gle Channel Eloss Recalibration for slats with hole 1/

3.0

F. Balestra, R. Introzzi

INFN PoliTO

April 2, 2014

F. Balestra, R. Introzzi

Single Channel Eloss Recalibration for slats with hole

	The study	
What are we studying?		

We need to calibrate the energy loss in a proper way in the slats with the hole: the central ones 52, 53, 54 plus some others that show a discontinuity 50, 51, 151

The study

Explanation of the studied quantities PMT readings p evaluation

ADC readings, with pedestal subtraction in slats with hole: TOP HIT

The ADC readings, from which we subtract the pedestal values are $iADC'_t$ and $iADC'_b$.

If a particle is impinging on the slat, above the hole $(y > \Delta/2)$

i.e. HIT ON TOP we will have

$$\begin{cases} iADC'_t = \epsilon_t E_0 \exp[-\alpha_t(\frac{L}{2} - y)] \\ iADC'_b = \epsilon_b E_0 \ p \ \exp[-\alpha_b(\frac{L}{2} - \frac{\Delta}{2})] \exp[-\alpha_t(y - \frac{\Delta}{2})] \end{cases}$$

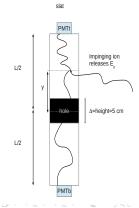
where ϵ_t, ϵ_b are the PMT gains,

 α_t, α_b should be the attenuation constants for the two semi-slats,

 E_0 is the energy released by the ion,

 $\Delta = 5~cm$ is the hole heigth and

p, unknown, is the light loss by reflection in the slat-air-slat interface.



The study

=

If we calculate $log(\frac{iADC'_t}{iADC'_b})$ we obtain:

$$log(\frac{iADC'_{t}}{iADC'_{b}}) = log(\frac{\epsilon_{t}E_{0}\exp[-\alpha_{t}(\frac{L}{2}-y)]}{\epsilon_{b}E_{0}\ p\ \exp[-\alpha_{b}(\frac{L}{2}-\frac{\Delta}{2})]\exp[-\alpha_{t}(y-\frac{\Delta}{2})]})$$

$$= log(\frac{\epsilon_{t}\exp[-\alpha_{t}(\frac{L}{2}-y)]}{\epsilon_{b}\ p\ \exp[-\alpha_{b}(\frac{L}{2}-\frac{\Delta}{2})]\exp[-\alpha_{t}(y-\frac{\Delta}{2})]})$$

$$log(Gratio) - log(p) + log[\exp[-\frac{L}{2}(\alpha_{t}-\alpha_{b})]\exp[-\frac{\Delta}{2}(\alpha_{t}+\alpha_{b})]\exp(2\alpha_{t}\ y)]$$

$$= log(Gratio) - log(p) - \frac{L}{2}(\alpha_{t}-\alpha_{b}) - \frac{\Delta}{2}(\alpha_{t}+\alpha_{b}) + (2\alpha_{t}\ y)$$

$$= (2\alpha_{t}\ y) + log(Gratio) - log(p) - \frac{L}{2}(\alpha_{t}-\alpha_{b}) - \frac{\Delta}{2}(\alpha_{t}+\alpha_{b})$$

$$= (p_{0,t}\ y) + p_{1,t}$$

being $Gratio = \frac{\epsilon_t}{\epsilon_b}$. Therefore, in the plot $log(\frac{iADC'_t}{iADC'_b})vsy$: α_t can still be considered as an attenuation constant i.e. \propto the slope; *Gratio* instead is no more the only factor contained in the known term. The study Provide quantities Pre-study Provide quantities Provide quantiti

If a particle is impinging on the slat, below the hole (y $<\Delta/2)$ i.e. HIT ON BOTTOM we will have

alat

Explanation of the studied quantitie PMT readings p evaluation

The study

If we calculate $\log(\frac{iADC_t'}{iADC_b'})$ we obtain:

log(

$$log(\frac{iADC'_{t}}{iADC'_{b}}) = log(\frac{\epsilon_{t}E_{0} \ p \ \exp[-\alpha_{t}(\frac{l}{2} - \frac{\Delta}{2})]\exp[\alpha_{b}(y + \frac{\Delta}{2})]}{\epsilon_{b}E_{0}\exp[-\alpha_{b}(\frac{l}{2} + y)]})$$

$$log(\frac{\epsilon_{t} \ p \ \exp[-\alpha_{t}(\frac{l}{2} - \frac{\Delta}{2})]\exp[\alpha_{b}(y + \frac{\Delta}{2})]}{\epsilon_{b}\exp[-\alpha_{b}(\frac{l}{2} + y)]})$$

$$= log(Gratio) + log(p) + log[\exp[-\frac{l}{2}(\alpha_{t} - \alpha_{b})]\exp[\frac{\Delta}{2}(\alpha_{t} + \alpha_{b})]\exp(2\alpha_{b} \ y)]$$

$$= log(Gratio) + log(p) - \frac{l}{2}(\alpha_{t} - \alpha_{b}) + \frac{\Delta}{2}(\alpha_{t} + \alpha_{b}) + (2\alpha_{b} \ y)$$

$$= (2\alpha_{b} \ y) + log(Gratio) + log(p) - \frac{l}{2}(\alpha_{t} - \alpha_{b}) + \frac{\Delta}{2}(\alpha_{t} + \alpha_{b})$$

$$= (p_{0,b} \ y) + p_{1,b}$$

Therefore, in the plot $log(\frac{iADC'_t}{iADC'_b})vsy$:

 α_b can still be considered as an attenuation constant i.e. \propto *the slope*; *Gratio* instead is no more the only factor contained in the known term.

The study

Explanation of the studied quantities **PMT readings** p evaluation

PMT top reads a top hit

Sweepruns:

$$lig'_t = \epsilon_t C_{peak} \exp[-\alpha_t (\frac{L}{2} - \frac{\overline{\Delta}}{2})]$$

Production runs:

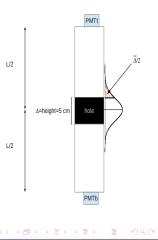
$$iADC'_t = \frac{lig'_t}{C_{peak}} \exp(-\alpha_t \frac{\overline{\Delta}}{2}) E_0 \exp(\alpha_t y)$$

thus

$$E_0 = iADC'_t \exp(-\alpha_t y) \frac{C_{peak}}{lig'_t} \exp(\alpha_t \frac{\overline{\Delta}}{2})$$

$$= ADC_t \frac{C_{peak}}{lig'_t} \exp(\alpha_t \frac{\overline{\Delta}}{2})$$
$$= light_t \exp(\alpha_t \frac{\overline{\Delta}}{2})$$

where $\overline{\frac{\Delta}{2}}$ is the baricenter of the beam distribution tail seen by the top semi-slat during sweepruns ($\approx \frac{\Delta}{2}$).



slat

PMT top reads a bottom hit

Sweepruns:

$$lig'_t = \epsilon_t C_{peak} \exp[-\alpha_t (\frac{L}{2} - \frac{\overline{\Delta}}{2})]$$

Production runs:

$$iADC'_{t} = p \frac{lig'_{t}}{C_{peak}} \exp(-\alpha_{t} \frac{\overline{\Delta}}{2}) \exp(\alpha_{t} \frac{\Delta}{2}) E_{0} \exp(\alpha_{b} y) \exp(\alpha_{b} \frac{\Delta}{2})$$

then

$$E_0 = iADC'_t \exp(-\alpha_b y) \frac{C_{peak}}{lig'_t} \frac{1}{p} \exp(-\frac{\Delta}{2}(\alpha_t + \alpha_b)) \exp(\alpha_t \frac{\overline{\Delta}}{2})$$

but: p is unknown. Can we deduce it?

Э

< ∃ >

HIT on BOTTOM

Can we evaluate p?

HIT on TOP

$$log(\frac{iADC'_{t}}{iADC'_{b}}) = (p_{0,t} \ y) + p_{1,t} \qquad log(\frac{iADC'_{t}}{iADC'_{b}}) = (p_{0,b} \ y) + p_{1,b}$$
with

$$p_{1,t} = log(Gratio) - log(p) - \frac{L}{2}(\alpha_t - \alpha_b) - \frac{\Delta}{2}(\alpha_t + \alpha_b)$$

and

$$p_{1,b} = log(Gratio) + log(p) - \frac{L}{2}(\alpha_t - \alpha_b) + \frac{\Delta}{2}(\alpha_t + \alpha_b)$$

then

$$p_{1,t} - p_{1,b} = -2[log(p) + \frac{\Delta}{2}(\alpha_t + \alpha_b)]$$

and since

$$rac{p_{0,t}}{2} = lpha_t ext{ and } rac{p_{0,b}}{2} = lpha_b$$
 $- rac{-(p_{1,t} - p_{1,b})}{2} = log(p) + rac{\Delta}{4}(p_{0,t} + p_{0,b})$

 $\prec \equiv \rightarrow$

3

	The study	
Can we evaluate p?		

$$\frac{-(p_{1,t}-p_{1,b})}{2} = log(p) + \frac{\Delta}{4}(p_{0,t}+p_{0,b})$$

from which we can evaluate log(p):

$$log(p) = \frac{-(p_{1,t} - p_{1,b})}{2} - \frac{\Delta}{4}(p_{0,t} + p_{0,b})$$

and p:

$$p = e^{\left[\frac{-(p_{1,t}-p_{1,b})}{2} - \frac{\Delta}{4}(p_{0,t}+p_{0,b})\right]}$$

	The study	
Error on p?		

If we call log(p)=z:

$$z = log(p) = -rac{p_{1,t}}{2} + rac{p_{1,b}}{2} - rac{\Delta}{4}p_{0,t} - rac{\Delta}{4}p_{0,b}$$

we will have the error on z (squared) given by:

$$\begin{split} (\delta z)^2 &= (\frac{\partial z}{\partial p_{1,t}})^2 * (\delta p_{1,t})^2 + (\frac{\partial z}{\partial p_{1,b}})^2 * (\delta p_{1,b})^2 + (\frac{\partial z}{\partial p_{0,t}})^2 * (\delta p_{0,t})^2 + (\frac{\partial z}{\partial p_{0,b}})^2 * (\delta p_{0,b})^2 \\ &= (\frac{1}{4}) * (\delta p_{1,t})^2 + (\frac{1}{4}) * (\delta p_{1,b})^2 + (\frac{\Delta^2}{16}) * (\delta p_{0,t})^2 + (\frac{\Delta^2}{16}) * (\delta p_{0,b})^2 \end{split}$$

assuming we know the hole height Δ without any error and knowing the errors on $p_{0,t}$, $p_{0,b}$, $p_{1,t}$ and $p_{1,b}$ from fits. Since $p = e^z$

$$(\delta p)^{2} = \left(\frac{\partial p}{\partial z}\right)^{2} * (\delta z)^{2} = e^{2z} * (\delta z)^{2}$$
$$= e^{2z} * \left[\left(\frac{1}{4}\right) * (\delta p_{1,t})^{2} + \left(\frac{1}{4}\right) * (\delta p_{1,b})^{2} + \left(\frac{\Delta^{2}}{16}\right) * (\delta p_{0,t})^{2} + \left(\frac{\Delta^{2}}{16}\right) * (\delta p_{0,b})^{2}\right]$$

and

$$(\delta p) = e^{z} * \frac{1}{2} \sqrt{(\delta p_{1,t})^{2} + (\delta p_{1,b})^{2} + \frac{\Delta^{2}}{4} ((\delta p_{0,t})^{2} + (\delta p_{0,b})^{2})}$$