

2.11 01 00 01 0

WK structure

HWI and P potential

Summary and outlook

Local χEF potential

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

np T = 1 phase shifts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

np T = 0 phase shifts

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deuteron properties

Nuclear χEFT

- Formalism
- EM operators
- EM structure
- WK structure
- HWI and P potential
- Summary and outlook
- Local χ EFT potential

-				
	Experiment	v_{12}^{a}	v_{12}^{b}	$v_{12}^{\mathbf{c}}$
$E_d \; [\text{MeV}]$	2.224575(9)	2.224575	2.224574	2.224575
η	0.0256(4)	0.0245	0.0248	0.0246
r_d [fm]	1.97535(85)	1.948	1.975	1.989
$\mu_d \ [\mu_0]$	0.857406(1)	0.852	0.850	0.848
$Q_d \; [\mathrm{fm}^2]$	0.2859(3)	0.257	0.268	0.269
P_d [%]		4.94	5.29	5.55

・ロト・日本・日本・日本・日本・日本