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In spite of decades of effort, the spin structure of the 3NF is NOT 
properly described by 3NF models…

Phenomenological 3NF models
Fujita-Miyazawa, Brasil, Tucson-Melbourne, Urbana, Illinois,…

In Nd scattering, large discrepancies between theory and data 
are observed at higher energies especially for spin observables

4

FIG. 2: (Color online) The deuteron analyzing powers iT11, T20, T21, and T22 for dp elastic scattering at 70, 100, 135, 200, and
250 MeV/N. The light shaded (blue) bands contain predictions of modern NN potentials: AV18, CD Bonn, Nijmegen I and
II. The dark shaded (red) bands result when those potentials are combined with TM99 3NF, properly adjusted to reproduce
the 3H binding energy. The solid line is the result obtained with the combination AV18+Urbana IX. The pd data are: at 70
MeV/N (open circles) from Ref. [25], at 100 MeV/N (open circles) from Ref. [17], at 135 MeV/N (open circles) from Ref. [17]
and (solid circles) from Ref. [24], at 200 MeV/N (solid circles) from Ref. [24], and at 250 MeV/N (open circles) from the present
study.

description for that observable.
For the tensor analyzing power T22, the discrepancies

between the data and the predictions based on 2NFs only
become larger in magnitude and expand to the backward
angles with increasing incident energy. For that observ-
able the predicted 3NF effects are especially large and
similar in magnitude for the 2NFs plus TM99 and Ur-
bana IX models. At 200 MeV/N and less the predictions
taking into account 3NFs have good agreement to the
data at the backward angles, however the data in the
angular region 40◦ ! θc.m. ! 120◦ are not described by
any theoretical predictions. At 250 MeV/N the overall
agreement is improved by taking into account these 3NFs
except for the very backward angles.
All the deuteron analyzing powers, with exception of

T21, reveal at the highest energy 250 MeV/N and around
c.m. angles θc.m. " 120◦ large discrepancies to theory
based on NN forces alone, which are not resolved com-
pletely by the inclusion of the 3NFs. Such behavior of
the deuteron analyzing powers is quite similar to that of
the cross section and proton/neutron analyzing powers
at 250 MeV/N found in Refs. [18, 21].
The energy dependence of the predicted 3NF effects

and the difference between the theory and the data for
the deuteron analyzing powers is not always similar to
that of the cross section and nucleon analyzing power.

The vector analyzing power iT11 and the tensor analyz-
ing power T20 have features similar to those of the cross
section and the proton analyzing power Ap

y. However the
tensor analyzing power T21 and T22 reveal different en-
ergy dependence from that of other observables. Starting
from ∼ 100 MeV/N large 3NF effects are predicted. For
T21 they are of different magnitude for TM99 and Urbana
IX and the T21 data seem to prefer the smaller effects of
Urbana IX. For T22 the large effects of TM99 and Urbana
IX are practically the same. At 200 MeV/N and below
adding 3NFs worsens the description of data in a large
angular region. It is contrary to what happens at the
highest energy 250 MeV/N, where large 3NF effects are
supported by the T22 data in a large angular range.
The results obtained for the highest energy of 250

MeV/N indicate that some significant components are
missing in the calculations, especially in the regions of
higher momentum transfer. One possible candidate is
relativistic effects. We estimated their magnitude for the
deuteron tensor analyzing powers by comparing nonrela-
tivistic and relativistic predictions based on the CD Bonn
potential [34, 35]. They turned out to be small and only
slightly alter the deuteron analyzing powers.
Due to the smallness of the considered relativistic ef-

fects, it appears that important parts of the 3NFs are
missing. In the meson exchange picture used here, con-

NN

NN+NNN

Kalantar-Nayestanaki et al., Rept. Prog. Phys. 75 (2012) 016301
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two 1+0 states is exchanged depending on cD. Using ex-
trapolation, we can see that the best overall description
is obtained around the cD ≈ −1. This observation is also
supported by excitation energy calculations as well as
by calculations of other transitions. We therefore select
cD = −1 and, from Fig. 1, cE = −0.346 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as
a function of Nmax for both the chiral NN+NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our
other p−shell nuclei.
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FIG. 4: States dominated by p-shell configurations for 10B,
11B, 12C, and 13C calculated at Nmax = 6 using !Ω = 15 MeV
(14 MeV for 10B). Most of the eigenstates are isospin T=0 or
1/2, the isospin label is explicitly shown only for states with
T=1 or 3/2. The excitation energy scales are in MeV.

We display in Fig. 4 the natural parity excitation spec-
tra of four nuclei in the middle of the p−shell with both
the NN and the NN+NNN effective interactions from
ChPT. The results shown are obtained in the largest
basis spaces achieved to date for these nuclei with the
NNN interactions, Nmax = 6 (6!Ω). Overall, the NNN
interaction contributes significantly to improve theory
in comparison with experiment. This is especially well-
demonstrated in the odd mass nuclei for the lowest few
excited states. The celebrated case of the ground state
spin of 10B and its sensitivity to the presence of the NNN
interaction is clearly evident. There is an initial indica-
tion in these spectra that the chiral NNN interaction is
“over-correcting” the inadequacies of the NN interaction
since, e.g. 1+0 and the 4+0 states in 12C are not only in-
terchanged but they are also spread apart more than the
experimentally observed separation. While these results
display a favorable trend with the addition of NNN in-
teraction, there is room for additional improvement and
we discuss the possibilities below.

These results required substantial computer resources.
A typical Nmax = 6 spectrum shown in Fig. 4 and a

set of additional experimental observables, takes 4 hours
on 3500 processors of the LLNL’s Thunder machine. We
present only an illustrative subset of our results here.

Table I contains selected experimental and theoretical
results for 6Li and A = 10 − 13. A total of 71 experi-
mental data are summarized in this table including the
excitation energies of 28 states encapsulated in the rms
energy deviations. Note that the only case of an increase
in the rms energy deviation with inclusion of NNN inter-
action is 13C and it arises due to the upward shift of the
7
2

−

state seen in Fig. 4, an indication of an overly strong
correction arising from the chiral NNN interaction. How-
ever, the experimental 7

2

−

may have significant intruder
components and is not well-matched with our state.

We demonstrated here that the chiral NNN interaction
makes substantial contributions to improving the spectra
and other observables. However, there is room for further
improvement in comparison with experiment. We stress
that we used a strength of the 2π-exchange piece of the
NNN interaction, which is consistent with the NN inter-
action that we employed. Since this strength is some-

NCSM calculation based on chiral 2NF@N3LO + 3NF@N2LO
Navratil et al. ’07
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We display in Fig. 4 the natural parity excitation spec-
tra of four nuclei in the middle of the p−shell with both
the NN and the NN+NNN effective interactions from
ChPT. The results shown are obtained in the largest
basis spaces achieved to date for these nuclei with the
NNN interactions, Nmax = 6 (6!Ω). Overall, the NNN
interaction contributes significantly to improve theory
in comparison with experiment. This is especially well-
demonstrated in the odd mass nuclei for the lowest few
excited states. The celebrated case of the ground state
spin of 10B and its sensitivity to the presence of the NNN
interaction is clearly evident. There is an initial indica-
tion in these spectra that the chiral NNN interaction is
“over-correcting” the inadequacies of the NN interaction
since, e.g. 1+0 and the 4+0 states in 12C are not only in-
terchanged but they are also spread apart more than the
experimentally observed separation. While these results
display a favorable trend with the addition of NNN in-
teraction, there is room for additional improvement and
we discuss the possibilities below.

These results required substantial computer resources.
A typical Nmax = 6 spectrum shown in Fig. 4 and a

set of additional experimental observables, takes 4 hours
on 3500 processors of the LLNL’s Thunder machine. We
present only an illustrative subset of our results here.

Table I contains selected experimental and theoretical
results for 6Li and A = 10 − 13. A total of 71 experi-
mental data are summarized in this table including the
excitation energies of 28 states encapsulated in the rms
energy deviations. Note that the only case of an increase
in the rms energy deviation with inclusion of NNN inter-
action is 13C and it arises due to the upward shift of the
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state seen in Fig. 4, an indication of an overly strong
correction arising from the chiral NNN interaction. How-
ever, the experimental 7
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may have significant intruder
components and is not well-matched with our state.

We demonstrated here that the chiral NNN interaction
makes substantial contributions to improving the spectra
and other observables. However, there is room for further
improvement in comparison with experiment. We stress
that we used a strength of the 2π-exchange piece of the
NNN interaction, which is consistent with the NN inter-
action that we employed. Since this strength is some-

NCSM calculation based on chiral 2NF@N3LO + 3NF@N2LO
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two 1+0 states is exchanged depending on cD. Using ex-
trapolation, we can see that the best overall description
is obtained around the cD ≈ −1. This observation is also
supported by excitation energy calculations as well as
by calculations of other transitions. We therefore select
cD = −1 and, from Fig. 1, cE = −0.346 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as
a function of Nmax for both the chiral NN+NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our
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We display in Fig. 4 the natural parity excitation spec-
tra of four nuclei in the middle of the p−shell with both
the NN and the NN+NNN effective interactions from
ChPT. The results shown are obtained in the largest
basis spaces achieved to date for these nuclei with the
NNN interactions, Nmax = 6 (6!Ω). Overall, the NNN
interaction contributes significantly to improve theory
in comparison with experiment. This is especially well-
demonstrated in the odd mass nuclei for the lowest few
excited states. The celebrated case of the ground state
spin of 10B and its sensitivity to the presence of the NNN
interaction is clearly evident. There is an initial indica-
tion in these spectra that the chiral NNN interaction is
“over-correcting” the inadequacies of the NN interaction
since, e.g. 1+0 and the 4+0 states in 12C are not only in-
terchanged but they are also spread apart more than the
experimentally observed separation. While these results
display a favorable trend with the addition of NNN in-
teraction, there is room for additional improvement and
we discuss the possibilities below.

These results required substantial computer resources.
A typical Nmax = 6 spectrum shown in Fig. 4 and a

set of additional experimental observables, takes 4 hours
on 3500 processors of the LLNL’s Thunder machine. We
present only an illustrative subset of our results here.

Table I contains selected experimental and theoretical
results for 6Li and A = 10 − 13. A total of 71 experi-
mental data are summarized in this table including the
excitation energies of 28 states encapsulated in the rms
energy deviations. Note that the only case of an increase
in the rms energy deviation with inclusion of NNN inter-
action is 13C and it arises due to the upward shift of the
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state seen in Fig. 4, an indication of an overly strong
correction arising from the chiral NNN interaction. How-
ever, the experimental 7
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−

may have significant intruder
components and is not well-matched with our state.

We demonstrated here that the chiral NNN interaction
makes substantial contributions to improving the spectra
and other observables. However, there is room for further
improvement in comparison with experiment. We stress
that we used a strength of the 2π-exchange piece of the
NNN interaction, which is consistent with the NN inter-
action that we employed. Since this strength is some-

NCSM calculation based on chiral 2NF@N3LO + 3NF@N2LO
Navratil et al. ’07
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present only an illustrative subset of our results here.
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We demonstrated here that the chiral NNN interaction
makes substantial contributions to improving the spectra
and other observables. However, there is room for further
improvement in comparison with experiment. We stress
that we used a strength of the 2π-exchange piece of the
NNN interaction, which is consistent with the NN inter-
action that we employed. Since this strength is some-

NCSM calculation based on chiral 2NF@N3LO + 3NF@N2LO
Navratil et al. ’07

Success  or failure?



 Chiral NN potentials: some recent developments

Local NN potentials up to N2LO: well suited for QMC calculations 
Gezerlis, Tews, EE, Freunek, Gandolfi, Hebeler, Nogga, Schwenk ’13,’14;  Lynn et al.’14

Minimally nonlocal NN potentials up to N3LO (including N2LO Δ contributions)
Piarulli, Girlanda, Schiavilla, Navarro Perez, Amaro, Ruiz Arriola ’15

Optimized N2LO NN potential (πN LECs are tuned to NN peripheral scattering);!
quantification of the statistical uncertainty of the LECs
Ekström et al.’13,’15

New generation of chiral NN potentials up to N4LO: improved choice of the 
regulator, no SFR, no fine tuning of πN LECs, simple algorithm to quantify the 
systematic uncertainty due to truncation of the chiral expansion
EE, Krebs, Meißner ’14,’15

Chiral 2π and 3π exchange up to N4LO and (partially) up to N5LO in NN 
peripheral scattering

N2LO potential: a simultaneous fit to πN, NN and few-N data
Carlsson, Ekström, Forssen, Fahlin Strömberg, Lilja, Lindby, Mattsson, Wendt ’15

Entem, Kaiser, Machleidt, Nosyk ’14,’15
talk by Ruprecht Machleidt



 Chiral Effective Field Theory
Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Q, 

Q = 
momenta of external particles or Mπ  ~ 140 MeV

breakdown scale Λb

Weinberg, Gasser, Leutwyler, Meißner, ... 

Chiral EFT for nuclear systems: expansion for nuclear forces + resummation (Schrödinger eq.)

Write down Leff [π, N, …], !
identify relevant diagrams at a given order,!
do Feynman calculus, !
fit LECs to exp data, !
make predictions…
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Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt, Krebs, ... 

unified approach for ππ, πN, NN [e.g. LECs in the nuclear force from πN scattering] 

systematically improvable

consistent many-body forces and currents
error estimations

Notice: nonperturbative treatment of chiral nuclear forces in the Schrödinger eq. requires the!
            introduction of a finite cutoff [Alternatively, use semi-relativistic approach, EE, Gegelia, et al. ’12…’15]

access to heavier systems e.g. via a discretized formulation [lattice]
see talks in the Few-Body WG by Ulf Meißner, Jose Alarcon, Serdar Elhatisari, Alexander Rokash 



 Nucleon-nucleon force up to N4LO
Ordonez et al.;  Kaiser;  EE, Krebs, Meißner; Entem, Machleidt; …The long-range part 

3π-exchange potential is considerably 
weaker than the 2π-one and is 

described by contacts

order-Q2 πN 
amplitude

πN amplitude up to!
 order Q4

πN amplitude up 
to order-Q3

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]
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Ordonez et al.;  Kaiser;  EE, Krebs, Meißner; Entem, Machleidt; …The long-range part 

3π-exchange potential is considerably 
weaker than the 2π-one and is 

described by contacts

order-Q2 πN 
amplitude

πN amplitude up to!
 order Q4

πN amplitude up 
to order-Q3(ci,di,ei) (ci,di) (ci)

LECs extracted from πN scattering 

1

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē15 ē16 ē17 ē18

Q4 fit to KH �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �10.41 6.08 �0.37 3.26

Q4 + �3 fit to KH �0.91 1.58 �2.03 1.28 2.35 �3.88 1.23 �5.26 �0.14 �6.52 2.45 �0.37 2.96

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 � d̄15 ē14 ē15 ē16 ē17 ē18

Q4 fit to GW �1.13 3.69 �5.51 3.71 5.57 �5.35 0.02 �10.26 1.75 �5.80 1.76 �0.58 0.96

Q4 fit to KH �0.75 3.49 �4.77 3.34 6.21 �6.83 0.78 �12.02 1.52 �10.41 6.08 �0.37 3.26

Krebs, Gasparyan, EE ’12

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]
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3π-exchange potential is considerably 
weaker than the 2π-one and is 

described by contacts

order-Q2 πN 
amplitude

πN amplitude up to!
 order Q4

The short-range part!
(contact terms)!
!
Here the organizational !
principle for contact terms!
is assumed to be according !
to NDA (Weinberg counting)

LO [Q0]:
NLO [Q2]:

N3LO [Q4]:

2 operators (S-waves)
+ 7 operators (S-, P-waves and ε1)

+ 15 operators (S-, P-, D-waves and ε1, ε2) 
N4LO [Q5]: no new isospin-conserving operators

N2LO [Q3]: no new isospin-conserving operators

πN amplitude up 
to order-Q3(ci,di,ei) (ci,di) (ci)

LECs extracted from πN scattering 
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 Regularization
Employ regularization which maintains the analytic structure of the amplitude

Old EM/EGM potentials

T = V + V G0T = V + V G0V + V G0V G0V + . . .
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affects the discontinuity across the left-hand cut !
(i.e. some distortions of the long-range potential)
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manifestly short-rangeAdvantages:
No distortion of the long-range potential          better performance (at high energy)
No need for an additional spectral function regularization in the TPEP

For contact interactions, a Gaussian nonlocal regulator is employed
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The cutoff R should be taken above/of the order of the breakdown distance Rb of the !
chiral expansion of π-exchanges [Lepage ’97; EE, Gegelia ’09]. What is Rb?



 Choice of the cutoff
Certain classes of multiple-pion exchange diagrams 
(MSS) can be calculated analytically to an infinite !
order and resummed

8 V. Baru et al.: The multiple-scattering series in pion–deuteron scattering and the nucleon–nucleon potential

Fig. 3. Time-ordered MSS-diagram contribution to the nucleon–
nucleon potential. Solid dots (filled rectangles) refer to the leading-
order vertices from the effective Lagrangian proportional to gA (ci).

We will see below how these competing features influence the
convergence of the chiral expansion for this particular set of
diagrams.

To be specific, we consider time-ordered two-nucleon di-
agrams in the MSS as shown in Fig. 3. In this exploratory
study, we restrict ourselves to the isoscalar part of the sublead-
ing ππNN vertex

⟨l1, i|H |l2, j⟩ =
δij

F 2
π
√
ω1ω2

(

2c1M
2
π + c3l1 · l2

)

, (50)

where l1,2 denote the pion momenta, i and j are the pion
isospin quantum numbers and ω1,2 ≡

√

l21,2 +M2
π are the free

pion energies. The potential corresponding to the left diagram
in Fig. 3, where an even number of pion exchanges occurs, is
given by

V nπ(q) = −
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Clearly, the integrals entering this expression are UV divergent.
The divergences, however, are absorbed into 4N contact oper-
ators, and so do not affect r-space expressions for the finite-
range part of the potential that we are discussing here. The r-
space representation of the potential can be obtained straight-
forwardly, leading to

V nπ(r) =
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2
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U(r) =
1

4πr
e−Mπr (53)

being the usual Yukawa function. After evaluating the deriva-
tives, one ends up with the isoscalar central potential
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)

]

. (54)

Here we introduced a dimensionless variable x ≡ Mπr and
combinatorial coefficients ynml whose explicit values can be de-
rived straightforwardly. In a completely similar way, one finds
that the second diagram in Fig. 3, where an odd number of
pion exchanges takes place, gives rise to the isovector tensor
and spin-spin potential

V nπ(r) =
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, (55)

where n = 2k + 1, k ∈ N.
As expected, based on the discussion at the start of this

section, each extra loop in the MSS generates a power of
1/(4πF 2

π), rather than the 1/(4πFπ)2 that is usually assumed
in χPT. This is the way the “enhancement” of MSS diagrams
plays out in the NN potential. These contributions to the po-
tential, V nπ(r), take a particularly simple form if either c1 or
c3 is set to zero. In particular, the central isoscalar potential in
Eq. (54) reads in these two limits
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8(2πF 2
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n
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V nπ
c3 (r) =

3g2Ac
n−1
3

4(4πF 2
π)

n
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[
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]

.

Resumming the resulting geometric series leads to the follow-
ing closed-form expressions for the potentials

Vc1(r) =
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⎤

⎦ . (57)

Both Vc3 and Vc1 feature poles at finite values of r > 0 similar
to what we observed for the MSS of meson–nucleus scattering

ci Baru, EE, Hanhart, Hoferichter, Kudryavtsev, Phillips, EPJA 48 (12) 69
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order vertices from the effective Lagrangian proportional to gA (ci).

We will see below how these competing features influence the
convergence of the chiral expansion for this particular set of
diagrams.

To be specific, we consider time-ordered two-nucleon di-
agrams in the MSS as shown in Fig. 3. In this exploratory
study, we restrict ourselves to the isoscalar part of the sublead-
ing ππNN vertex

⟨l1, i|H |l2, j⟩ =
δij

F 2
π
√
ω1ω2

(

2c1M
2
π + c3l1 · l2

)

, (50)

where l1,2 denote the pion momenta, i and j are the pion
isospin quantum numbers and ω1,2 ≡

√

l21,2 +M2
π are the free

pion energies. The potential corresponding to the left diagram
in Fig. 3, where an even number of pion exchanges occurs, is
given by

V nπ(q) = −
3g2A
8F 2n

π

∫

d3l1
(2π)3

. . .
d3ln
(2π)3

(2π)3

× δ(3)(l1 + l2 + . . .+ ln − q)
σ2 · ln σ2 · l1
ω2
1ω

2
2 . . .ω

2
n

× (2c1M
2
π − c3l1 · l2) (2c1M2

π − c3l2 · l3)
× . . . (2c1M

2
π − c3ln−1 · ln) + 1 ↔ 2. (51)

Clearly, the integrals entering this expression are UV divergent.
The divergences, however, are absorbed into 4N contact oper-
ators, and so do not affect r-space expressions for the finite-
range part of the potential that we are discussing here. The r-
space representation of the potential can be obtained straight-
forwardly, leading to

V nπ(r) =
3g2A
4F 2n

π
∇1 ·∇n (2c1M

2
π + c3∇1 ·∇2)

× (2c1M
2
π + c3∇2 ·∇3) . . .

× (2c1M
2
π + c3∇n−1 ·∇n) (52)

× U(r1)U(r2) . . . U(rn)
∣

∣

∣

r1=r2=...=rn=r
,

with

U(r) =
1

4πr
e−Mπr (53)

being the usual Yukawa function. After evaluating the deriva-
tives, one ends up with the isoscalar central potential

V nπ(r) =
3g2A

4(4πF 2
π )n

e−nx

r3n

[

n−2
∑

m=0

m
∑

l=0

ynml(2c1x
2)n−m−1

× cm3 (1 + x)2(m+1−l)(2 + 2x+ x2)l

+ cn−1
3

(

(2 + 2x+ x2)n + 2(1 + x)n
)

]

. (54)

Here we introduced a dimensionless variable x ≡ Mπr and
combinatorial coefficients ynml whose explicit values can be de-
rived straightforwardly. In a completely similar way, one finds
that the second diagram in Fig. 3, where an odd number of
pion exchanges takes place, gives rise to the isovector tensor
and spin-spin potential

V nπ(r) =
g2A

4(4πF 2
π )

n
τ 1 · τ 2

e−nx

r3n

(

σ1 · r̂σ2 · r̂

×

[

n−2
∑

m=0

m
∑

l=0

ynml(2c1x
2)n−m−1cm3 (1 + x)2(m+1−l)

× (2 + 2x+ x2)l + cn−1
3

(

(2 + 2x+ x2)n

+ (1 + x)n)

]

− σ1 · σ2 c
n−1
3 (1 + x)n

)

, (55)

where n = 2k + 1, k ∈ N.
As expected, based on the discussion at the start of this

section, each extra loop in the MSS generates a power of
1/(4πF 2

π), rather than the 1/(4πFπ)2 that is usually assumed
in χPT. This is the way the “enhancement” of MSS diagrams
plays out in the NN potential. These contributions to the po-
tential, V nπ(r), take a particularly simple form if either c1 or
c3 is set to zero. In particular, the central isoscalar potential in
Eq. (54) reads in these two limits

V nπ
c1 (r) =

3g2A
8(2πF 2

π)
n

e−nx

r3n
(c1x

2)n−1(1 + x)2, (56)

V nπ
c3 (r) =

3g2Ac
n−1
3

4(4πF 2
π)

n

e−nx

r3n
[

(2 + 2x+ x2)n + 2(1 + x)n
]

.

Resumming the resulting geometric series leads to the follow-
ing closed-form expressions for the potentials

Vc1(r) =
3g2Ac1M

2
π

32π2F 4
π

e−2x

r4
(1 + x)2

1

1− c2
1
M4

π

4π2F 4
π

e−2x

r2

,

Vc3(r) =
3g2Ac3
64π2F 4

π

e−2x

r6

⎡

⎣

2(1 + x)2

1− c2
3

16π2F 4
π

e−2x

r6 (1 + x)2

+
(2 + 2x+ x2)2

1− c2
3

16π2F 4
π

e−2x

r6 (2 + 2x+ x2)2

⎤

⎦ . (57)

Both Vc3 and Vc1 feature poles at finite values of r > 0 similar
to what we observed for the MSS of meson–nucleus scattering
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Fig. 4. Resummed potential Vc3 from Eq. (57). The solid (dashed)
line shows the potential for c3 = −3.87 GeV−1 and Mπ = 138
MeV (Mπ = 138/4 MeV), while the dashed-dotted line depicts the
potential for c3 = −1 GeV−1 and Mπ = 138 MeV.

for a < 0 — c.f. Eq. (31) — only here the appearance of the
poles is independent of the sign of the scattering parameters
ci. These unphysical poles are non-perturbative phenomena re-
sulting from the partial resummation of the amplitude.

One may view the location of the poles as a measure of
the breakdown scale of the chiral expansion for the considered
class of diagrams. It is comforting to see that the pole in Vc1 is
located at a rather short distance, namely

r ∼
|c1|M2

π

2πF 2
π

∼ 0.05 fm, (58)

and is shifted to the origin in the chiral limit. On the other hand,
the pole positions in Vc3 are not protected by powers of Mπ and
can be estimated by

r ∼ O

(

(

|c3|
πF 2

π

)1/3
)

∼ O (1 fm) , (59)

using the value c3 = −3.87 GeV−1 from the O(Q2) fit to
πN threshold coefficients of Ref. [33]. Numerically, the poles
appearing in the two terms of Vc3 in Eq. (57) are found to be
located at

r ≃ 0.63 fm, r ≃ 0.81 fm, (60)
see Fig. 4. As shown in this figure, the behavior of the re-
summed potential at short distances and the pole positions only
weakly depend on the values of the pion mass in the case of
Vc3 . It is somewhat surprising that the chiral expansion for the
pion-exchange potential breaks down at the relatively large dis-
tance of ∼ 0.8 fm. This behavior is, to a large extent, caused
by the already discussed enhancement of the diagrams in the
MSS, where loops generate inverse powers of 4πF 2

π rather
than (4πFπ)2, see Eq. (59). An additional enhancement oc-
curs due to the large numerical value of the LEC c3. As shown
in [33], this LEC takes a much more natural value of the or-
der c3 ∼ −1GeV−1 once the ∆-isobar is explicitly taken into
account. Therefore, one might expect that the unphysical poles
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Fig. 5. Convergence of the MSS for Vc3 .

in the potential are shifted closer to the origin in the ∆-full ap-
proach, see Fig. 4. For example, setting c3 = −1GeV−1 the
poles are shifted to

r ≃ 0.41 fm, r ≃ 0.52 fm. (61)

The above arguments therefore suggest that the breakdown
scale for the chiral expansion of the pion-exchange potential
is in the range r ∼ 0.5 . . .0.8 fm. This estimate agrees well
with the findings of various recent studies, see e.g. [34,35,36,
37]. In this context it should be stressed, however, that it would
be insufficient to include the ∆ as a static field, for then its in-
clusion would do nothing but to restore the original strength
of c3 — see discussion in Refs. [38,33]. Thus, only a ∆ with
retained recoils could help, which makes sense only if also the
nucleons are treated as non-static. The corresponding calcula-
tions are very involved and go beyond the scope of this paper.

Given the rather large value of the breakdown scale r ∼
0.8 fm, one might worry about the convergence of the chiral
expansion for the potential at distances of the order 1 . . . 2 fm.
Fortunately, the convergence of the MSS appears to be rather
fast, see Fig. 5. In particular, one observes that the potential
is already very well described by the subleading term in the
MSS. Clearly, the reason for this fast convergence is due to the
exponential falloff of the potential at distances large compared
to the exchanged mass.

It must be stressed that, while the results obtained here
for the resummed potential provide qualitative insights, they
are by no means a complete χPT calculation. In addition to
the omitted baryon recoils, we only picked out time-ordered
graphs that give rise to the MSS. In contrast to near-threshold6

pion–nucleus scattering, where time-ordered graphs involving
two or more pions in the intermediate states can be represented
by contact operators [39], there is, strictly speaking, no jus-
tification for neglecting such diagrams in the NN potential.
On the other hand, the neglected time-ordered graphs in most
cases are suppressed by powers of π compared to the one in

6 More precisely, the argument refers to the case when the momenta
of external pions and nucleons are much smaller than Mπ .

Resummed central potential generated by multi-pion exchange (c3-part)

c3 =-3.9 GeV-1

c3 =-1 GeV-1

pole(!) ar r ~ 0.8 fm (breakdown distance)  ➙  we use R = 0.8…1.2 fm
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TABLE III: �2/datum for the description of the Nijmegen neutron-proton and proton-proton phase shifts [25] as described in
the text at di↵erent orders in the chiral expansion for the cuto↵ R = 0.9 fm. Only those channels are included which have been
used in the N3LO/N4LO fits, namely the S-, P- and D-waves and the mixing angles ✏1 and ✏2.

Elab bin LO NLO N2LO N3LO N4LO

neutron-proton phase shifts

0–100 360 31 4.5 0.7 0.3

0–200 480 63 21 0.7 0.3

proton-proton phase shifts

0–100 5750 102 15 0.8 0.3

0–200 9150 560 130 0.7 0.6
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FIG. 1: Chiral expansion of the NN phase shifts in comparison with the NPWA [25] (solid dots) and the GWU single-energy
np partial wave analysis [58] (open triangles). Dotted, dashed, dashed-dotted, dashed-double-dotted and solid lines show the
results at LO, NLO, N2LO, N3LO and N4LO, respectively, calculated using the cuto↵ R = 0.9 fm. Only those partial wave are
shown which have been used in the fits at N3LO/N4LO.

 NN phase shifts order by order
Convergence of the chiral expansion for neutron-proton phase shifts [using R = 0.9 fm]

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]
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χ2datum for the reproduction of the Nijmegen phase shifts [using R = 0.9 fm]
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FIG. 4: Cuto↵ dependence of of the phase shifts calculated at N2LO (left panel) and N3LO (right panel). Dotted, dashed,
dashed-dotted, solid and dashed-double-dotted lines show the results obtained with the cuto↵s R = 1.2 fm, R = 1.1 fm,
R = 1.0 fm, R = 0.9 fm and R = 0.8 fm, respectively. Only those partial waves are shown which have been used in the fits at
N3LO. Solid dots and open triangles correspond to the results of the NPWA [41] and the GWU single-energy np partial wave
analysis [89].

resulting error plots demonstrate a very similar cuto↵ dependence at NLO and N2LO which is to be expected based
on general arguments as discussed above. In addition, one observes that the cuto↵ dependence reduces significantly in
the whole range of momenta when going from LO to NLO/N2LO and from NLO/N2LO to N3LO/N4LO. Notice that
the appearance of dips in the plots at values of k where the function 1� cot �R1(k)/ cot �R2(k) changes its sign has no
significance and should be ignored. Also, the structures seen in the 3S1 partial wave for k ⇠ 90MeV and k ⇠ 400MeV
(1S0 partial wave for k ⇠ 350 . . . 400MeV) simply reflect the feature that cot(⇡/2) = 0 (cot(0) = 1) and should be
ignored, too. Concerning the slope of the curves at di↵erent orders, the error plots indicate the appearance of two
di↵erent regimes: at low momenta well below the pion mass, the slope does not change significantly from order to
order and the curves are nearly horizontal. This is a qualitatively similar pattern to the one reported in Ref. [92]. To
understand this feature, we recall that chiral expansion of the nuclear force is actually a double expansion in powers
of momenta and the pion mass M⇡, see Eq. (2.1). At low momenta, we expect the corrections to be dominated by
powers of M⇡/⇤b and, therefore, to be nearly independent on momenta. On the other hand, at momenta above the
pion mass, one may expect the corrections to be dominated by powers of k/⇤b. The increase of the slope when going

R=0.8 fm
R=0.9 fm
R=1.0 fm
R=1.1 fm
R=1.2 fm

Neutron-proton phase shifts at N2LO

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]
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resulting error plots demonstrate a very similar cuto↵ dependence at NLO and N2LO which is to be expected based
on general arguments as discussed above. In addition, one observes that the cuto↵ dependence reduces significantly in
the whole range of momenta when going from LO to NLO/N2LO and from NLO/N2LO to N3LO/N4LO. Notice that
the appearance of dips in the plots at values of k where the function 1� cot �R1(k)/ cot �R2(k) changes its sign has no
significance and should be ignored. Also, the structures seen in the 3S1 partial wave for k ⇠ 90MeV and k ⇠ 400MeV
(1S0 partial wave for k ⇠ 350 . . . 400MeV) simply reflect the feature that cot(⇡/2) = 0 (cot(0) = 1) and should be
ignored, too. Concerning the slope of the curves at di↵erent orders, the error plots indicate the appearance of two
di↵erent regimes: at low momenta well below the pion mass, the slope does not change significantly from order to
order and the curves are nearly horizontal. This is a qualitatively similar pattern to the one reported in Ref. [92]. To
understand this feature, we recall that chiral expansion of the nuclear force is actually a double expansion in powers
of momenta and the pion mass M⇡, see Eq. (2.1). At low momenta, we expect the corrections to be dominated by
powers of M⇡/⇤b and, therefore, to be nearly independent on momenta. On the other hand, at momenta above the
pion mass, one may expect the corrections to be dominated by powers of k/⇤b. The increase of the slope when going
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resulting error plots demonstrate a very similar cuto↵ dependence at NLO and N2LO which is to be expected based
on general arguments as discussed above. In addition, one observes that the cuto↵ dependence reduces significantly in
the whole range of momenta when going from LO to NLO/N2LO and from NLO/N2LO to N3LO/N4LO. Notice that
the appearance of dips in the plots at values of k where the function 1� cot �R1(k)/ cot �R2(k) changes its sign has no
significance and should be ignored. Also, the structures seen in the 3S1 partial wave for k ⇠ 90MeV and k ⇠ 400MeV
(1S0 partial wave for k ⇠ 350 . . . 400MeV) simply reflect the feature that cot(⇡/2) = 0 (cot(0) = 1) and should be
ignored, too. Concerning the slope of the curves at di↵erent orders, the error plots indicate the appearance of two
di↵erent regimes: at low momenta well below the pion mass, the slope does not change significantly from order to
order and the curves are nearly horizontal. This is a qualitatively similar pattern to the one reported in Ref. [92]. To
understand this feature, we recall that chiral expansion of the nuclear force is actually a double expansion in powers
of momenta and the pion mass M⇡, see Eq. (2.1). At low momenta, we expect the corrections to be dominated by
powers of M⇡/⇤b and, therefore, to be nearly independent on momenta. On the other hand, at momenta above the
pion mass, one may expect the corrections to be dominated by powers of k/⇤b. The increase of the slope when going
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Theoretical Uncertainties



 Theoretical uncertainties
Sources of uncertainty:

Uncertainty in the values of πN LECs (might be significant, Carlsson et al.’15)
Uncertainty in NN PWA used as input to fix contact interactions (probably small)

Uncertainty due to truncation of the chiral expansion at a given order
Statistical uncertainty for NN LECs (small, Ekström et al.’14)
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Uncertainty in the values of πN LECs (might be significant, Carlsson et al.’15)
Uncertainty in NN PWA used as input to fix contact interactions (probably small)

Uncertainty due to truncation of the chiral expansion at a given order

does not provide a reliable way to estimate theoretical uncertainty

Often estimated by means of a cutoff variation. However…

LO: neglected order-Q2 contact terms [NLO]
NLO, N2LO: neglected order-Q4 contact terms [N3LO]

N3LO, N4LO: neglected order-Q6 contact terms [N5LO]

cutoff dependence 
should decrease from 

LO to NLO(N2LO) !
to N3LO(N4LO)

- expected to underestimate the uncertainty at NLO and N3LO!
!

!!
!
- depends on the chosen range of cutoffs which in practice is rather restricted !
- softer cutoffs Λ tend to overestimate the true uncertainty

Statistical uncertainty for NN LECs (small, Ekström et al.’14)
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Reading off the breakdown scale Λb from error plots

As a measure of the residual cutoff !
dependence of phase shifts, one 
can look at the error plots: 

Elab bin CD-Bonn — Idaho N3LO — — improved chiral potentials at N3LO, this work —
(MeV) (500) (600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

neutron-proton phase shifts
0–100 0.6 1.7 5.2 0.8 0.7 0.6 0.7 1.4
0–200 0.6 2.2 5.3 0.8 0.7 0.6 0.8 1.8
0–300 0.6 3.3 6.8 2.1 1.5 1.8 4.0 10.7

proton-proton phase shifts
0–100 0.5 1.5? 6.7? 1.8 0.8 0.5 1.2 4.6
0–200 1.3 2.9? 11.7? 2.1 0.7 0.6 2.2 8.2
0–300 1.3 5.9? 30.0? 12.0 3.2 7.0 24.5 66.8

?The 1S0 partial wave has not been taken into account.
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FIG. 4: Error plots for np scattering in the 1S0,
3S1,

3P1 and 3P2 partial waves as explained in the text. Dotted, dashed (color
online: brown), dashed-dotted (color online: blue) and solid (color online: red) lines show the results at LO, NLO, N2LO and
N3LO, respectively.

TABLE VI: Deuteron binding energy B
d

, asymptotic S state normalization A
S

, asymptotic D/S state ratio ⌘, radius r
d

and
quadrupole moment Q predicted by various NN potential in comparison with empirical information. Also shown is the Dstate
probability P

D

. Notice that r
d

and Q
d

are calculated without taking into account meson-exchange current contributions and
relativistic corrections.

CD Bonn, Idaho N3LO — improved chiral potentials at N4LO, this work — Empirical

[31] (500), [2] R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

B
d

(MeV) 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.224575(9)

A
S

(fm�1/2) 0.8846 0.8843 0.8843 0.8844 0.8845 0.8845 0.8846 0.8846(9)

⌘ 0.0256 0.0256 0.0256 0.0256 0.0255 0.0255 0.0256 0.0256(4)

r
d

(fm) 1.966 1.975 1.970 1.972 1.975 1.978 1.981 1.97535(85)

Q (fm2) 0.270 0.275 0.271 0.271 0.273 0.274 0.281 0.2859(3)

P
D

(%) 4.85 4.51 4.24 4.34 4.50 4.88 5.25

?The deuteron binding energy has been taken as input in the fit.

N3LO
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FIG. 4: Error plots for np scattering in the 1S0,
3S1,

3P1 and 3P2 partial waves as explained in the text. Dotted, dashed (color
online: brown), dashed-dotted (color online: blue) and solid (color online: red) lines show the results at LO, NLO, N2LO and
N3LO, respectively.

TABLE VI: Deuteron binding energy B
d

, asymptotic S state normalization A
S

, asymptotic D/S state ratio ⌘, radius r
d

and
quadrupole moment Q predicted by various NN potential in comparison with empirical information. Also shown is the Dstate
probability P

D

. Notice that r
d

and Q
d

are calculated without taking into account meson-exchange current contributions and
relativistic corrections.

CD Bonn, Idaho N3LO — improved chiral potentials at N4LO, this work — Empirical

[31] (500), [2] R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

B
d

(MeV) 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.224575(9)

A
S

(fm�1/2) 0.8846 0.8843 0.8843 0.8844 0.8845 0.8845 0.8846 0.8846(9)

⌘ 0.0256 0.0256 0.0256 0.0256 0.0255 0.0255 0.0256 0.0256(4)

r
d

(fm) 1.966 1.975 1.970 1.972 1.975 1.978 1.981 1.97535(85)

Q (fm2) 0.270 0.275 0.271 0.271 0.273 0.274 0.281 0.2859(3)

P
D

(%) 4.85 4.51 4.24 4.34 4.50 4.88 5.25

?The deuteron binding energy has been taken as input in the fit.

N3LO

Interpretation (simplified):
error governed by powers of Mπ/Λb



 Theoretical uncertainties
Sources of uncertainty:

Uncertainty in the values of πN LECs (might be significant, Carlsson et al.’15)
Uncertainty in NN PWA used as input to fix contact interactions (probably small)

Uncertainty due to truncation of the chiral expansion at a given order

does not provide a reliable way to estimate theoretical uncertainty

Often estimated by means of a cutoff variation. However…

LO: neglected order-Q2 contact terms [NLO]
NLO, N2LO: neglected order-Q4 contact terms [N3LO]

N3LO, N4LO: neglected order-Q6 contact terms [N5LO]

cutoff dependence 
should decrease from 

LO to NLO(N2LO) !
to N3LO(N4LO)

- expected to underestimate the uncertainty at NLO and N3LO!
!

!!
!
- depends on the chosen range of cutoffs which in practice is rather restricted !
- softer cutoffs Λ tend to overestimate the true uncertainty

Statistical uncertainty for NN LECs (small, Ekström et al.’14)

Theoretical uncertainty by estimating the size of higher-order contributions 
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Reading off the breakdown scale Λb from error plots

As a measure of the residual cutoff !
dependence of phase shifts, one 
can look at the error plots: 
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?The 1S0 partial wave has not been taken into account.
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FIG. 4: Error plots for np scattering in the 1S0,
3S1,

3P1 and 3P2 partial waves as explained in the text. Dotted, dashed (color
online: brown), dashed-dotted (color online: blue) and solid (color online: red) lines show the results at LO, NLO, N2LO and
N3LO, respectively.

TABLE VI: Deuteron binding energy B
d

, asymptotic S state normalization A
S

, asymptotic D/S state ratio ⌘, radius r
d

and
quadrupole moment Q predicted by various NN potential in comparison with empirical information. Also shown is the Dstate
probability P

D

. Notice that r
d

and Q
d

are calculated without taking into account meson-exchange current contributions and
relativistic corrections.

CD Bonn, Idaho N3LO — improved chiral potentials at N4LO, this work — Empirical

[31] (500), [2] R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

B
d

(MeV) 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.224575(9)

A
S

(fm�1/2) 0.8846 0.8843 0.8843 0.8844 0.8845 0.8845 0.8846 0.8846(9)

⌘ 0.0256 0.0256 0.0256 0.0256 0.0255 0.0255 0.0256 0.0256(4)

r
d

(fm) 1.966 1.975 1.970 1.972 1.975 1.978 1.981 1.97535(85)

Q (fm2) 0.270 0.275 0.271 0.271 0.273 0.274 0.281 0.2859(3)

P
D

(%) 4.85 4.51 4.24 4.34 4.50 4.88 5.25

?The deuteron binding energy has been taken as input in the fit.

N3LO

Interpretation (simplified):
error governed by powers of Mπ/Λb

error governed by powers of k/Λb



 Theoretical uncertainties
Sources of uncertainty:

Uncertainty in the values of πN LECs (might be significant, Carlsson et al.’15)
Uncertainty in NN PWA used as input to fix contact interactions (probably small)

Uncertainty due to truncation of the chiral expansion at a given order

does not provide a reliable way to estimate theoretical uncertainty

Often estimated by means of a cutoff variation. However…

LO: neglected order-Q2 contact terms [NLO]
NLO, N2LO: neglected order-Q4 contact terms [N3LO]

N3LO, N4LO: neglected order-Q6 contact terms [N5LO]

cutoff dependence 
should decrease from 

LO to NLO(N2LO) !
to N3LO(N4LO)

- expected to underestimate the uncertainty at NLO and N3LO!
!

!!
!
- depends on the chosen range of cutoffs which in practice is rather restricted !
- softer cutoffs Λ tend to overestimate the true uncertainty

Statistical uncertainty for NN LECs (small, Ekström et al.’14)

Theoretical uncertainty by estimating the size of higher-order contributions 
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Reading off the breakdown scale Λb from error plots

As a measure of the residual cutoff !
dependence of phase shifts, one 
can look at the error plots: 
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?The 1S0 partial wave has not been taken into account.
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FIG. 4: Error plots for np scattering in the 1S0,
3S1,

3P1 and 3P2 partial waves as explained in the text. Dotted, dashed (color
online: brown), dashed-dotted (color online: blue) and solid (color online: red) lines show the results at LO, NLO, N2LO and
N3LO, respectively.

TABLE VI: Deuteron binding energy B
d

, asymptotic S state normalization A
S

, asymptotic D/S state ratio ⌘, radius r
d

and
quadrupole moment Q predicted by various NN potential in comparison with empirical information. Also shown is the Dstate
probability P

D

. Notice that r
d

and Q
d

are calculated without taking into account meson-exchange current contributions and
relativistic corrections.

CD Bonn, Idaho N3LO — improved chiral potentials at N4LO, this work — Empirical

[31] (500), [2] R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

B
d

(MeV) 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.2246? 2.224575(9)

A
S

(fm�1/2) 0.8846 0.8843 0.8843 0.8844 0.8845 0.8845 0.8846 0.8846(9)

⌘ 0.0256 0.0256 0.0256 0.0256 0.0255 0.0255 0.0256 0.0256(4)

r
d

(fm) 1.966 1.975 1.970 1.972 1.975 1.978 1.981 1.97535(85)

Q (fm2) 0.270 0.275 0.271 0.271 0.273 0.274 0.281 0.2859(3)

P
D

(%) 4.85 4.51 4.24 4.34 4.50 4.88 5.25

?The deuteron binding energy has been taken as input in the fit.

N3LO

Interpretation (simplified):
error governed by powers of Mπ/Λb

error governed by powers of k/Λb

the breakdown scale corresponds to momenta at which the lines cross each other 
At N3LO, Λb ~ 600 MeV (for R = 0.8…1.0 fm)



 Convergence of the chiral expansion
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the breakdown scale is estimated to be !
Λb ~ 600 MeV  (for R = 0.8…1.0 fm)

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]
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the breakdown scale is estimated to be !
Λb ~ 600 MeV  (for R = 0.8…1.0 fm)

Example: neutron-proton total cross section R=0.9 fm

Elab = 96 MeV  [p = 212 MeV]:
Q2Q0 Q3 Q4 Q5

σtot  =  84.8  - 9.7  +  3.2  -  0.8  +  0.5   =  78.0 mb

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]
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the breakdown scale is estimated to be !
Λb ~ 600 MeV  (for R = 0.8…1.0 fm)

Q = 212 / 600 ~ 0.35 expect: ~ 11 ~ 4 ~ 1.3 ~ 0.5

Example: neutron-proton total cross section R=0.9 fm

Elab = 96 MeV  [p = 212 MeV]:
Q2Q0 Q3 Q4 Q5

σtot  =  84.8  - 9.7  +  3.2  -  0.8  +  0.5   =  78.0 mb

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]
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the breakdown scale is estimated to be !
Λb ~ 600 MeV  (for R = 0.8…1.0 fm)

Q = 212 / 600 ~ 0.35 expect: ~ 11 ~ 4 ~ 1.3 ~ 0.5

σtot  =  34.9  + 1.0  +  6.7  +  0.6  -  0.5  =  42.7 mbElab = 200 MeV  [p = 307 MeV]:
Q = 307 / 600 ~ 0.5 expect: ~ 9 ~ 5 ~ 2.4 ~ 1.2

good convergence of the chiral expansion

Example: neutron-proton total cross section R=0.9 fm

Elab = 96 MeV  [p = 212 MeV]:
Q2Q0 Q3 Q4 Q5

σtot  =  84.8  - 9.7  +  3.2  -  0.8  +  0.5   =  78.0 mb
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 Uncertainty quantification
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calculated in the chiral expansion
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 Uncertainty quantification
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calculated in the chiral expansion
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Theoretical uncertainty             estimated via the size of neglected higher-order contributions*:
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
N3LO (filled triangles, color online: blue) and N4LO (filled
circles, color online: red) at the laboratory energies of 50,
96, 143 and 200 MeV for the di↵erent choices of the cuto↵:
R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm and
R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].

Q3 ⇥
���XNLO(p)�XN2LO(p)

���,

Q2 ⇥
���XN2LO(p)�XN3LO(p)

���,

Q⇥
���XN3LO(p)�XN4LO(p)

���
◆
.

Here, Q is the expansion parameter given by

Q = max

✓
p

⇤b
,
M⇡

⇤b

◆
. (4)

For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at

NLO!
N2LO!
N3LO!
N4LO

np total cross section for R1,…,5 = {0.8, 0.9, 1.0, 1.1, 1.2} fm
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Selected neutron-proton scattering observables at 50 MeV R=1.2fm

Neutron-proton scattering
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Theoretical predictions for different cutoff choices are consistent with each other!
Softer cutoffs lead to larger theoretical uncertainties 

EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]



 Neutron-proton scattering
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Accurate results even at the energy of Elab = 200 MeV (for R = 0.9 fm)!
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 Deuteron properties R=0.9 fm
EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  arXiv:1412.4623 [nucl-th]

LO NLO N N N empirical
B 2.0235 2.1987 2.2311 2.2246* 2.2246* 2.224575(9)
A 0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
η 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
rd 1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q [fm
PD 2.54 4.73 4.50 4.19 4.29

0.230 0.273 0.270 0.271 0.271 0.2859(3)

— fast convergence of the chiral expansion (PD is not observable)

— error estimation (assuming Q=Mπ/Λb)
AS:  LO: 0.83(5) → NLO: 0.878(13) → N2LO: 0.887(3) → N3LO: 0.8845(8) → N4LO: 0.8844(2)
η:  LO: 0.021(5) → NLO: 0.026(1) → N2LO: 0.0256(3) → N3LO: 0.0255(1) → N4LO: 0.0255
→ theoretical results for AS,η at N4LO are more accurate than empirical numbers

— results for rd and Q do not take into account MECs and relativistic corrections:
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[Kohno ’83] predictions in agreement with the datard: →
rel. corrections + 1π-exchange MEC: 
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Q: →[Phillips ’07]
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the remaining deviation of 0.007 fm2 agrees with the expected size of [Phillips ’07]

* has been used in the fit



 Regulator (in)dependence

How do our results depend on the specific form of the regulator 

and/or additional spectral function regularization 
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Lab. energy NPWA our result DR, n = 5 DR, n = 7 SFR, 1.0 GeV SFR, 1.5 GeV SFR, 2.0 GeV

proton-proton 1S0 phase shift
10 MeV 55.23 55.22± 0.08 55.22 55.22 55.22 55.22 55.22
100 MeV 24.99 24.98± 0.60 24.98 24.98 24.98 24.98 24.98
200 MeV 6.55 6.56± 2.2 6.55 6.56 6.56 6.56 6.57

neutron-proton 3S1 phase shift
10 MeV 102.61 102.61± 0.07 102.61 102.61 102.61 102.61 102.61
100 MeV 43.23 43.22± 0.30 43.28 43.20 43.17 43.21 43.22
200 MeV 21.22 21.2± 1.4 21.2 21.2 21.2 21.2 21.2

proton-proton 3P0 phase shift
10 MeV 3.73 3.75± 0.04 3.75 3.75 3.75 3.75 3.75
100 MeV 9.45 9.17± 0.30 9.15 9.18 9.18 9.17 9.17
200 MeV �0.37 �0.1± 2.3 �0.1 �0.1 �0.1 �0.1 �0.1

proton-proton 3P1 phase shift
10 MeV �2.06 �2.04± 0.01 �2.04 �2.04 �2.04 �2.04 �2.04
100 MeV �13.26 �13.42± 0.17 �13.43 �13.41 �13.41 �13.42 �13.42
200 MeV �21.25 �21.2± 1.6 �21.2 �21.2 �21.2 �21.2 �21.2

proton-proton 3P2 phase shift
10 MeV 0.65 0.65± 0.01 0.66 0.65 0.65 0.65 0.65
100 MeV 11.01 11.03± 0.50 10.97 11.06 11.07 11.05 11.04
200 MeV 15.63 15.6± 1.9 15.6 15.5 15.5 15.5 15.6

2

Selected phase shifts (in deg.) for different values of ΛSFR and n at N3LO[R = 0.9 fm]

T = V + V G0T = V + V G0V + V G0V G0V + . . .

m ! 1

VC(q) =
2

⇡

Z
⇤SFR

2M⇡

dµµ
⇢C(µ)

µ2
+ q2

(1)

f
✓
r

R

◆
=

"

1� exp

 

� r2

R2

!#n
(2)

�XN3LO
(p) = max

⇣
Q5 ⇥ |XLO

(p)|, (3)

Q3 ⇥ |XLO
(p)�XNLO

(p)|, (4)

Q2 ⇥ |XNLO
(p)�XN2LO

(p)|, (5)

Q1 ⇥ |XN2LO
(p)�XN3LO

(p)|
⌘

(6)

�X = max

⇣
�

NPWA
X , |�NijmI

X � �NPWA
X |, |�NijmII

X � �NPWA
X |, |�Reid93

X � �NPWA
X |

⌘
, (7)

Q = max

✓
p

⇤b
,
M⇡

⇤b

◆
(8)

Z 1

0
dr
h
u2
(r) + w2

(r)
i
= 1 (9)

u(r)
r!1�! ASe

��r
; (10)

w(r)
r!1�! ADe

��r

1 +

3

�r
+

3

(�r)2

�
; ⌘ =

AD

AS
(11)

Qd =
1

20

Z 1

0
drr2w(r)

hp
8u(r)� w(r)

i
(12)

rd =
1

2

✓ Z 1

0
drr2

h
u2
(r) + w2

(r)
i◆1/2

(13)

PD =

Z 1

0
drw2

(r) (14)

����1�
cot �Ri(k)

cot �Rj(k)

���� (15)

1



 Regulator (in)dependence

How do our results depend on the specific form of the regulator 

and/or additional spectral function regularization 

T = V + V G0T = V + V G0V + V G0V G0V + . . .

m ! 1

VC(q) =
2

⇡

Z
⇤

2M⇡

dµµ
⇢C(µ)

µ2
+ q2

(1)

f
✓
r

R

◆
=

"

1� exp

 

� r2

R2

!#n
(2)

�XN3LO
(p) = max

⇣
Q5 ⇥ |XLO

(p)|, (3)

Q3 ⇥ |XLO
(p)�XNLO

(p)|, (4)

Q2 ⇥ |XNLO
(p)�XN2LO

(p)|, (5)

Q1 ⇥ |XN2LO
(p)�XN3LO

(p)|
⌘

(6)

�X = max

⇣
�

NPWA
X , |�NijmI

X � �NPWA
X |, |�NijmII

X � �NPWA
X |, |�Reid93

X � �NPWA
X |

⌘
, (7)

Q = max

✓
p

⇤b
,
M⇡

⇤b

◆
(8)

Z 1

0
dr
h
u2
(r) + w2

(r)
i
= 1 (9)

u(r)
r!1�! ASe

��r
; (10)

w(r)
r!1�! ADe

��r

1 +

3

�r
+

3

(�r)2

�
; ⌘ =

AD

AS
(11)

Qd =
1

20

Z 1

0
drr2w(r)

hp
8u(r)� w(r)

i
(12)

rd =
1

2

✓ Z 1

0
drr2

h
u2
(r) + w2

(r)
i◆1/2

(13)

PD =

Z 1

0
drw2

(r) (14)

����1�
cot �Ri(k)

cot �Rj(k)

���� (15)

1

Lab. energy NPWA our result DR, n = 5 DR, n = 7 SFR, 1.0 GeV SFR, 1.5 GeV SFR, 2.0 GeV
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negligible regulator dependence (compared to the estimated theor. accuracy)
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Neutron-deuteron total cross section based on NN forces only R=0.9fm
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FIG. 2: Predictions for Nd total cross section based on the NN
potentials of Refs. [14, 15] for R = 0.9 fm without including
the 3NF. Theoretical uncertainties are estimated via Eqs. (6),
(7). Experimental data are from Ref. [16].

uncertainty starting from N2LO. The N3LO (N4LO) re-
sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
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FIG. 3: Predictions for the di↵erential cross section and nu-
cleon A

y

in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented

Unambiguous evidence for missing three-nucleon forces (within our scheme)

The size of the missing 3NF contribution agrees well with power counting (N2LO)
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sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
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FIG. 3: Predictions for the di↵erential cross section and nu-
cleon A
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in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented
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elsewhere; here we merely note that the new regulators
introduce no pathologies, and the eigenvalues are com-
parable to those from previous N3LO interactions with
similar cuto↵s [4]. While future applications to heavier
nuclei will employ transformations to soften the initial
potentials (e.g., see Ref. [22]), in the present work we
consider few-body tests with untransformed interactions.

At this point, the discussion could naturally
move towards heavier systems. It would be nat-
ural to first briefly address Weinberg eigenvalue
analysis done by Dick (and maybe to show one
figure) and then present selected NCSM results.
For 4He, we could probably show the FY results
by Andreas. We could also put it earlier in the
text to the 3H BE and try to save space by extend-
ing Fig. 1. It would be interesting to see results
for the radii of 3H, 4He. [Dick: It would also
make sense to move A = 4 earlier as the last para-
graph above applies to the transition to methods
where convergence is an issue.] For NCSM, we

could maybe concentrate on 6Li (if such calcula-
tions are possible without SRG). I think, it would
be very interesting to see the expected theoreti-
cal accuracy not only for the ground but also for
excited states.

If the NCSM calculations will be done with
R = 1 fm, we could choose the same cuto↵ for
other observables. The should result in minor
di↵erences.

We might also need/want to shorten the part
I have written (for example, we could remove
Fig. ??) and discuss results we want to show. For
example, I have removed a picture which shows
the total Nd cross section calculated for all values
of the regulator R.
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— very accurate results are expected
— not much room for missing 3NF effects except for the Ay (Ay-puzzle)
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FIG. 2: Predictions for Nd total cross section based on the NN
potentials of Refs. [14, 15] for R = 0.9 fm without including
the 3NF. Theoretical uncertainties are estimated via Eqs. (6),
(7). Experimental data are from Ref. [16].

uncertainty starting from N2LO. The N3LO (N4LO) re-
sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
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FIG. 3: Predictions for the di↵erential cross section and nu-
cleon A
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in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented
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— very accurate results starting from N3LO are expected
— clear room for 3NF contributions to the cross section and tensor analyzing powers
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potentials of Refs. [14, 15] for R = 0.9 fm without including
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uncertainty starting from N2LO. The N3LO (N4LO) re-
sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
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in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented
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uncertainty starting from N2LO. The N3LO (N4LO) re-
sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
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in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented
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elsewhere; here we merely note that the new regulators
introduce no pathologies, and the eigenvalues are com-
parable to those from previous N3LO interactions with
similar cuto↵s [4]. While future applications to heavier
nuclei will employ transformations to soften the initial
potentials (e.g., see Ref. [22]), in the present work we
consider few-body tests with untransformed interactions.

At this point, the discussion could naturally
move towards heavier systems. It would be nat-
ural to first briefly address Weinberg eigenvalue
analysis done by Dick (and maybe to show one
figure) and then present selected NCSM results.
For 4He, we could probably show the FY results
by Andreas. We could also put it earlier in the
text to the 3H BE and try to save space by extend-
ing Fig. 1. It would be interesting to see results
for the radii of 3H, 4He. [Dick: It would also
make sense to move A = 4 earlier as the last para-
graph above applies to the transition to methods
where convergence is an issue.] For NCSM, we

could maybe concentrate on 6Li (if such calcula-
tions are possible without SRG). I think, it would
be very interesting to see the expected theoreti-
cal accuracy not only for the ground but also for
excited states.

If the NCSM calculations will be done with
R = 1 fm, we could choose the same cuto↵ for
other observables. The should result in minor
di↵erences.

We might also need/want to shorten the part
I have written (for example, we could remove
Fig. ??) and discuss results we want to show. For
example, I have removed a picture which shows
the total Nd cross section calculated for all values
of the regulator R.
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— accurate results at N4LO are expected
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FIG. 2: Predictions for Nd total cross section based on the NN
potentials of Refs. [14, 15] for R = 0.9 fm without including
the 3NF. Theoretical uncertainties are estimated via Eqs. (6),
(7). Experimental data are from Ref. [16].

uncertainty starting from N2LO. The N3LO (N4LO) re-
sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
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FIG. 3: Predictions for the di↵erential cross section and nu-
cleon A

y

in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented
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uncertainty starting from N2LO. The N3LO (N4LO) re-
sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]

 10

 100

d
�/

d
�

 [
m

b
/s

r] 10 MeV

 10

 100

 0

 0.1

 0.2

A
y

10 MeV

 0

 0.1

 0.2

 1

 10

d
�/

d
�

 [
m

b
/s

r] 70 MeV

 1

 10

-0.5

 0

 0.5

A
y

70 MeV

-0.5

 0

 0.5

 0.1

 1

 10
d
�/

d
�

 [
m

b
/s

r] 135 MeV

 0.1

 1

 10

-0.5

 0

 0.5

A
y

135 MeV

-0.5

 0

 0.5

 0.1

 1

 10

0 60 120 180

d
�/

d
�

 [
m

b
/s

r]

�CM [deg]

200 MeV

 0.1

 1

 10

0 60 120 180

�CM [deg]

-0.5

 0

 0.5

0 60 120 180

A
y

�CM [deg]

200 MeV

-0.5

 0

 0.5

0 60 120 180

�CM [deg]

FIG. 3: Predictions for the di↵erential cross section and nu-
cleon A

y

in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented
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in elastic Nd scattering based on the NN potentials of
Refs. [14, 15] for R = 0.9 fm without including the 3NF. For
notations see Fig. 3.

elsewhere; here we merely note that the new regulators
introduce no pathologies, and the eigenvalues are com-
parable to those from previous N3LO interactions with
similar cuto↵s [4]. While future applications to heavier
nuclei will employ transformations to soften the initial
potentials (e.g., see Ref. [22]), in the present work we
consider few-body tests with untransformed interactions.

At this point, the discussion could naturally
move towards heavier systems. It would be nat-
ural to first briefly address Weinberg eigenvalue
analysis done by Dick (and maybe to show one
figure) and then present selected NCSM results.
For 4He, we could probably show the FY results
by Andreas. We could also put it earlier in the
text to the 3H BE and try to save space by extend-
ing Fig. 1. It would be interesting to see results
for the radii of 3H, 4He. [Dick: It would also
make sense to move A = 4 earlier as the last para-
graph above applies to the transition to methods
where convergence is an issue.] For NCSM, we

could maybe concentrate on 6Li (if such calcula-
tions are possible without SRG). I think, it would
be very interesting to see the expected theoreti-
cal accuracy not only for the ground but also for
excited states.

If the NCSM calculations will be done with
R = 1 fm, we could choose the same cuto↵ for
other observables. The should result in minor
di↵erences.

We might also need/want to shorten the part
I have written (for example, we could remove
Fig. ??) and discuss results we want to show. For
example, I have removed a picture which shows
the total Nd cross section calculated for all values
of the regulator R.
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3

 900

 950

 1000

 1050

 1100

Q0 Q2 Q3 Q4 Q5 Exp

� t
ot

 [
m

b
]

10 MeV

 145

 150

 155

 160

Q0 Q2 Q3 Q4 Q5 Exp

70 MeV

 70

 75

 80

 85

Q0 Q2 Q3 Q4 Q5 Exp

135 MeV

 40

 50

 60

 70

Q0 Q2 Q3 Q4 Q5 Exp

200 MeV

FIG. 2: Predictions for Nd total cross section based on the NN
potentials of Refs. [14, 15] for R = 0.9 fm without including
the 3NF. Theoretical uncertainties are estimated via Eqs. (6),
(7). Experimental data are from Ref. [16].

uncertainty starting from N2LO. The N3LO (N4LO) re-
sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
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FIG. 3: Predictions for the di↵erential cross section and nu-
cleon A

y

in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented
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uncertainty starting from N2LO. The N3LO (N4LO) re-
sults for the 3H BE are expected to be accurate at the
level of ⇠50 keV (⇠10 keV) for the regulator choices of
R = 0.8 . . . 1.0 fm. It is reassuring to see that the size of
the 3NF contribution agrees well with the uncertainty at
NLO, which reflects the estimated impact of the N2LO
contributions to the Hamiltonian. This is fully in line
with expectations based on the Weinberg power count-
ing [1, 2].

We now turn to Nd scattering observables. Our predic-
tions for the Nd total cross section are visualized in Fig. 2.
Similar to the 3H BE, one observes a significant discrep-
ancy between the theoretical predictions based on the
NN forces only and data, which provides clear evidence
for missing 3NF contributions. Except for the lowest en-
ergy, the size of the discrepancy matches well with the
estimated size of N2LO corrections shown by the NLO
error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated
size of N2LO contributions. Given that the cross section
at low energy is governed by the S-wave spin-doublet and
spin-quartet Nd scattering lengths, this observation can
be naturally explained. Indeed, the spin-quartet scatter-
ing length is almost an order of magnitude larger than
that of the spin-doublet and much less sensitive to the
3NF as a consequence of the Pauli principle.

Our predictions for Nd di↵erential cross section and an-
alyzing powers A

y

(N), A
yy

and A
xx

are shown in Figs. 3,
4. At the lowest energy of 10 MeV, there is little appar-
ent need for 3NF e↵ects except for A

y

. Interestingly, the
fine-tuning nature of this observable is clearly reflected in
large theoretical uncertainties at NLO and N2LO. Start-
ing from E

N

= 70 MeV, one observes clear discrepancies
between our predictions and data for the cross section
and tensor analyzing powers which are expected to be
explained by the 3NF. In all cases, the required 3NF
contributions are of a natural size. Based on the width
of the bands, one may expect Nd scattering observables
at N4LO to be accurately described up to energies of
at least 200 MeV. It is also comforting to see that the
accuracy of chiral EFT predictions for Nd and NN [15]
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FIG. 3: Predictions for the di↵erential cross section and nu-
cleon A

y

in elastic Nd scattering based on the NN potentials
of Refs. [14, 15] for R = 0.9 fm without including the 3NF.
Theoretical uncertainties are estimated via Eqs. (6), (7). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).
The dotted (dashed) lines show the results based on the CD
Bonn NN potential [17] (CD Bonn NN potential in combina-
tion with the Tucson-Melbourne 3NF [18]). For references to
proton-nucleon data see Ref. [5].

scattering observables at the same energy is comparable.
We further emphasize that the improved NN potentials
of Refs. [14, 15] show clearly smaller finite-cuto↵ artifacts
as compared to the N3LO potentials of Refs. [3, 4] and, in
particular, do not lead to distortions in the cross section
minimum that were found in Ref. [19].
Next we apply the improved NN potentials to A > 3,

where we first confront practical considerations for the
convergence of solution methods such as the no-core shell
model (NCSM). In particular, the question arises if the
new regularization scheme might lead to impractically
hard interactions. The calculation of Weinberg eigenval-
ues [20, 21] provides a quantitative metric of the softness
of NN potentials. A detailed analysis will be presented
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FIG. 4: Predictions for the tensor analyzing powers A
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and
A
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in elastic Nd scattering based on the NN potentials of
Refs. [14, 15] for R = 0.9 fm without including the 3NF. For
notations see Fig. 3.

elsewhere; here we merely note that the new regulators
introduce no pathologies, and the eigenvalues are com-
parable to those from previous N3LO interactions with
similar cuto↵s [4]. While future applications to heavier
nuclei will employ transformations to soften the initial
potentials (e.g., see Ref. [22]), in the present work we
consider few-body tests with untransformed interactions.

At this point, the discussion could naturally
move towards heavier systems. It would be nat-
ural to first briefly address Weinberg eigenvalue
analysis done by Dick (and maybe to show one
figure) and then present selected NCSM results.
For 4He, we could probably show the FY results
by Andreas. We could also put it earlier in the
text to the 3H BE and try to save space by extend-
ing Fig. 1. It would be interesting to see results
for the radii of 3H, 4He. [Dick: It would also
make sense to move A = 4 earlier as the last para-
graph above applies to the transition to methods
where convergence is an issue.] For NCSM, we

could maybe concentrate on 6Li (if such calcula-
tions are possible without SRG). I think, it would
be very interesting to see the expected theoreti-
cal accuracy not only for the ground but also for
excited states.

If the NCSM calculations will be done with
R = 1 fm, we could choose the same cuto↵ for
other observables. The should result in minor
di↵erences.

We might also need/want to shorten the part
I have written (for example, we could remove
Fig. ??) and discuss results we want to show. For
example, I have removed a picture which shows
the total Nd cross section calculated for all values
of the regulator R.
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FIG. 4: (Color online) Predictions for the tensor analyzing
powers A

yy

and A
xx

in elastic Nd scattering based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. For notations see Fig. 3.

sults for 4He are obtained both by solving the Faddeev-
Yakubovsky (FY) equations and with the no-core shell
model (NCSM) [8], which agree to within the estimated
uncertainties of these methods. The numerical uncer-
tainties in the FY solutions are a few keV for the energy
and about 0.001 fm for the point-proton radius (r

p

). The
numerical uncertainties from incomplete convergence of
the NCSM (see Ref. [21] for details) are shown as error
bars (color online: red) together with the estimated theo-
retical uncertainties from the truncated chiral expansion
with Q = M

⇡

/⇤
b

(color online: blue).
For the 6Li energies, we carried out Similarity Renor-

malization Group (SRG) evolution [22] in order to en-
hance the convergence rate of the NCSM calculations
that were performed in basis spaces up through N

max

=
12 and extrapolated to the infinite matrix limit following
Ref. [22]. We retained the induced 3NF arising from the
SRG evolution, see Ref. [23] for details, and this produces
results for the 6Li energies in Fig. 5 that are independent
of the SRG scale over the range ↵ = 0.04 � 0.08 fm4 to

0 2 3 4 5  Exp
chiral order i

-50

-45

-40

-35

-30

-25

-20

E
n

er
g

y
 (

M
eV

)

0 2 3 4 5  Exp
chiral order i

1.0

1.1

1.2

1.3

1.4

1.5

1.6

rm
s 

ra
d

iu
s 

(f
m

)

0 2 3 4 5  Exp
chiral order i

-50

-45

-40

-35

-30

-25

-20

E
n

er
g

y
 (

M
eV

)

3
+

1
+

4
He

4
He

6
Li

FIG. 5: (Color online) Predictions for Egs and rp of 4He and
the energies of the lowest two states of 6Li based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. Theoretical uncertainties (blue) are estimated via
Eqs. (4) and (5) for chiral order i = 0, 2 and via Eqs. (6) and
(7) for i � 3. Numerical uncertainties from the NCSM (red)
are estimated following Ref. [21].

within our quoted many-body uncertainties. For exam-
ple, at N4LO we obtain E

gs

= �26.9(4) (�26.9(2)) MeV
at ↵ = 0.04(0.08) fm4 for 6Li where the quantified numer-
ical uncertainty in the last digit of the energy is quoted
in parenthesis.
The patterns for the energies in Fig. 5 as well as for

the r
p

of 4He are very similar to the pattern for the E
gs

of 3H in Fig. 1 and the Nd total cross section at 10 MeV
in Fig. 2. As in 3H, we again observe underbinding in-
dicative of the need for 3NFs, especially at N3LO and
N4LO. This underbinding is correlated with larger r

p

in
4He, which is expected to decrease toward the experi-
mental result as E

gs

is lowered toward experiment with
the inclusion of 3NFs. Note that the energy of the first
excited state in 6Li, with J⇡ = 3+, follows the same pat-
tern as the ground state energy, leading to an excitation
energy that depends much less on the chiral order than
one might naively expect based on the theoretical uncer-
tainties of the binding energies.
To summarize, we have studied in this Letter selected

few-nucleon observables using improved chiral NN po-
tentials of Refs. [15, 16] up to N4LO. Our results suggest
that these new chiral forces are well suited for modern
ab initio few- and many-body methods. Using the novel
approach for error analysis introduced in Ref. [15], we
found truly unambiguous evidence for missing 3NF ef-
fects by observing discrepancies between our predictions
and experimental data well outside the range of quanti-
fied uncertainties. The magnitude of these discrepancies
is found to match well with the expected size of the chi-
ral 3NF whose dominant contribution appears at N2LO.
Furthermore, we have demonstrated that the predictions
for Nd and NN scattering observables at the same energy
have comparable accuracy, in agreement with the general
principles of EFT. Most importantly, the expected theo-
retical uncertainty for Nd scattering observables at N3LO
and N4LO in the energy range of E

lab

' 70�200 MeV is
shown to be substantially smaller than the observed dis-

2

chiral NN forces beyond the two-nucleon system and
demonstrate their suitability for modern ab initio few-
and many-body methods. By applying the new method
for error analysis, we present unambiguous evidence for
missing 3NF e↵ects and demonstrate that the size of the
required 3NF contributions agrees well with expectations
based on Weinberg’s power counting. We also estimate
the theoretical accuracy for various observables achiev-
able at N4LO and identify the energy region in elastic
Nd scattering that is best suited for testing the chiral
3NF.

We first describe our procedure for estimating the the-
oretical uncertainty. Let X(p) be some observable with
p referring to the corresponding momentum scale and
X(i)(p), i = 0, 2, 3, . . ., a prediction at order Qi in the
chiral expansion. We further define the order-Qi correc-
tions to X(p) via

�X(2) ⌘ X(2) �X(0),

�X(i) ⌘ X(i) �X(i�1), i � 3 , (1)

so that the chiral expansion for X takes the form

X(i) = X(0) +�X(2) + . . .+�X(i) . (2)

Generally, the size of the corrections is expected to be

�X(i) = O(QiX(0)). (3)

In [16], the validity of this estimation was confirmed
for the total neutron-proton cross section. In Refs.
[15, 16], quantitative estimates of the theoretical uncer-
tainty �X(i) of the chiral EFT prediction X(i) were made
using the expected and actual sizes of higher-order con-
tributions. Specifically, the following procedure was em-
ployed:

�X(0) = Q2|X(0)|, (4)

�X(i) = max
⇣
Qi+1|X(0)|, Qi+1�j |�X(j)|

⌘
, 2  j  i

where i � 2 and Q = max(p/⇤
b

,M
⇡

/⇤
b

) with ⇤
b

= 600,
500 and 400 MeV for the regulator choices of R =
0.8 � 1.0 fm, R = 1.1 fm and R = 1.2 fm, respec-
tively. The sizes of actual higher-order calculations pro-
vide additional information on the theoretical uncertain-
ties, which we use by adding the conditions

�X(i) � max
⇣��X(j�i) �X(k�i)

��
⌘

(5)

to estimates of lower-order uncertainties.
The above procedure for estimating the uncertainty

needs to be adjusted in order to account for the neglect
of many-body forces in the present analysis. In partic-
ular, iterating the NN T-matrix in the Faddeev equa-
tion generates contributions whose short-range behav-
ior is order- and regulator-dependent. For low-energy
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FIG. 1: (Color online) Chiral expansion of the 3H Egs based
on the NN potentials of Refs. [15, 16] for the regulator R =
1.0 fm and using Q = M

⇡

/⇤
b

. Left (middle) panel shows
incomplete results based on NN forces only, with uncertainties
being estimated via Eqs. (4, 5) (Eqs. (6, 7) for i � 3). Right
panel shows the projected results assuming that the LECs in
the N2LO 3NF are tuned to reproduce the 3H Egs and using
Eqs. (4, 5) to specify the uncertainty.

Nd observables calculated in the EFT framework, ap-
proximate scheme independence is restored upon per-
forming renormalization, i.e. upon expressing the bare
low-energy constants (LECs) accompanying short-range
3NFs at orders Q3, Q5, . . . in terms of observable quan-
tities, such as the triton binding energy. In practice, this
is achieved by fitting the corresponding LECs to exper-
imental data. Therefore, when performing incomplete
calculations based on NN interactions only, the estima-
tion in Eq. (3) is not justified at or beyond N2LO, the
chiral order at which the contact 3NF starts contributing.
We, therefore, adopt here a slightly modified procedure
for estimating the uncertainty �X(i) for i � 3, namely

�X(i) = max
⇣
Qi+1|X(0)|, Qi�1|�X(2)|, Qi�2|�X(3)|

⌘
,

(6)
and do not employ Eq. (5). However, to be conservative
in our estimates, we further require that

�X(2) � Q �X(0), �X(i�3) � Q �X(i�1) . (7)

The dependence of the chiral NN forces on the local
regulator R over the range 0.8 . . . 1.2 fm has been exten-
sively investigated in Ref. [16] showing that cuto↵ arti-
facts become visible for R > 1.0 fm. On the other hand,
we seek to obtain many-body results as close to conver-
gence as possible, and this favors the largest feasible value
of R. We therefore balance these competing conditions
with the choice of R = 1.0 fm in this work.
Our results for the chiral expansion of the 3H ground

state energy (E
gs

) using Q = M
⇡

/⇤
b

are visualized in
Fig. 1. Assuming that the LECs which enter the short-
range part of the 3NF can be tuned to reproduce the 3H
E

gs

, we can already at this stage present a complete result
up to N4LO for the chiral expansion of this observable,
see the right panel in Fig. 1. As expected, we observe
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chiral NN forces beyond the two-nucleon system and
demonstrate their suitability for modern ab initio few-
and many-body methods. By applying the new method
for error analysis, we present unambiguous evidence for
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required 3NF contributions agrees well with expectations
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of many-body forces in the present analysis. In partic-
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FIG. 1: (Color online) Chiral expansion of the 3H Egs based
on the NN potentials of Refs. [15, 16] for the regulator R =
1.0 fm and using Q = M
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. Left (middle) panel shows
incomplete results based on NN forces only, with uncertainties
being estimated via Eqs. (4, 5) (Eqs. (6, 7) for i � 3). Right
panel shows the projected results assuming that the LECs in
the N2LO 3NF are tuned to reproduce the 3H Egs and using
Eqs. (4, 5) to specify the uncertainty.

Nd observables calculated in the EFT framework, ap-
proximate scheme independence is restored upon per-
forming renormalization, i.e. upon expressing the bare
low-energy constants (LECs) accompanying short-range
3NFs at orders Q3, Q5, . . . in terms of observable quan-
tities, such as the triton binding energy. In practice, this
is achieved by fitting the corresponding LECs to exper-
imental data. Therefore, when performing incomplete
calculations based on NN interactions only, the estima-
tion in Eq. (3) is not justified at or beyond N2LO, the
chiral order at which the contact 3NF starts contributing.
We, therefore, adopt here a slightly modified procedure
for estimating the uncertainty �X(i) for i � 3, namely

�X(i) = max
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and do not employ Eq. (5). However, to be conservative
in our estimates, we further require that

�X(2) � Q �X(0), �X(i�3) � Q �X(i�1) . (7)

The dependence of the chiral NN forces on the local
regulator R over the range 0.8 . . . 1.2 fm has been exten-
sively investigated in Ref. [16] showing that cuto↵ arti-
facts become visible for R > 1.0 fm. On the other hand,
we seek to obtain many-body results as close to conver-
gence as possible, and this favors the largest feasible value
of R. We therefore balance these competing conditions
with the choice of R = 1.0 fm in this work.
Our results for the chiral expansion of the 3H ground

state energy (E
gs

) using Q = M
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are visualized in
Fig. 1. Assuming that the LECs which enter the short-
range part of the 3NF can be tuned to reproduce the 3H
E

gs

, we can already at this stage present a complete result
up to N4LO for the chiral expansion of this observable,
see the right panel in Fig. 1. As expected, we observe
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FIG. 4: (Color online) Predictions for the tensor analyzing
powers A
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and A
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in elastic Nd scattering based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. For notations see Fig. 3.

sults for 4He are obtained both by solving the Faddeev-
Yakubovsky (FY) equations and with the no-core shell
model (NCSM) [8], which agree to within the estimated
uncertainties of these methods. The numerical uncer-
tainties in the FY solutions are a few keV for the energy
and about 0.001 fm for the point-proton radius (r

p

). The
numerical uncertainties from incomplete convergence of
the NCSM (see Ref. [21] for details) are shown as error
bars (color online: red) together with the estimated theo-
retical uncertainties from the truncated chiral expansion
with Q = M

⇡

/⇤
b

(color online: blue).
For the 6Li energies, we carried out Similarity Renor-

malization Group (SRG) evolution [22] in order to en-
hance the convergence rate of the NCSM calculations
that were performed in basis spaces up through N

max

=
12 and extrapolated to the infinite matrix limit following
Ref. [22]. We retained the induced 3NF arising from the
SRG evolution, see Ref. [23] for details, and this produces
results for the 6Li energies in Fig. 5 that are independent
of the SRG scale over the range ↵ = 0.04 � 0.08 fm4 to
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FIG. 5: (Color online) Predictions for Egs and rp of 4He and
the energies of the lowest two states of 6Li based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. Theoretical uncertainties (blue) are estimated via
Eqs. (4) and (5) for chiral order i = 0, 2 and via Eqs. (6) and
(7) for i � 3. Numerical uncertainties from the NCSM (red)
are estimated following Ref. [21].

within our quoted many-body uncertainties. For exam-
ple, at N4LO we obtain E

gs

= �26.9(4) (�26.9(2)) MeV
at ↵ = 0.04(0.08) fm4 for 6Li where the quantified numer-
ical uncertainty in the last digit of the energy is quoted
in parenthesis.
The patterns for the energies in Fig. 5 as well as for

the r
p

of 4He are very similar to the pattern for the E
gs

of 3H in Fig. 1 and the Nd total cross section at 10 MeV
in Fig. 2. As in 3H, we again observe underbinding in-
dicative of the need for 3NFs, especially at N3LO and
N4LO. This underbinding is correlated with larger r

p

in
4He, which is expected to decrease toward the experi-
mental result as E

gs

is lowered toward experiment with
the inclusion of 3NFs. Note that the energy of the first
excited state in 6Li, with J⇡ = 3+, follows the same pat-
tern as the ground state energy, leading to an excitation
energy that depends much less on the chiral order than
one might naively expect based on the theoretical uncer-
tainties of the binding energies.
To summarize, we have studied in this Letter selected

few-nucleon observables using improved chiral NN po-
tentials of Refs. [15, 16] up to N4LO. Our results suggest
that these new chiral forces are well suited for modern
ab initio few- and many-body methods. Using the novel
approach for error analysis introduced in Ref. [15], we
found truly unambiguous evidence for missing 3NF ef-
fects by observing discrepancies between our predictions
and experimental data well outside the range of quanti-
fied uncertainties. The magnitude of these discrepancies
is found to match well with the expected size of the chi-
ral 3NF whose dominant contribution appears at N2LO.
Furthermore, we have demonstrated that the predictions
for Nd and NN scattering observables at the same energy
have comparable accuracy, in agreement with the general
principles of EFT. Most importantly, the expected theo-
retical uncertainty for Nd scattering observables at N3LO
and N4LO in the energy range of E

lab

' 70�200 MeV is
shown to be substantially smaller than the observed dis-
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potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. For notations see Fig. 3.

sults for 4He are obtained both by solving the Faddeev-
Yakubovsky (FY) equations and with the no-core shell
model (NCSM) [8], which agree to within the estimated
uncertainties of these methods. The numerical uncer-
tainties in the FY solutions are a few keV for the energy
and about 0.001 fm for the point-proton radius (r

p

). The
numerical uncertainties from incomplete convergence of
the NCSM (see Ref. [21] for details) are shown as error
bars (color online: red) together with the estimated theo-
retical uncertainties from the truncated chiral expansion
with Q = M

⇡

/⇤
b

(color online: blue).
For the 6Li energies, we carried out Similarity Renor-

malization Group (SRG) evolution [22] in order to en-
hance the convergence rate of the NCSM calculations
that were performed in basis spaces up through N

max

=
12 and extrapolated to the infinite matrix limit following
Ref. [22]. We retained the induced 3NF arising from the
SRG evolution, see Ref. [23] for details, and this produces
results for the 6Li energies in Fig. 5 that are independent
of the SRG scale over the range ↵ = 0.04 � 0.08 fm4 to
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FIG. 5: (Color online) Predictions for Egs and rp of 4He and
the energies of the lowest two states of 6Li based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. Theoretical uncertainties (blue) are estimated via
Eqs. (4) and (5) for chiral order i = 0, 2 and via Eqs. (6) and
(7) for i � 3. Numerical uncertainties from the NCSM (red)
are estimated following Ref. [21].

within our quoted many-body uncertainties. For exam-
ple, at N4LO we obtain E

gs

= �26.9(4) (�26.9(2)) MeV
at ↵ = 0.04(0.08) fm4 for 6Li where the quantified numer-
ical uncertainty in the last digit of the energy is quoted
in parenthesis.
The patterns for the energies in Fig. 5 as well as for

the r
p

of 4He are very similar to the pattern for the E
gs

of 3H in Fig. 1 and the Nd total cross section at 10 MeV
in Fig. 2. As in 3H, we again observe underbinding in-
dicative of the need for 3NFs, especially at N3LO and
N4LO. This underbinding is correlated with larger r

p

in
4He, which is expected to decrease toward the experi-
mental result as E

gs

is lowered toward experiment with
the inclusion of 3NFs. Note that the energy of the first
excited state in 6Li, with J⇡ = 3+, follows the same pat-
tern as the ground state energy, leading to an excitation
energy that depends much less on the chiral order than
one might naively expect based on the theoretical uncer-
tainties of the binding energies.
To summarize, we have studied in this Letter selected

few-nucleon observables using improved chiral NN po-
tentials of Refs. [15, 16] up to N4LO. Our results suggest
that these new chiral forces are well suited for modern
ab initio few- and many-body methods. Using the novel
approach for error analysis introduced in Ref. [15], we
found truly unambiguous evidence for missing 3NF ef-
fects by observing discrepancies between our predictions
and experimental data well outside the range of quanti-
fied uncertainties. The magnitude of these discrepancies
is found to match well with the expected size of the chi-
ral 3NF whose dominant contribution appears at N2LO.
Furthermore, we have demonstrated that the predictions
for Nd and NN scattering observables at the same energy
have comparable accuracy, in agreement with the general
principles of EFT. Most importantly, the expected theo-
retical uncertainty for Nd scattering observables at N3LO
and N4LO in the energy range of E

lab

' 70�200 MeV is
shown to be substantially smaller than the observed dis-
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sults for 4He are obtained both by solving the Faddeev-
Yakubovsky (FY) equations and with the no-core shell
model (NCSM) [8], which agree to within the estimated
uncertainties of these methods. The numerical uncer-
tainties in the FY solutions are a few keV for the energy
and about 0.001 fm for the point-proton radius (r

p

). The
numerical uncertainties from incomplete convergence of
the NCSM (see Ref. [21] for details) are shown as error
bars (color online: red) together with the estimated theo-
retical uncertainties from the truncated chiral expansion
with Q = M

⇡
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b

(color online: blue).
For the 6Li energies, we carried out Similarity Renor-

malization Group (SRG) evolution [22] in order to en-
hance the convergence rate of the NCSM calculations
that were performed in basis spaces up through N

max

=
12 and extrapolated to the infinite matrix limit following
Ref. [22]. We retained the induced 3NF arising from the
SRG evolution, see Ref. [23] for details, and this produces
results for the 6Li energies in Fig. 5 that are independent
of the SRG scale over the range ↵ = 0.04 � 0.08 fm4 to
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the energies of the lowest two states of 6Li based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. Theoretical uncertainties (blue) are estimated via
Eqs. (4) and (5) for chiral order i = 0, 2 and via Eqs. (6) and
(7) for i � 3. Numerical uncertainties from the NCSM (red)
are estimated following Ref. [21].

within our quoted many-body uncertainties. For exam-
ple, at N4LO we obtain E

gs

= �26.9(4) (�26.9(2)) MeV
at ↵ = 0.04(0.08) fm4 for 6Li where the quantified numer-
ical uncertainty in the last digit of the energy is quoted
in parenthesis.
The patterns for the energies in Fig. 5 as well as for

the r
p

of 4He are very similar to the pattern for the E
gs

of 3H in Fig. 1 and the Nd total cross section at 10 MeV
in Fig. 2. As in 3H, we again observe underbinding in-
dicative of the need for 3NFs, especially at N3LO and
N4LO. This underbinding is correlated with larger r

p

in
4He, which is expected to decrease toward the experi-
mental result as E

gs

is lowered toward experiment with
the inclusion of 3NFs. Note that the energy of the first
excited state in 6Li, with J⇡ = 3+, follows the same pat-
tern as the ground state energy, leading to an excitation
energy that depends much less on the chiral order than
one might naively expect based on the theoretical uncer-
tainties of the binding energies.
To summarize, we have studied in this Letter selected

few-nucleon observables using improved chiral NN po-
tentials of Refs. [15, 16] up to N4LO. Our results suggest
that these new chiral forces are well suited for modern
ab initio few- and many-body methods. Using the novel
approach for error analysis introduced in Ref. [15], we
found truly unambiguous evidence for missing 3NF ef-
fects by observing discrepancies between our predictions
and experimental data well outside the range of quanti-
fied uncertainties. The magnitude of these discrepancies
is found to match well with the expected size of the chi-
ral 3NF whose dominant contribution appears at N2LO.
Furthermore, we have demonstrated that the predictions
for Nd and NN scattering observables at the same energy
have comparable accuracy, in agreement with the general
principles of EFT. Most importantly, the expected theo-
retical uncertainty for Nd scattering observables at N3LO
and N4LO in the energy range of E

lab

' 70�200 MeV is
shown to be substantially smaller than the observed dis-
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sults for 4He are obtained both by solving the Faddeev-
Yakubovsky (FY) equations and with the no-core shell
model (NCSM) [8], which agree to within the estimated
uncertainties of these methods. The numerical uncer-
tainties in the FY solutions are a few keV for the energy
and about 0.001 fm for the point-proton radius (r

p

). The
numerical uncertainties from incomplete convergence of
the NCSM (see Ref. [21] for details) are shown as error
bars (color online: red) together with the estimated theo-
retical uncertainties from the truncated chiral expansion
with Q = M

⇡
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b

(color online: blue).
For the 6Li energies, we carried out Similarity Renor-

malization Group (SRG) evolution [22] in order to en-
hance the convergence rate of the NCSM calculations
that were performed in basis spaces up through N

max

=
12 and extrapolated to the infinite matrix limit following
Ref. [22]. We retained the induced 3NF arising from the
SRG evolution, see Ref. [23] for details, and this produces
results for the 6Li energies in Fig. 5 that are independent
of the SRG scale over the range ↵ = 0.04 � 0.08 fm4 to
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FIG. 5: (Color online) Predictions for Egs and rp of 4He and
the energies of the lowest two states of 6Li based on the NN
potentials of Refs. [15, 16] for R = 1.0 fm without including
the 3NF. Theoretical uncertainties (blue) are estimated via
Eqs. (4) and (5) for chiral order i = 0, 2 and via Eqs. (6) and
(7) for i � 3. Numerical uncertainties from the NCSM (red)
are estimated following Ref. [21].

within our quoted many-body uncertainties. For exam-
ple, at N4LO we obtain E

gs

= �26.9(4) (�26.9(2)) MeV
at ↵ = 0.04(0.08) fm4 for 6Li where the quantified numer-
ical uncertainty in the last digit of the energy is quoted
in parenthesis.
The patterns for the energies in Fig. 5 as well as for

the r
p

of 4He are very similar to the pattern for the E
gs

of 3H in Fig. 1 and the Nd total cross section at 10 MeV
in Fig. 2. As in 3H, we again observe underbinding in-
dicative of the need for 3NFs, especially at N3LO and
N4LO. This underbinding is correlated with larger r

p

in
4He, which is expected to decrease toward the experi-
mental result as E

gs

is lowered toward experiment with
the inclusion of 3NFs. Note that the energy of the first
excited state in 6Li, with J⇡ = 3+, follows the same pat-
tern as the ground state energy, leading to an excitation
energy that depends much less on the chiral order than
one might naively expect based on the theoretical uncer-
tainties of the binding energies.
To summarize, we have studied in this Letter selected

few-nucleon observables using improved chiral NN po-
tentials of Refs. [15, 16] up to N4LO. Our results suggest
that these new chiral forces are well suited for modern
ab initio few- and many-body methods. Using the novel
approach for error analysis introduced in Ref. [15], we
found truly unambiguous evidence for missing 3NF ef-
fects by observing discrepancies between our predictions
and experimental data well outside the range of quanti-
fied uncertainties. The magnitude of these discrepancies
is found to match well with the expected size of the chi-
ral 3NF whose dominant contribution appears at N2LO.
Furthermore, we have demonstrated that the predictions
for Nd and NN scattering observables at the same energy
have comparable accuracy, in agreement with the general
principles of EFT. Most importantly, the expected theo-
retical uncertainty for Nd scattering observables at N3LO
and N4LO in the energy range of E

lab

' 70�200 MeV is
shown to be substantially smaller than the observed dis-

4He rms radius

3H 4He 4He

6Li

Faddeev-Yakubovsky for 3H, 4He; NCSM with SRG-evolved 2NF (+ 3NFinduced) for 6Li

Required size of the 3NF consistent with the estimated size of N2LO contributions

For NCSM, the numerical uncertainty dominates starting from N3LO

Theoretical uncertainties at N4LO for the energies estimated to be below 0.5%



 Summary
A new generation of chiral NN potentials up to N4LO is being developed

— excellent description of NN data

A simple approach to estimate theoretical uncertainty at a given order

Application to few-N systems: 

Goal: reliable ab initio few- and many-body calculations based on chiral !
          EFT with quantified theoretical uncertainties!

Next step: explicit inclusion of the 3NF

— good convergence of the chiral expansion

— applicable to any observable and for a particular choice of the regulator
— results in the NN system at all orders and for all cutoffs are consistent with!
     each other and with experimental data (within uncertainties)

— clear evidence for missing 3NF effects within our scheme
— expect accurate results for Nd scattering up to Elab ~ 200 MeV (at N4LO)
— Nd scattering at intermediate (Elab ~ 50…200 MeV): a golden window to !
     test/probe the 3NF in chiral EFT
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