Evgeny Epelbaum, Ruhr-University Bochum

The 8th International Workshop on Chiral Dynamics 2015 June 29 - July 3, 2015, Pisa, Italy

Nuclear chiral EFT in the precision era

Introduction

A new generation of NN potentials up to N⁴LO Quantification of theoretical uncertainties Applications to few-N systems Summary

Many new insights including

- explanation of the observed hierarchy of many-body forces
- promising results using 2NF at N³LO combined with 3NF at N²LO
- electroweak structure of light nuclei, pion-deuteron scattering, Compton, ...

Many new insights including

- explanation of the observed hierarchy of many-body forces
- promising results using 2NF at N³LO combined with 3NF at N²LO
- electroweak structure of light nuclei, pion-deuteron scattering, Compton, ...

Today: precision frontier...

1. Address unsolved problems (especially 3NF)

In spite of decades of effort, the spin structure of the 3NF is NOT properly described by 3NF models...

Kalantar-Nayestanaki et al., Rept. Prog. Phys. 75 (2012) 016301

In Nd scattering, large discrepancies between theory and data are observed at higher energies especially for spin observables

Today: precision frontier...

1. Address unsolved problems (especially 3NF)

- 1. Address unsolved problems (especially 3NF)
- 2. Any predictive theory has to come with uncertainty quantification

- 1. Address unsolved problems (especially 3NF)
- 2. Any predictive theory has to come with uncertainty quantification

- 1. Address unsolved problems (especially 3NF)
- 2. Any predictive theory has to come with uncertainty quantification

- 1. Address unsolved problems (especially 3NF)
- 2. Any predictive theory has to come with uncertainty quantification
- 3. (High-order) chiral EFT for nuclear forces + *ab-initio* few-N methods + error analysis → testing chiral dynamics in nuclei...

Chiral NN potentials: some recent developments

- Local NN potentials up to N²LO: well suited for QMC calculations Gezerlis, Tews, EE, Freunek, Gandolfi, Hebeler, Nogga, Schwenk '13,'14; Lynn et al.'14
- Minimally nonlocal NN potentials up to N³LO (including N²LO Δ contributions) Piarulli, Girlanda, Schiavilla, Navarro Perez, Amaro, Ruiz Arriola '15
- Optimized N²LO NN potential (πN LECs are tuned to NN peripheral scattering); quantification of the statistical uncertainty of the LECs
 Ekström et al.'13,'15
- N²LO potential: a simultaneous fit to π N, NN and few-N data Carlsson, Ekström, Forssen, Fahlin Strömberg, Lilja, Lindby, Mattsson, Wendt '15
- Chiral 2π and 3π exchange up to N⁴LO and (partially) up to N⁵LO in NN peripheral scattering

 talk by Ruprecht Machleidt
 Entem, Kaiser, Machleidt, Nosyk '14,'15
- New generation of chiral NN potentials up to N⁴LO: improved choice of the regulator, no SFR, no fine tuning of πN LECs, simple algorithm to quantify the systematic uncertainty due to truncation of the chiral expansion
 EE, Krebs, Meißner '14,'15

Chiral Effective Field Theory

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Q,

Weinberg, Gasser, Leutwyler, Meißner, ...

 $Q = \frac{\text{momenta of external particles or } M_{\pi} \sim 140 \text{ MeV}}{\text{breakdown scale } \Lambda_{b}}$

Write down $L_{eff}[\pi, N, ...]$, identify relevant diagrams at a given order, do Feynman calculus, fit LECs to exp data, make predictions...

Chiral EFT for nuclear systems: expansion for nuclear forces + resummation (Schrödinger eq.) Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ...

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right]|\Psi\rangle = E|\Psi\rangle$$

$$T = \underbrace{V_{\text{eff}}}_{\text{Veff}} + \underbrace{V_{\text{Veff}}}_{\text{Veff}} + \underbrace{V_{\text{Veff}}} + \underbrace{V_{\text{Veff}} + \underbrace{V_{\text{Veff}}}_{\text{Vef$$

- systematically improvable
- access to heavier systems e.g. via a discretized formulation [lattice] see talks in the Few-Body WG by Ulf Meißner, Jose Alarcon, Serdar Elhatisari, Alexander Rokash
- unified approach for $\pi\pi$, πN , NN [e.g. LECs in the nuclear force from πN scattering]
- consistent many-body forces and currents
- error estimations

Notice: nonperturbative treatment of chiral nuclear forces in the Schrödinger eq. requires the introduction of a finite cutoff [Alternatively, use semi-relativistic approach, EE, Gegelia, et al. '12...'15]

Nucleon-nucleon force up to N⁴LO

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

The long-range part Ordonez et al.; Kaiser; EE, Krebs, Meißner; Entem, Machleidt; ...

Nucleon-nucleon force up to N⁴LO

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

LECs extracted from πN scattering Krebs, Gasparyan, EE '12

	c_1	c_2	c_3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	$ar{e}_{15}$	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Q^4 fit to GW	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.80	1.76	-0.58	0.96
Q^4 fit to KH	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26

Nucleon-nucleon force up to N⁴LO

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

LECs extracted from πN scattering Krebs, Gasparyan, EE '12

	c_1	c_2	c_3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	$ar{e}_{15}$	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Q^4 fit to GW	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.80	1.76	-0.58	0.96
Q^4 fit to KH	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26

The short-range part (contact terms)

Here the organizational principle for contact terms is assumed to be according to NDA (Weinberg counting)

Regularization

Employ regularization which maintains the analytic structure of the amplitude

Old EM/EGM potentials

$$V_{
m long-range}^{
m reg}(\vec{p}',\,\vec{p}\,) = V_{
m long-range}(\vec{p}',\,\vec{p}\,)\,\exp\left[-rac{p^n+p'^n}{\Lambda^n}
ight]$$

affects the discontinuity across the left-hand cut (i.e. some distortions of the long-range potential)

Regularization

 $\operatorname{Im} E$

Re E

 T_l

 $\frac{M^2}{4m}$

 E_R

Employ regularization which maintains the analytic structure of the amplitude

Old EM/EGM potentials

$$V_{\text{long-range}}^{\text{reg}}(\vec{p}', \vec{p}) = V_{\text{long-range}}(\vec{p}', \vec{p}) \exp\left[-\frac{p^n + p'^n}{\Lambda^n}\right]$$

affects the discontinuity across the left-hand cut (i.e. some distortions of the long-range potential)

New potentials

$$V_{\text{long-range}}^{\text{reg}}(\vec{r}) = V_{\text{long-range}}(\vec{r}) f_{\text{reg}}\left(\frac{r}{R}\right) \qquad \begin{bmatrix} 1 - \exp\left(-\frac{r^2}{R^2}\right) \end{bmatrix}^6$$
FourierTransform[$f(r/R) - 1$]

$$V_{\text{long-range}}^{\text{reg}}(\vec{q}) = V_{\text{long-range}}(\vec{q}) - \int d^3l V_{\text{long-range}}(\vec{q} - \vec{l}) \tilde{f}_{\text{reg}}(\vec{l})$$
manifestly short-range

Advantages:

P

No distortion of the long-range potential --> better performance (at high energy)

No need for an additional spectral function regularization in the TPEP

For contact interactions, a Gaussian nonlocal regulator is employed

The cutoff R should be taken above/of the order of the breakdown distance R_b of the chiral expansion of π -exchanges [Lepage '97; EE, Gegelia '09]. What is R_b ?

Choice of the cutoff

Certain classes of multiple-pion exchange diagrams (MSS) can be calculated analytically to an infinite order and resummed

Baru, EE, Hanhart, Hoferichter, Kudryavtsev, Phillips, EPJA 48 (12) 69

Choice of the cutoff

Certain classes of multiple-pion exchange diagrams (MSS) can be calculated analytically to an infinite order and resummed Baru, EE, Hanhart, Hoferichter, Kudryavtsev, Phillips, EPJA 48 (12) 69

Resummed central potential generated by multi-pion exchange (c₃-part)

pole(!) ar r ~ 0.8 fm (breakdown distance) \rightarrow we use R = 0.8...1.2 fm

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Convergence of the chiral expansion for neutron-proton phase shifts [using R = 0.9 fm]

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Convergence of the chiral expansion for neutron-proton phase shifts [using R = 0.9 fm]

$\tilde{\chi}^2_{datum}$ for the reproduction of the Nijmegen phase shifts [using R = 0.9 fm]

$\overline{E_{\text{lab}}}$ bin	LO [Q ⁰]	NLO [Q ²]	$N^{2}LO [Q^{3}]$	N ³ LO [Q ⁴]	N ⁴ LO [Q ⁵]
neutron-proton p	phase shifts				
0-100	360	31	4.5	0.7	0.3
0 - 200	480	63	21	0.7	0.3
proton-proton pl	nase shifts				
0–100	5750	102	15	0.8	0.3
0–200	9150	560	130	0.7	0.6

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Convergence of the chiral expansion for neutron-proton phase shifts [using R = 0.9 fm]

$\tilde{\chi}^2_{datum}$ for the reproduction of the Nijmegen phase shifts [using R = 0.9 fm]

LO $[Q^0]$	NLO [Q ²]	$N^{2}LO$ [Q ³]	$N^{3}LO[Q^{4}]$	$N^4LO [Q^5]$
hase shifts				
360	31	4.5	0.7	0.3
480	63	21	0.7	0.3
ase shifts				
5750	102	15	0.8	0.3
9150	560	130	0.7	0.6
	LO [Q ⁰] hase shifts 360 480 ase shifts 5750 9150	$\begin{array}{c c} LO \ [Q^0] & NLO \ [Q^2] \\ \hline hase shifts \\ 360 & 31 \\ 480 & 63 \\ \hline ase shifts \\ 5750 & 102 \\ 9150 & 560 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

2 LECs + 7 LECs + 2 IB LECs

+ 15 LECs

+1 IB LEC

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Convergence of the chiral expansion for neutron-proton phase shifts [using R = 0.9 fm]

 $\tilde{\chi}^2_{datum}$ for the reproduction of the Nijmegen phase shifts [using R = 0.9 fm]

	2 LECs	+7 LECs + 2 IB LECs		+ 15 LECs	+ 1 IB LEC
0–200	9150	560	130	0.7	0.6
0–100	5750	102	15	0.8 ho new LECS	0.3
proton-proton ph	nase shifts				
0–200	480	63	21	0.7	0.3
0–100	360	$_{31}$ no new LECs	4.5	0.7	0.3
neutron-proton p	bhase shifts			1150(18.)	
$E_{\rm lab}$ bin	LO [Q ⁰]	NLO [Q ²]	$N^{2}LO [Q^{2}]$	³] N ³ LO [Q ⁴]	N ⁴ LO [Q ⁵]

Cutoff dependence of phase shifts

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Neutron-proton phase shifts at N²LO

Cutoff dependence of phase shifts

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Neutron-proton phase shifts at N³LO

Neutron-proton phase shifts at N²LO

Quantification of **Theoretical Uncertainties**

Sources of uncertainty:

- Uncertainty in NN PWA used as input to fix contact interactions (probably small)
- Uncertainty in the values of πN LECs (might be significant, Carlsson et al.'15)
- Statistical uncertainty for NN LECs (small, Ekström et al.'14)
- Uncertainty due to truncation of the chiral expansion at a given order

Sources of uncertainty:

- Uncertainty in NN PWA used as input to fix contact interactions (probably small)
- Uncertainty in the values of πN LECs (might be significant, Carlsson et al.'15)
- Statistical uncertainty for NN LECs (small, Ekström et al.'14)
- Uncertainty due to truncation of the chiral expansion at a given order

Often estimated by means of a cutoff variation. However...

- expected to underestimate the uncertainty at NLO and N³LO

LO: neglected order-Q² contact terms [NLO] NLO, N²LO: neglected order-Q⁴ contact terms [N³LO] N³LO, N⁴LO: neglected order-Q⁶ contact terms [N⁵LO] cutoff dependence should decrease from LO to NLO(N²LO) to N³LO(N⁴LO)

- depends on the chosen range of cutoffs which in practice is rather restricted
- softer cutoffs Λ tend to overestimate the true uncertainty

→ does not provide a reliable way to estimate theoretical uncertainty

Sources of uncertainty:

- Uncertainty in NN PWA used as input to fix contact interactions (probably small)
- Uncertainty in the values of πN LECs (might be significant, Carlsson et al.'15)
- Statistical uncertainty for NN LECs (small, Ekström et al.'14)
- Uncertainty due to truncation of the chiral expansion at a given order

Often estimated by means of a cutoff variation. However...

- expected to underestimate the uncertainty at NLO and N³LO

LO: neglected order-Q² contact terms [NLO] NLO, N²LO: neglected order-Q⁴ contact terms [N³LO] N³LO, N⁴LO: neglected order-Q⁶ contact terms [N⁵LO] cutoff dependence should decrease from LO to NLO(N²LO) to N³LO(N⁴LO)

- depends on the chosen range of cutoffs which in practice is rather restricted
- softer cutoffs Λ tend to overestimate the true uncertainty

→ does not provide a reliable way to estimate theoretical uncertainty

Expansion parameter:
$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b}\right)$$

Reading off the breakdown scale Λ_b from error plots

Expansion parameter:
$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b}\right)$$

Reading off the breakdown scale Λ_b from error plots

Expansion parameter:
$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b}\right)$$

Reading off the breakdown scale Λ_b from error plots

• error governed by powers of k/Λ_b

Expansion parameter:
$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b}\right)$$

Reading off the breakdown scale Λ_b from error plots

- error governed by powers of M_{π}/Λ_b
- \bullet error governed by powers of k/ Λ_b
- the breakdown scale corresponds to momenta at which the lines cross each other At N³LO, $\Lambda_b \sim 600$ MeV (for R = 0.8...1.0 fm)

Expansion parameter:
$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b}\right)$$

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Expansion parameter: $Q = \max$

$$\frac{p}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b}$$

 \uparrow

the breakdown scale is estimated to be

 $\Lambda_b \sim 600 \text{ MeV}$ (for R = 0.8...1.0 fm)

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Expansion parameter: Q = ma

$$\operatorname{tr}\left(\frac{p}{\Lambda_{b}}, \frac{M_{\pi}}{\Lambda_{b}}\right)$$

$$\uparrow$$

$$\operatorname{the} \operatorname{breakdown} \operatorname{scale} \operatorname{is} \operatorname{estimated} \operatorname{to} \operatorname{be}$$

$$\Lambda_{b} \sim 600 \text{ MeV} \quad (\text{for } \mathrm{R} = 0.8...1.0 \text{ fm})$$

Example: neutron-proton total cross section R=0.9 fm

E_{lab} = 96 MeV [p = 212 MeV]:
$$\sigma_{tot} = \overline{84.8}^{Q^0} - 9.7 + 3.2^{Q^3} - 0.8^4 + 0.5^5 = 78.0 \text{ mb}$$

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Expansion parameter: $Q = \max$

$$\begin{array}{c} \mathbf{x} \left(\frac{p}{\Lambda_b}, \ \frac{M_{\pi}}{\Lambda_b} \right) \\ & \uparrow \\ & \text{the breakdown scale is estimated to be} \\ & \Lambda_b \sim 600 \ \text{MeV} \ (\text{for R} = 0.8...1.0 \ \text{fm}) \end{array}$$

Example: neutron-proton total cross section R=0.9 fm

$$E_{lab} = 96 \text{ MeV} \text{ [p = 212 MeV]:} \quad \sigma_{tot} = \overrightarrow{84.8} - \overrightarrow{9.7} + \overrightarrow{3.2} - \overrightarrow{0.8} + \overrightarrow{0.5} = 78.0 \text{ mb}$$

$$Q = 212/600 \sim 0.35 \longrightarrow \text{ expect:} \sim 11 \sim 4 \sim 7.13 \sim 0.5 = 78.0 \text{ mb}$$

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Expansion parameter: $Q = \max$

$$x \left(\frac{p}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b}\right)$$

the breakdown scale is estimated to be

 $\Lambda_b \sim 600 \text{ MeV} \text{ (for R = 0.8...1.0 fm)}$

Example: neutron-proton total cross section R=0.9 fm

$$E_{lab} = 96 \text{ MeV} \text{ [p = 212 MeV]:} \quad \sigma_{tot} = \overrightarrow{84.8} - \overrightarrow{9.7} + \overrightarrow{3.2} - \overrightarrow{0.8} + \overrightarrow{0.5} = 78.0 \text{ mb}$$

$$Q = 212/600 \sim 0.35 \longrightarrow \text{ expect:} \quad \sim 11 \quad \sim 4 \quad \sim 1.3 \quad \sim 0.5$$

 $E_{lab} = 200 \text{ MeV} \text{ [p = 307 MeV]: } \sigma_{tot} = 34.9 + 1.0 + 6.7 + 0.6 - 0.5 = 42.7 \text{ mb}$ $Q = 307/600 \sim 0.5 \longrightarrow \text{ expect: } \sim 9 \qquad \sim 5 \qquad \sim 2.4 \qquad \sim 1.2$

good convergence of the chiral expansion

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Let X(p) be some observable with p denoting the corresponding momentum scale and $X^{(n)}(p)$, n = 0, 2, 3, 4, ... a prediction at order Q^n in the chiral expansion:

$$X^{(n)} = X^{(0)} + \Delta X^{(2)} + \ldots + \Delta X^{(n)}$$

For the order-n contribution one expects $\Delta X^{(n)} \sim \mathcal{O}(Q^n X^{(0)})$ with $Q = \max\left(\frac{M_{\pi}}{\Lambda_b}, \frac{p}{\Lambda_b}\right)$

calculated in the chiral expansion

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Let X(p) be some observable with p denoting the corresponding momentum scale and $X^{(n)}(p)$, n = 0, 2, 3, 4, ... a prediction at order Q^n in the chiral expansion:

$$X^{(n)} = X^{(0)} + \Delta X^{(2)} + \ldots + \Delta X^{(n)}$$

calculated in the chiral expansion

For the order-n contribution one expects $\Delta X^{(n)} \sim \mathcal{O}(Q^n X^{(0)})$ with $Q = \max\left(\frac{M_{\pi}}{\Lambda_b}, \frac{p}{\Lambda_b}\right)$

Theoretical uncertainty $\delta X^{(n)}$ estimated via the size of neglected higher-order contributions^{*}:

$$egin{array}{rcl} \delta X^{(0)} &=& Q^2 \left| X^{(0)}
ight|, \ \delta X^{(2)} &=& \max ig(Q^3 \left| X^{(0)}
ight|, \ Q \left| \Delta X^{(2)}
ight| ig), \ \delta X^{(3)} &=& \max ig(Q^4 \left| X^{(0)}
ight|, \ Q^2 \left| \Delta X^{(2)}
ight|, \ Q \left| \Delta X^{(3)}
ight| ig), \end{array}$$

(*Also demand that $\delta X^{(n)}$ is not smaller than the actual higher-order contributions whenever known)

• • •

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Let X(p) be some observable with p denoting the corresponding momentum scale and $X^{(n)}(p)$, n = 0, 2, 3, 4, ... a prediction at order Q^n in the chiral expansion:

$$X^{(n)} = X^{(0)} + \Delta X^{(2)} + \ldots + \Delta X^{(n)}$$

calculated in the chiral expansion

For the order-n contribution one expects $\Delta X^{(n)} \sim \mathcal{O}(Q^n X^{(0)})$ with $Q = \max\left(\frac{M_{\pi}}{\Lambda_b}, \frac{p}{\Lambda_b}\right)$

Theoretical uncertainty $\delta X^{(n)}$ estimated via the size of neglected higher-order contributions*:

$$egin{array}{rcl} \delta X^{(0)} &=& Q^2 \left| X^{(0)}
ight|, \ \delta X^{(2)} &=& \max ig(Q^3 \left| X^{(0)}
ight|, \ Q \left| \Delta X^{(2)}
ight| ig), \ \delta X^{(3)} &=& \max ig(Q^4 \left| X^{(0)}
ight|, \ Q^2 \left| \Delta X^{(2)}
ight|, \ Q \left| \Delta X^{(3)}
ight| ig), \end{array}$$

(*Also demand that $\delta X^{(n)}$ is not smaller than the actual higher-order contributions whenever known)

• • •

a simple approach applicable for any observable and any choice of the regulator; no reliance on experimental data

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Neutron-proton scattering

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Selected neutron-proton scattering observables at 50 MeV R=0.9fm

Neutron-proton scattering

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Selected neutron-proton scattering observables at 50 MeV R=1.2fm

- Theoretical predictions for different cutoff choices are consistent with each other
- Softer cutoffs lead to larger theoretical uncertainties

Neutron-proton scattering

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

Selected neutron-proton scattering observables at 200 MeV R=0.9fm

• Accurate results even at the energy of E_{lab} = 200 MeV (for R = 0.9 fm)

Deuteron properties R=0.9 fm

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53; arXiv:1412.4623 [nucl-th]

	LO	NLO	Ν	N	N	empirical
В	2.0235	2.1987	2.2311	2.2246*	2.2246*	2.224575(9)
Α	0.8333	0.8772	0.8865	0.8845	0.8844	0.8846(9)
η	0.0212	0.0256	0.0256	0.0255	0.0255	0.0256(4)
ľd	1.990	1.968	1.966	1.972	1.972	1.97535(85)
Q [fm	0.230	0.273	0.270	0.271	0.271	0.2859(3)
PD	2.54	4.73	4.50	4.19	4.29	

* has been used in the fit

- fast convergence of the chiral expansion (P_D is not observable)

- error estimation (assuming Q= M_{π}/Λ_b)
 - As: LO: 0.83(5) → NLO: 0.878(13) → N²LO: 0.887(3) → N³LO: 0.8845(8) → N⁴LO: 0.8844(2)
 - **η**: LO: 0.021(5) → NLO: 0.026(1) → N²LO: 0.0256(3) → N³LO: 0.0255(1) → N⁴LO: 0.0255

 \rightarrow theoretical results for A_S, η at N⁴LO are more accurate than empirical numbers

- results for r_d and Q do not take into account MECs and relativistic corrections:
 - rd: $|\Delta r_d| \simeq 0.004~{
 m fm}$ [Kohno '83] ightarrow predictions in agreement with the data
 - Q: rel. corrections + 1 π -exchange MEC: $\Delta Q \simeq +0.008 \text{ fm}^2$ [Phillips '07] $\rightarrow Q \simeq 0.279 \text{ fm}^2$ the remaining deviation of 0.007 fm² agrees with the expected size of \checkmark [Phillips '07]

How do our results depend on the specific form of the regulator $f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^n$ and/or additional spectral function regularization $V_C(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\Lambda_{\text{SFR}}} d\mu \, \mu \, \frac{\rho_C(\mu)}{\mu^2 + q^2}$

How do our results depend on the specific form of the regulator $f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^n$

and/or additional spectral function regularization $V_C(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\Lambda_{SFR}} d\mu \, \mu \, \frac{\rho_C(\mu)}{\mu^2 + q^2}$

Selected phase shifts (in deg.) for different values of Λ_{SFR} and n at $N^3LO_{[R = 0.9 \text{ fm}]}$

Lab. energy	NPWA	our result
proton-proto	on ${}^{1}S_{0}$ pha	se shift
$10 {\rm ~MeV}$	55.23	55.22 ± 0.08
$100 {\rm ~MeV}$	24.99	24.98 ± 0.60
$200~{\rm MeV}$	6.55	6.56 ± 2.2
neutron-prot	ton ${}^{3}S_{1}$ ph	ase shift
$10 {\rm ~MeV}$	102.61	102.61 ± 0.07
$100 {\rm ~MeV}$	43.23	43.22 ± 0.30
$200~{\rm MeV}$	21.22	21.2 ± 1.4
proton-proto	on ³ P ₀ pha	ase shift
$10 {\rm MeV}$	3.73	3.75 ± 0.04
$100 {\rm ~MeV}$	9.45	9.17 ± 0.30
$200~{\rm MeV}$	-0.37	-0.1 ± 2.3
proton-proto	on ${}^{3}\mathrm{P}_{1}$ pha	ase shift
$10 { m MeV}$	-2.06	-2.04 ± 0.01
$100 {\rm ~MeV}$	-13.26	-13.42 ± 0.17
$200~{\rm MeV}$	-21.25	-21.2 ± 1.6
proton-proto	on ${}^{3}\mathrm{P}_{2}$ pha	ase shift
$10 {\rm ~MeV}$	0.65	0.65 ± 0.01
$100 {\rm ~MeV}$	11.01	11.03 ± 0.50
$200~{\rm MeV}$	15.63	15.6 ± 1.9

How do our results depend on the specific form of the regulator $f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^n$

and/or additional spectral function regularization $V_C(q) = \frac{2}{\pi} \int_{2M_T}^{\Lambda_{SFR}} d\mu \, \mu \, \frac{\rho_C(\mu)}{\mu^2 + q^2}$

Selected phase shifts (in deg.) for different values of Λ_{SFR} and n at $N^3LO_{[R = 0.9 \text{ fm}]}$

Lab. energy	NPWA	our result	DR, $n = 5$	DR, $n = 7$
proton-proto	on ${}^{1}S_{0}$ pha	ase shift		
$10 {\rm ~MeV}$	55.23	55.22 ± 0.08	55.22	55.22
$100 {\rm ~MeV}$	24.99	24.98 ± 0.60	24.98	24.98
$200 {\rm ~MeV}$	6.55	6.56 ± 2.2	6.55	6.56
neutron-pro	ton ${}^{3}S_{1}$ ph	ase shift		
$10 {\rm ~MeV}$	102.61	102.61 ± 0.07	102.61	102.61
$100 {\rm ~MeV}$	43.23	43.22 ± 0.30	43.28	43.20
$200 {\rm ~MeV}$	21.22	21.2 ± 1.4	21.2	21.2
proton-proto	on ³ P ₀ pha	ase shift		
$10 {\rm MeV}$	3.73	3.75 ± 0.04	3.75	3.75
$100 {\rm ~MeV}$	9.45	9.17 ± 0.30	9.15	9.18
$200 {\rm ~MeV}$	-0.37	-0.1 ± 2.3	-0.1	-0.1
proton-proto	on ${}^{3}\mathrm{P}_{1}$ pha	ase shift		
$10 {\rm ~MeV}$	-2.06	-2.04 ± 0.01	-2.04	-2.04
$100 {\rm ~MeV}$	-13.26	-13.42 ± 0.17	-13.43	-13.41
$200 {\rm ~MeV}$	-21.25	-21.2 ± 1.6	-21.2	-21.2
proton-proto	on ³ P ₂ pha	ase shift		
$10 {\rm MeV}$	0.65	0.65 ± 0.01	0.66	0.65
$100 {\rm ~MeV}$	11.01	11.03 ± 0.50	10.97	11.06
$200~{\rm MeV}$	15.63	15.6 ± 1.9	15.6	15.5

How do our results depend on the specific form of the regulator $f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^n$

and/or additional spectral function regularization $V_C(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\Lambda_{\text{SFR}}} d\mu \, \mu \, \frac{\rho_C(\mu)}{\mu^2 + q^2}$

Selected phase shifts (in deg.) for different values of Λ_{SFR} and n at $N^3LO_{[R = 0.9 \text{ fm}]}$

Lab. energy	NPWA	our result	DR, $n = 5$	DR, $n = 7$	SFR, 1.0 GeV	SFR, 1.5 GeV	SFR, 2.0 GeV
proton-proto	on ¹ S ₀ pha	ase shift					
$10 {\rm ~MeV}$	55.23	55.22 ± 0.08	55.22	55.22	55.22	55.22	55.22
$100 {\rm ~MeV}$	24.99	24.98 ± 0.60	24.98	24.98	24.98	24.98	24.98
$200~{\rm MeV}$	6.55	6.56 ± 2.2	6.55	6.56	6.56	6.56	6.57
neutron-pro	ton ${}^{3}S_{1}$ ph	ase shift					
$10 {\rm ~MeV}$	102.61	102.61 ± 0.07	102.61	102.61	102.61	102.61	102.61
$100 {\rm ~MeV}$	43.23	43.22 ± 0.30	43.28	43.20	43.17	43.21	43.22
$200~{\rm MeV}$	21.22	21.2 ± 1.4	21.2	21.2	21.2	21.2	21.2
proton-proto	on ³ P ₀ pha	ase shift					
$10 {\rm ~MeV}$	3.73	3.75 ± 0.04	3.75	3.75	3.75	3.75	3.75
$100 {\rm ~MeV}$	9.45	9.17 ± 0.30	9.15	9.18	9.18	9.17	9.17
$200~{\rm MeV}$	-0.37	-0.1 ± 2.3	-0.1	-0.1	-0.1	-0.1	-0.1
proton-proto	on ³ P ₁ pha	ase shift					
$10 {\rm ~MeV}$	-2.06	-2.04 ± 0.01	-2.04	-2.04	-2.04	-2.04	-2.04
$100 {\rm ~MeV}$	-13.26	-13.42 ± 0.17	-13.43	-13.41	-13.41	-13.42	-13.42
$200~{\rm MeV}$	-21.25	-21.2 ± 1.6	-21.2	-21.2	-21.2	-21.2	-21.2
proton-prote	on ³ P ₂ pha	ase shift					
$10 {\rm ~MeV}$	0.65	0.65 ± 0.01	0.66	0.65	0.65	0.65	0.65
$100 {\rm ~MeV}$	11.01	11.03 ± 0.50	10.97	11.06	11.07	11.05	11.04
$200 {\rm ~MeV}$	15.63	15.6 ± 1.9	15.6	15.5	15.5	15.5	15.6

How do our results depend on the specific form of the regulator $f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^n$

and/or additional spectral function regularization $V_C(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\Lambda_{\text{SFR}}} d\mu \, \mu \, \frac{\rho_C(\mu)}{\mu^2 + q^2}$

Selected phase shifts (in deg.) for different values of Λ_{SFR} and n at $N^3LO_{[R = 0.9 \text{ fm}]}$

Lab. energy	NPWA	our result	DR, $n = 5$	DR, $n = 7$	SFR, 1.0 GeV	SFR, 1.5 GeV	SFR, 2.0 GeV
proton-proto	on ¹ S ₀ pha	ase shift					
$10 {\rm MeV}$	55.23	55.22 ± 0.08	55.22	55.22	55.22	55.22	55.22
$100 {\rm ~MeV}$	24.99	24.98 ± 0.60	24.98	24.98	24.98	24.98	24.98
$200~{\rm MeV}$	6.55	6.56 ± 2.2	6.55	6.56	6.56	6.56	6.57
neutron-pro	ton ${}^{3}S_{1}$ ph	ase shift					
$10 {\rm MeV}$	102.61	102.61 ± 0.07	102.61	102.61	102.61	102.61	102.61
$100 {\rm ~MeV}$	43.23	43.22 ± 0.30	43.28	43.20	43.17	43.21	43.22
$200~{\rm MeV}$	21.22	21.2 ± 1.4	21.2	21.2	21.2	21.2	21.2
proton-prot	on ${}^{3}\mathrm{P}_{0}$ pha	ase shift					
$10 {\rm ~MeV}$	3.73	3.75 ± 0.04	3.75	3.75	3.75	3.75	3.75
$100 {\rm ~MeV}$	9.45	9.17 ± 0.30	9.15	9.18	9.18	9.17	9.17
$200~{\rm MeV}$	-0.37	-0.1 ± 2.3	-0.1	-0.1	-0.1	-0.1	-0.1
proton-prote	on ³ P ₁ pha	ase shift					
$10 {\rm MeV}$	-2.06	-2.04 ± 0.01	-2.04	-2.04	-2.04	-2.04	-2.04
$100 {\rm ~MeV}$	-13.26	-13.42 ± 0.17	-13.43	-13.41	-13.41	-13.42	-13.42
$200~{\rm MeV}$	-21.25	-21.2 ± 1.6	-21.2	-21.2	-21.2	-21.2	-21.2
proton-prote	on ³ P ₂ pha	ase shift					
$10 {\rm ~MeV}$	0.65	0.65 ± 0.01	0.66	0.65	0.65	0.65	0.65
$100 {\rm ~MeV}$	11.01	11.03 ± 0.50	10.97	11.06	11.07	11.05	11.04
$200~{\rm MeV}$	15.63	15.6 ± 1.9	15.6	15.5	15.5	15.5	15.6

-> negligible regulator dependence (compared to the estimated theor. accuracy)

Few-nucleon systems with the new chiral NN forces

Low-Energy Nuclear Physics International Collaboration (LENPIC), arXiv:1505.07218 [nucl-th]

E. Epelbaum, H. Krebs (Bochum)

U.-G. Meißner (Bonn)

K. Hebeler, J. Langhammer, R. Roth (Darmstadt)

- P. Maris, H. Potter, J. Vary (Iowa State)
- JÜLICH S.I
 - S. Liebig, D. Minossi, A. Nogga (Jülich)

J. Golak, R. Skibinski, K. Topolnicki, H. Witala (Krakau)

H. Kamada (Kyushu)

R.J. Furnstahl (Ohio State)

RUMF

- V. Bernard (Orsay)
- S. Binder, A. Calci (TRIUMF)

Nd total cross sections

LENPIC, arXiv:1505.07218[nucl-th]

While no complete calculations based on the new 2N+3N forces are available yet, we performed **incomplete calculations based on 2N forces only** in order to:

- identify observables/kinematics best suitable for searches of 3NF effects
- estimate the achievable accuracy of of chiral EFT

Nd total cross sections

LENPIC, arXiv:1505.07218[nucl-th]

While no complete calculations based on the new 2N+3N forces are available yet, we performed **incomplete calculations based on 2N forces only** in order to:

- identify observables/kinematics best suitable for searches of 3NF effects
- estimate the achievable accuracy of of chiral EFT

Neutron-deuteron total cross section based on NN forces only R=0.9fm

• Unambiguous evidence for missing three-nucleon forces (within our scheme)

• The size of the missing 3NF contribution agrees well with power counting (N²LO)

da/dΩ [mb/sr] 1 Ω [mb/sr]

Nd elastic scattering at 10 MeV [r = 0.9 fm]

LENPIC, arXiv:1505.07218[nucl-th]

- very accurate results are expected
- not much room for missing 3NF effects except for the Ay (Ay-puzzle)

Nd elastic scattering at 70 MeV [r = 0.9 fm]

LENPIC, arXiv:1505.07218[nucl-th]

- very accurate results starting from N³LO are expected

- clear room for 3NF contributions to the cross section and tensor analyzing powers

Nd elastic scattering at 135 MeV [r = 0.9 fm]

LENPIC, arXiv:1505.07218[nucl-th]

- accurate results at N⁴LO are expected

- clear room for 3NF contributions to the cross section and tensor analyzing powers

Nd elastic scattering at 200 MeV [r = 0.9 fm]

LENPIC, arXiv:1505.07218[nucl-th]

- fairly accurate results at N⁴LO are expected
- clear room for 3NF contributions

more results for Nd scattering in the talk by Henryk Witala

Light nuclei with chiral NN forces [r = 1.0 fm]

LENPIC, arXiv:1505.07218[nucl-th]

- Faddeev-Yakubovsky for ³H, ⁴He; NCSM with SRG-evolved 2NF (+ 3NF_{induced}) for ⁶Li
- For NCSM, the numerical uncertainty dominates starting from N³LO
- Theoretical uncertainties at N⁴LO for the energies estimated to be below 0.5%
- Required size of the 3NF consistent with the estimated size of N²LO contributions

Summary

A new generation of chiral NN potentials up to N⁴LO is being developed

- excellent description of NN data
- good convergence of the chiral expansion

A simple approach to estimate theoretical uncertainty at a given order

- applicable to any observable and for a particular choice of the regulator
- results in the NN system at all orders and for all cutoffs are consistent with each other and with experimental data (within uncertainties)

Application to few-N systems:

- clear evidence for missing 3NF effects within our scheme
- expect accurate results for Nd scattering up to $E_{lab} \sim 200 \text{ MeV}$ (at N⁴LO)
- Nd scattering at intermediate (E_{lab} $\sim 50...200$ MeV): a golden window to test/probe the 3NF in chiral EFT

Next step: explicit inclusion of the 3NF - talks by Hermann Krebs, Luca Girlanda

Goal: reliable *ab initio* few- and many-body calculations based on chiral EFT with quantified theoretical uncertainties!